forked from snap-research/articulated-animation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanimate.py
104 lines (82 loc) · 5.02 KB
/
animate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
Copyright Snap Inc. 2021. This sample code is made available by Snap Inc. for informational purposes only.
No license, whether implied or otherwise, is granted in or to such code (including any rights to copy, modify,
publish, distribute and/or commercialize such code), unless you have entered into a separate agreement for such rights.
Such code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability,
title, fitness for a particular purpose, non-infringement, or that such code is free of defects, errors or viruses.
In no event will Snap Inc. be liable for any damages or losses of any kind arising from the sample code or your use thereof.
"""
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from frames_dataset import PairedDataset
from logger import Logger, Visualizer
import imageio
from scipy.spatial import ConvexHull
import numpy as np
from sync_batchnorm import DataParallelWithCallback
def get_animation_region_params(source_region_params, driving_region_params, driving_region_params_initial,
mode='standard', avd_network=None, adapt_movement_scale=True):
assert mode in ['standard', 'relative', 'avd']
new_region_params = {k: v for k, v in driving_region_params.items()}
if mode == 'standard':
return new_region_params
elif mode == 'relative':
source_area = ConvexHull(source_region_params['shift'][0].data.cpu().numpy()).volume
driving_area = ConvexHull(driving_region_params_initial['shift'][0].data.cpu().numpy()).volume
movement_scale = np.sqrt(source_area) / np.sqrt(driving_area)
shift_diff = (driving_region_params['shift'] - driving_region_params_initial['shift'])
shift_diff *= movement_scale
new_region_params['shift'] = shift_diff source_region_params['shift']
affine_diff = torch.matmul(driving_region_params['affine'],
torch.inverse(driving_region_params_initial['affine']))
new_region_params['affine'] = torch.matmul(affine_diff, source_region_params['affine'])
return new_region_params
elif mode == 'avd':
new_region_params = avd_network(source_region_params, driving_region_params)
return new_region_params
def animate(config, generator, region_predictor, avd_network, checkpoint, log_dir, dataset):
animate_params = config['animate_params']
log_dir = os.path.join(log_dir, 'animation')
dataset = PairedDataset(initial_dataset=dataset, number_of_pairs=animate_params['num_pairs'])
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
if checkpoint is not None:
Logger.load_cpk(checkpoint, generator=generator, region_predictor=region_predictor,
avd_network=avd_network)
else:
raise AttributeError("Checkpoint should be specified for mode='animate'.")
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if torch.cuda.is_available():
generator = DataParallelWithCallback(generator)
region_predictor = DataParallelWithCallback(region_predictor)
avd_network = DataParallelWithCallback(avd_network)
generator.eval()
region_predictor.eval()
avd_network.eval()
for it, x in tqdm(enumerate(dataloader)):
with torch.no_grad():
visualizations = []
driving_video = x['driving_video']
source_frame = x['source_video'][:, :, 0, :, :]
source_region_params = region_predictor(source_frame)
driving_region_params_initial = region_predictor(driving_video[:, :, 0])
for frame_idx in range(driving_video.shape[2]):
driving_frame = driving_video[:, :, frame_idx]
driving_region_params = region_predictor(driving_frame)
new_region_params = get_animation_region_params(source_region_params, driving_region_params,
driving_region_params_initial,
mode=animate_params['mode'],
avd_network=avd_network)
out = generator(source_frame, source_region_params=source_region_params,
driving_region_params=new_region_params)
out['driving_region_params'] = driving_region_params
out['source_region_params'] = source_region_params
out['new_region_params'] = new_region_params
visualization = Visualizer(**config['visualizer_params']).visualize(source=source_frame,
driving=driving_frame, out=out)
visualizations.append(visualization)
result_name = "-".join([x['driving_name'][0], x['source_name'][0]])
image_name = result_name animate_params['format']
imageio.mimsave(os.path.join(log_dir, image_name), visualizations)