A Neural Grammatical Error Correction System Built on Better Pre-training and Sequential Transfer Learning
Code accompanying Team Kakao&Brain"s submission to the
ACL 2019 BEA Workshop Shared Task.
(helo_word
is our informal team name.)
Paper: https://arxiv.org/abs/1907.01256
ACL Anthology: https://www.aclweb.org/anthology/papers/W/W19/W19-4423/
YJ Choe^, Jiyeon Ham^, Kyubyong Park^, Yeoil Yoon^
^Equal contribution.
Requires Python 3.
# apt-get packages (required for hunspell & pattern)
apt-get update
apt-get install libhunspell-dev libmysqlclient-dev -y
# pip packages
pip install --upgrade pip
pip install --upgrade -r requirements.txt
python -m spacy download en
# custom fairseq (fork of 0.6.1 with gec modifications)
pip install --editable fairseq
# errant
git clone https://github.com/chrisjbryant/errant
# pattern3 (see https://www.clips.uantwerpen.be/pages/pattern for any installation issues)
pip install pattern3
python -c "import site; print(site.getsitepackages())"
# ["PATH_TO_SITE_PACKAGES"]
cp tree.py PATH_TO_SITE_PACKAGES/pattern3/text/
python preprocess.py
- Prepare data for the restricted track
python prepare.py --track 1
- Pre-train
- If you train the model, the system will automatically create a checkpoint directory.
- Fill it in {ckpt_dir}.
- Also fill in the number of GPUs used for training in {ngpu}.
python train.py --track 1 --train-mode pretrain --model base --ngpu {ngpu} python evaluate.py --track 1 --subset valid --ckpt-dir {ckpt_dir}
- Train
- If you evaluate the model, the system will automatically create an output directory.
- Fill the previous model output directory into {prev_model_output_dir}.
python train.py --track 1 --train-mode train --model base --ngpu {ngpu} \ --lr 1e-4 --max-epoch 40 --reset --prev-model-output-dir {prev_model_output_dir} python evaluate.py --track 1 --subset valid --ckpt-dir {ckpt_dir}
- Fine-tune
- Fill the best validation report into {prev_model_output_fpath}.
- Then
error_type_control.py
will give you a list of error types to be removed. - Fill them into {remove_error_type_lst}.
python train.py --track 1 --train-mode finetune --model base --ngpu {ngpu} \ --lr 5e-5 --max-epoch 80 --reset --prev-model-output-dir {prev_model_output_dir} python evaluate.py --track 1 --subset valid --ckpt-dir {ckpt_dir} python error_type_control.py --report {prev_model_output_fpath} \ --max_error_types 10 --n_simulations 1000000 python evaluate.py --track 1 --subset test --ckpt-fpath {ckpt_fpath} \ --remove-unk-edits --remove-error-type-lst {remove_error_type_lst} \ --apply-rerank --preserve-spell --max-edits 7
- Prepare data for the low resource track
python prepare.py --track 3
- Pre-train
python train.py --track 3 --train-mode pretrain --model base --ngpu {ngpu} python evaluate.py --track 3 --subset valid --ckpt-dir {ckpt_dir}
- Train
python train.py --track 3 --train-mode finetune --model base --ngpu {ngpu} \ --max-epoch 40 --prev-model-output-dir {prev_model_output_dir} python evaluate.py --track 3 --subset valid --ckpt-dir {ckpt_dir} python evaluate.py --track 3 --subset test --ckpt-fpath {ckpt_fpath} \ --remove-unk-edits --remove-error-type-lst {remove_error_type_lst} \ --apply-rerank --preserve-spell --max-edits 7
We ran our Transformer models using fairseq-0.6.1
.
We had to make several modifications to the package though,
including our own implementation of the copy-augmented Transformer model.
You can find all of our modifications in fairseq/MODIFICATIONS.md
.
If you use our code for research, please cite our work as:
@inproceedings{choe-etal-2019-neural,
title = "A Neural Grammatical Error Correction System Built On Better Pre-training and Sequential Transfer Learning",
author = "Choe, Yo Joong and
Ham, Jiyeon and
Park, Kyubyong and
Yoon, Yeoil",
booktitle = "Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W19-4423",
pages = "213--227",
abstract = "Grammatical error correction can be viewed as a low-resource sequence-to-sequence task, because publicly available parallel corpora are limited.To tackle this challenge, we first generate erroneous versions of large unannotated corpora using a realistic noising function. The resulting parallel corpora are sub-sequently used to pre-train Transformer models. Then, by sequentially applying transfer learning, we adapt these models to the domain and style of the test set. Combined with a context-aware neural spellchecker, our system achieves competitive results in both restricted and low resource tracks in ACL 2019 BEAShared Task. We release all of our code and materials for reproducibility.",
}