Digits Detection for Algorithm Design and Analysis
梁堃昌泰 肖静虹 范小晟
- mxnet
- opencv
- numpy
- sklearn
- pillow
- others(see if there're import errors)
考虑到实际测试数据的特点,输入图像做了以下预处理后被传入数字检测:
- 裁剪上方525像素(图标和汉字)
- 放缩分辨率到1/2(减少像素数,加快处理)
- 反色(使大部分像素为0)
- RGB值以128为中心拉伸2倍并裁剪到0-255(加大颜色区别)
- HSV值中色相H小于88的全改为黑色(去横线)
- 采用椭圆形形态学运算核,进行2次膨胀,1次腐蚀(连接断开的字,同时加粗)
参考了[4]中的方法,使用了opencv中的CascadeClassifier进行数字的识别。识别模型也采用了[4]中提供的预训练模型(在7000个正样和9500个负样上训练)。
考虑到多方面因素,模型采用了适用于cifar10的ResNet-8,实现参考了[2]。训练数据合并了[5][6]中的训练和测试集,而测试使用了提供的数据生成器里的样本。训练后从所有epoch中选取了测试准确率最高的模型作为使用的模型。调用代码稍作修改后与[4]中代码结合,替换其中的SVM分类器。
只需执行python demo.py
按GUI提示操作即可。结果同时以图片输出到result.jpg以及以文本的bbox坐标加类别和置信度输出到result.txt。图片结果对应原图的1/2大小,文本结果也对应于1/2大小的像素位置。
.
├─ README.md
├─ demo.py (entry script)
├─ aug (deprecated, augmentation for MNIST)
│ └── ...
├─ ddr (main scripts for detection and recognition)
│ └── ...
├─ dev (example test data)
│ └── ...
├─ LeNet (training script for LeNet(deprecated) and ResNet)
│ └── ...
└─ rcnn (deprecated, trail for rcnn detection)
└── ...
[1] https://github.com/apache/incubator-mxnet/tree/master/example/image-classification
[2] https://github.com/tornadomeet/ResNet
[3] https://github.com/apache/incubator-mxnet/tree/master/example/rcnn
[4] https://github.com/bikz05/digit-recognition
[5] http://yann.lecun.com/exdb/mnist/
[6] https://www.nist.gov/srd/nist-special-database-19