forked from weningerleon/TextileDefectDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_train.py
97 lines (71 loc) · 3.11 KB
/
plot_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pickle
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
import scipy
from scipy.stats.mstats import normaltest
import matplotlib.patches as mpatches
import numpy as np
accloggers = []
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric1\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric2\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric3\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric4\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric7\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric8\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric21\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric25\model_new_unet_complete_logger.p', "rb")))
accloggers.append(pickle.load(open(r'V:\ITA\MA_weninger\plain_weave\Fabric26\model_new_unet_complete_logger.p', "rb")))
labels = []
labels.append('Without Fabric 1')
labels.append('Without Fabric 2')
labels.append('Without Fabric 3')
labels.append('Without Fabric 4')
labels.append('Without Fabric 7')
labels.append('Without Fabric 8')
labels.append('Without Fabric 21')
labels.append('Without Fabric 25')
labels.append('Without Fabric 26')
NUM_COLORS = 10
cm = plt.get_cmap('gist_rainbow')
fig = plt.figure(0)
ax = fig.add_subplot(111)
axes = plt.gca()
axes.set_xlim([0, 3])
axes.set_ylim([0, 1])
ax.set_color_cycle([cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)])
handles = []
for idx, acclogger in enumerate(accloggers):
train_acc = acclogger[0]
train_acc.insert(0,0.33)
train_loss = acclogger[1]
epoch_ends = acclogger[2]
val_accs = acclogger[3]
val_accs.insert(0,0.33)
x = np.linspace(0,epoch_ends.__len__(),num=train_acc.__len__())
p1 = ax.plot(x, train_acc)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Train Set Accuracy')
handles.append(mpatches.Patch(color=p1[0].get_color(), label=labels[idx]))
plt.legend(handles=handles, loc=4)
plt.xticks(np.arange(0, 3.001, 1))
fig = plt.figure(1)
#plt.plot(x, train_acc)
p2 = plt.plot(val_accs)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.title('Test Set Accuracy')
plt.legend(handles=handles, loc=4)
axes = plt.gca()
axes.set_xlim([0, 3])
axes.set_ylim([0, 1])
axes.set_color_cycle([cm(1. * i / NUM_COLORS) for i in range(NUM_COLORS)])
plt.xticks(np.arange(0, 3.001, 1))
x=3
plt.show()
red_patch = mpatches.Patch(color='m', label='Without Fabric 26')
red_patch = mpatches.Patch(color='y', label='Without Fabric 26')
red_patch = mpatches.Patch(color='k', label='Without Fabric 26')
red_patch = mpatches.Patch(color='c', label='Without Fabric 26')
red_patch = mpatches.Patch(color='c', label='Without Fabric 26')