-
Notifications
You must be signed in to change notification settings - Fork 2
/
imle_helpers.py
218 lines (181 loc) · 11.3 KB
/
imle_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
import imageio
from visual.utils import get_sample_for_visualization, generate_for_NN, generate_images_initial
from torch.utils.data import DataLoader, TensorDataset
from helpers.utils import ZippedDataset, get_cpu_stats_over_ranks
@torch.jit.script
def gaussian_analytical_kl(mu1, mu2, logsigma1, logsigma2):
return -0.5 logsigma2 - logsigma1 0.5 * (logsigma1.exp() ** 2 (mu1 - mu2) ** 2) / (logsigma2.exp() ** 2)
@torch.jit.script
def draw_gaussian_diag_samples(mu, logsigma, eps):
return torch.exp(logsigma) * eps mu
def get_conv(in_dim, out_dim, kernel_size, stride, padding, zero_bias=True, zero_weights=False, groups=1, scaled=False):
c = nn.Conv2d(in_dim, out_dim, kernel_size, stride, padding, groups=groups)
if zero_bias:
c.bias.data *= 0.0
if zero_weights:
c.weight.data *= 0.0
return c
def get_3x3(in_dim, out_dim, zero_bias=True, zero_weights=False, groups=1, scaled=False):
return get_conv(in_dim, out_dim, 3, 1, 1, zero_bias, zero_weights, groups=groups, scaled=scaled)
def get_1x1(in_dim, out_dim, zero_bias=True, zero_weights=False, groups=1, scaled=False):
return get_conv(in_dim, out_dim, 1, 1, 0, zero_bias, zero_weights, groups=groups, scaled=scaled)
def log_prob_from_logits(x):
""" numerically stable log_softmax implementation that prevents overflow """
axis = len(x.shape) - 1
m = x.max(dim=axis, keepdim=True)[0]
return x - m - torch.log(torch.exp(x - m).sum(dim=axis, keepdim=True))
def const_max(t, constant):
other = torch.ones_like(t) * constant
return torch.max(t, other)
def const_min(t, constant):
other = torch.ones_like(t) * constant
return torch.min(t, other)
def discretized_mix_logistic_loss(x, l, low_bit=False):
""" log-likelihood for mixture of discretized logistics, assumes the data has been rescaled to [-1,1] interval """
# Adapted from https://github.com/openai/pixel-cnn/blob/master/pixel_cnn_pp/nn.py
xs = [s for s in x.shape] # true image (i.e. labels) to regress to, e.g. (B,32,32,3)
ls = [s for s in l.shape] # predicted distribution, e.g. (B,32,32,100)
nr_mix = int(ls[-1] / 10) # here and below: unpacking the params of the mixture of logistics
logit_probs = l[:, :, :, :nr_mix]
l = torch.reshape(l[:, :, :, nr_mix:], xs [nr_mix * 3])
means = l[:, :, :, :, :nr_mix]
log_scales = const_max(l[:, :, :, :, nr_mix:2 * nr_mix], -7.)
coeffs = torch.tanh(l[:, :, :, :, 2 * nr_mix:3 * nr_mix])
x = torch.reshape(x, xs [1]) torch.zeros(xs [nr_mix]).to(x.device) # here and below: getting the means and adjusting them based on preceding sub-pixels
m2 = torch.reshape(means[:, :, :, 1, :] coeffs[:, :, :, 0, :] * x[:, :, :, 0, :], [xs[0], xs[1], xs[2], 1, nr_mix])
m3 = torch.reshape(means[:, :, :, 2, :] coeffs[:, :, :, 1, :] * x[:, :, :, 0, :] coeffs[:, :, :, 2, :] * x[:, :, :, 1, :], [xs[0], xs[1], xs[2], 1, nr_mix])
means = torch.cat([torch.reshape(means[:, :, :, 0, :], [xs[0], xs[1], xs[2], 1, nr_mix]), m2, m3], dim=3)
centered_x = x - means
inv_stdv = torch.exp(-log_scales)
if low_bit:
plus_in = inv_stdv * (centered_x 1. / 31.)
cdf_plus = torch.sigmoid(plus_in)
min_in = inv_stdv * (centered_x - 1. / 31.)
else:
plus_in = inv_stdv * (centered_x 1. / 255.)
cdf_plus = torch.sigmoid(plus_in)
min_in = inv_stdv * (centered_x - 1. / 255.)
cdf_min = torch.sigmoid(min_in)
log_cdf_plus = plus_in - F.softplus(plus_in) # log probability for edge case of 0 (before scaling)
log_one_minus_cdf_min = -F.softplus(min_in) # log probability for edge case of 255 (before scaling)
cdf_delta = cdf_plus - cdf_min # probability for all other cases
mid_in = inv_stdv * centered_x
log_pdf_mid = mid_in - log_scales - 2. * F.softplus(mid_in) # log probability in the center of the bin, to be used in extreme cases (not actually used in our code)
# now select the right output: left edge case, right edge case, normal case, extremely low prob case (doesn't actually happen for us)
# this is what we are really doing, but using the robust version below for extreme cases in other applications and to avoid NaN issue with tf.select()
# log_probs = tf.select(x < -0.999, log_cdf_plus, tf.select(x > 0.999, log_one_minus_cdf_min, tf.log(cdf_delta)))
# robust version, that still works if probabilities are below 1e-5 (which never happens in our code)
# tensorflow backpropagates through tf.select() by multiplying with zero instead of selecting: this requires use to use some ugly tricks to avoid potential NaNs
# the 1e-12 in tf.maximum(cdf_delta, 1e-12) is never actually used as output, it's purely there to get around the tf.select() gradient issue
# if the probability on a sub-pixel is below 1e-5, we use an approximation based on the assumption that the log-density is constant in the bin of the observed sub-pixel value
if low_bit:
log_probs = torch.where(x < -0.999,
log_cdf_plus,
torch.where(x > 0.999,
log_one_minus_cdf_min,
torch.where(cdf_delta > 1e-5,
torch.log(const_max(cdf_delta, 1e-12)),
log_pdf_mid - np.log(15.5))))
else:
log_probs = torch.where(x < -0.999,
log_cdf_plus,
torch.where(x > 0.999,
log_one_minus_cdf_min,
torch.where(cdf_delta > 1e-5,
torch.log(const_max(cdf_delta, 1e-12)),
log_pdf_mid - np.log(127.5))))
log_probs = log_probs.sum(dim=3) log_prob_from_logits(logit_probs)
mixture_probs = torch.logsumexp(log_probs, -1)
res = -1. * mixture_probs.sum(dim=[1, 2]) / np.prod(xs[1:])
return res
def sample_from_discretized_mix_logistic(l, nr_mix, eps=None, u=None):
ls = [s for s in l.shape]
xs = ls[:-1] [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = torch.reshape(l[:, :, :, nr_mix:], xs [nr_mix * 3])
# sample mixture indicator from softmax
if eps is None:
eps = torch.empty(logit_probs.shape, device=l.device).uniform_(1e-5, 1. - 1e-5)
amax = torch.argmax(logit_probs - torch.log(-torch.log(eps)), dim=3)
sel = F.one_hot(amax, num_classes=nr_mix).float()
sel = torch.reshape(sel, xs[:-1] [1, nr_mix])
# select logistic parameters
means = (l[:, :, :, :, :nr_mix] * sel).sum(dim=4)
log_scales = const_max((l[:, :, :, :, nr_mix:nr_mix * 2] * sel).sum(dim=4), -7.)
coeffs = (torch.tanh(l[:, :, :, :, nr_mix * 2:nr_mix * 3]) * sel).sum(dim=4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
if u is None:
u = torch.empty(means.shape, device=means.device).uniform_(1e-5, 1. - 1e-5)
x = means torch.exp(log_scales) * (torch.log(u) - torch.log(1. - u))
x0 = const_min(const_max(x[:, :, :, 0], -1.), 1.)
x1 = const_min(const_max(x[:, :, :, 1] coeffs[:, :, :, 0] * x0, -1.), 1.)
x2 = const_min(const_max(x[:, :, :, 2] coeffs[:, :, :, 1] * x0 coeffs[:, :, :, 2] * x1, -1.), 1.)
return torch.cat([torch.reshape(x0, xs[:-1] [1]), torch.reshape(x1, xs[:-1] [1]), torch.reshape(x2, xs[:-1] [1])], dim=3), eps, u
def backtrack(H, sampler, imle, preprocess_fn, data, logprint, training_step_imle):
latents = torch.randn([data.shape[0], H.latent_dim], requires_grad=True, dtype=torch.float32, device='cuda')
snoise = [torch.randn([data.shape[0], s.shape[1], s.shape[2], s.shape[3]], dtype=torch.float32, device='cuda') for s in sampler.snoise_tmp]
if H.restore_latent_path:
logprint('restoring latent path')
latents = torch.tensor(torch.load(f'{H.restore_latent_path}/latent-best.npy'), requires_grad=True, dtype=torch.float32, device='cuda')
snoise = [torch.tensor(torch.load(f'{H.restore_latent_path}/snoise-best-{s.shape[2]}.npy'), requires_grad=True, dtype=torch.float32, device='cuda') for s in sampler.snoise_tmp]
latent_optimizer = AdamW([latents], lr=H.latent_lr)
if H.space == 'w':
latent_optimizer = AdamW([latents] snoise, lr=H.latent_lr)
# latent_optimizer = SGD([latents] snoise, lr=H.latent_lr)
dists = torch.empty([data.shape[0]], dtype=torch.float32).cuda()
sampler.calc_dists_existing(data, imle, dists=dists, latents=latents, snoise=snoise)
print(f'initial dists: {dists.mean()}')
best_loss = np.inf
num_iters = 0
while num_iters < H.reconstruct_iter_num:
comb_dataset = ZippedDataset(data, TensorDataset(latents))
data_loader = DataLoader(comb_dataset, batch_size=H.n_batch)
for cur, indices in data_loader:
x = cur
lat = cur[1][0]
_, target = preprocess_fn(x)
cur_snoise = [s[indices] for s in snoise]
training_step_imle(H, target.shape[0], target, lat, cur_snoise, imle, None, latent_optimizer, sampler.calc_loss)
latents.grad.zero_()
[s.grad.zero_() for s in snoise]
num_iters = len(data)
logprint(f'iteration: {num_iters}')
# torch.save(latents.detach(), f'{H.save_dir}/latent-latest.npy')
# for s in snoise:
# torch.save(s.detach(), f'{H.save_dir}/snoise-latest-{s.shape[2]}.npy')
sampler.calc_dists_existing(data, imle, dists=dists, latents=latents, snoise=snoise)
cur_mean = dists.mean()
logprint(f'cur mean: {cur_mean}, best: {best_loss}')
if cur_mean < best_loss:
torch.save(latents.detach(), f'{H.save_dir}/latent-best.npy')
for s in snoise:
torch.save(s.detach(), f'{H.save_dir}/snoise-best-{s.shape[2]}.npy')
logprint(f'improved: {cur_mean}')
best_loss = cur_mean
for i in range(data.shape[0]):
samp = sampler.sample(latents[i:i 1], imle, [s[i:i 1] for s in snoise])
imageio.imwrite(f'{H.save_dir}/{i}.png', samp[0])
imageio.imwrite(f'{H.save_dir}/{i}-real.png', data[i])
if num_iters >= H.reconstruct_iter_num:
break
def reconstruct(H, sampler, imle, preprocess_fn, images, latents, snoise, name, logprint, training_step_imle):
latent_optimizer = AdamW([latents], lr=H.latent_lr)
generate_for_NN(sampler, images, latents.detach(), snoise, images.shape, imle,
f'{H.save_dir}/{name}-initial.png', logprint)
for i in range(H.latent_epoch):
for iter in range(H.reconstruct_iter_num):
_, target = preprocess_fn([images])
stat = training_step_imle(H, target.shape[0], target, latents, snoise, imle, None, latent_optimizer, sampler.calc_loss)
latents.grad.zero_()
if iter % 50 == 0:
print('loss is: ', stat['loss'])
generate_for_NN(sampler, images, latents.detach(), snoise, images.shape, imle,
f'{H.save_dir}/{name}-{iter}.png', logprint)
torch.save(latents.detach(), '{}/reconstruct-latest.npy'.format(H.save_dir))