Skip to content

Latest commit

 

History

History
 
 

mem_speed_benchmark

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Benchmark Memory Usage and Training Speed on Torchvision Models

Prepare dataset

Put the ImageNet dataset to ~/imagenet

Benchmark Memory Usage

DEBUG_MEM=True python3 train.py ~/imagenet --arch ARCH -b BATCH_SIZE --alg ALGORITHM

The choices for ARCH are {resnet50, resnet152, wide_resnet101_2, densenet201}
The choices for ALGORITHM are {exact, actnn-L0, actnn-L1, actnn-L2, actnn-L3, actnn-L4, actnn-L5}

For example, the command below run actnn-L3 on resnet50

DEBUG_MEM=True python3 train.py ~/imagenet --arch resnet50 -b 128 --alg actnn-L3

Benchmark Training Speed

DEBUG_SPEED=True python3 train.py ~/imagenet --arch ARCH -b BATCH_SIZE --alg ALGORITHM

The choices for ARCH are {resnet50, resnet152, wide_resnet101_2, densenet201}
The choices for ALGORITHM are {exact, actnn-L0, actnn-L1, actnn-L2, actnn-L3, actnn-L4, actnn-L5}

For example, the command below run actnn-L3 on resnet50

DEBUG_SPEED=True python3 train.py ~/imagenet --arch resnet50 -b 128 --alg actnn-L3