-
Notifications
You must be signed in to change notification settings - Fork 19
/
movement_data_present.py
120 lines (104 loc) · 3.73 KB
/
movement_data_present.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import csv
import imutils
import cv2
import json
import math
import numpy as np
from config import VIDEO_CONFIG
from itertools import zip_longest
from math import ceil
from scipy.spatial.distance import euclidean
from colors import RGB_COLORS, gradient_color_RGB
tracks = []
with open('processed_data/movement_data.csv', 'r') as file:
reader = csv.reader(file, delimiter=',')
for row in reader:
if len(row[3:]) > 4:
temp = []
data = row[3:]
for i in range(0, len(data), 2):
temp.append([int(data[i]), int(data[i 1])])
tracks.append(temp)
with open('processed_data/video_data.json', 'r') as file:
data = json.load(file)
vid_fps = data["VID_FPS"]
data_record_frame = data["DATA_RECORD_FRAME"]
frame_size = data["PROCESSED_FRAME_SIZE"]
cap = cv2.VideoCapture(VIDEO_CONFIG["VIDEO_CAP"])
cap.set(1, 100)
(ret, tracks_frame) = cap.read()
tracks_frame = imutils.resize(tracks_frame, width=frame_size)
heatmap_frame = np.copy(tracks_frame)
print(tracks_frame.shape)
stationary_threshold_seconds = 2
stationary_threshold_frame = round(vid_fps * stationary_threshold_seconds / data_record_frame)
stationary_distance = frame_size * 0.05
max_stationary_time = 120
blob_layer = 50
max_blob_size = frame_size * 0.1
layer_size = max_blob_size / blob_layer
color_start = 210
color_end = 0
color_steps = int((color_start - color_end) / blob_layer)
scale = 1.5
# print(stationary_distance)
# print(stationary_threshold_frame)
stationary_points = []
movement_points = []
total = 0
for movement in tracks:
temp_movement_point = [movement[0]]
stationary = movement[0]
stationary_time = 0
for i in movement[1:]:
if euclidean(stationary, i) < stationary_distance:
stationary_time = 1
else:
temp_movement_point.append(i)
if stationary_time > stationary_threshold_frame:
stationary_points.append([stationary, stationary_time])
stationary = i
stationary_time = 0
movement_points.append(temp_movement_point)
total = len(temp_movement_point)
# print(total)
# print(movement_points)
color1 = (255, 96, 0)
color2 = (0, 28, 255)
for track in movement_points:
for i in range(len(track) - 1):
color = gradient_color_RGB(color1, color2, len(track) - 1, i)
cv2.line(tracks_frame, tuple(track[i]), tuple(track[i 1]), color, 2)
def draw_blob(frame, coordinates, time):
if time >= max_stationary_time:
layer = blob_layer
else:
layer = math.ceil(time * scale / layer_size)
for x in reversed(range(layer)):
color = color_start - (color_steps * x)
size = x * layer_size
cv2.circle(frame, coordinates, int(size), (color, color, color), -1)
heatmap = np.zeros((heatmap_frame.shape[0], heatmap_frame.shape[1]), dtype=np.uint8)
for points in stationary_points:
draw_heatmap = np.zeros((heatmap_frame.shape[0], heatmap_frame.shape[1]), dtype=np.uint8)
draw_blob(draw_heatmap, tuple(points[0]), points[1])
heatmap = cv2.add(heatmap, draw_heatmap)
lo = np.array([color_start])
hi = np.array([255])
mask = cv2.inRange(heatmap, lo, hi)
heatmap[mask > 0] = color_start
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
lo = np.array([128,0,0])
hi = np.array([136,0,0])
mask = cv2.inRange(heatmap, lo, hi)
heatmap[mask > 0] = (0, 0, 0)
for row in range(heatmap.shape[0]):
for col in range(heatmap.shape[1]):
if (heatmap[row][col] == np.array([0,0,0])).all():
heatmap[row][col] = heatmap_frame[row][col]
heatmap_frame = cv2.addWeighted(heatmap, 0.75, heatmap_frame, 0.25, 1)
cv2.imshow("Movement Tracks", tracks_frame)
cv2.imshow("Stationary Location Heatmap", heatmap_frame)
cv2.waitKey()
cv2.destroyAllWindows()
cap.release()