Official PyTorch implementation of paper "Continual Action Assessment via Task-Consistent Score-Discriminative Feature Distribution Modeling" (TCSVT 2024). [ArXiv] [IEEE Trans]
Please feel free to contact us if you have any question.
Contact: [email protected] / [email protected]
- [2024.04.27] This work is accepted by TCSVT-2024 :)
- [2024.05.02] The pre-processed data, checkpoints and logs of the experiments on AQA-7 dataset are available :)
- [2024.05.24] The code and running script for experiments on the AQA-7 dataset are available :)
- [2024.06.01] The pre-processed data, code, and running script for experiments on the MTL-AQA and the BEST datasets are available :)
- Python 3.8
- Pytorch
- torchvision
- numpy
- timm
- scipy
Our experiments can be conducted on 4 Nvidia RTX 1080Ti GPUs.
- Click here to download the preprocessed AQA-7 dataset.
- Click here to download the preprocessed MTL-AQA dataset.
- Click here to download the preprocessed BEST dataset.
Click here to download the checkpoints and logs of our experiments.
Coming soon.
Use the following script to train our model on the AQA-7 dataset.
python run_net.py --exp_name your_exp_name \
--gpu 0,1,2,3 --seed 0 --approach g_e_graph \
--lambda_distill 9 --lambda_diff 0.7 \
--replay --replay_method group_replay --memory_size 30 \
--diff_loss \
--aug_approach aug-diff --aug_mode fs_aug --num_helpers 7 --aug_scale 0.3\
--save_graph --g_e_graph --fix_graph_mode no_fix \
--save_ckpt\
--optim_mode new_optim --lr_decay --num_epochs 200 --batch-size 16 --alpha 0.8
Use the following script to train our model on the MTL-AQA dataset.
python run_net.py --exp_name your_exp_name \
--gpu 0 --seed 0 --approach aug-diff \
--lambda_distill 7 --lambda_diff 0.1 \
--replay --replay_method group_replay --memory_size 30\
--diff_loss \
--aug_approach aug-diff --aug_mode fs_aug --num_helpers 7 --aug_scale 0.7 \
--optim_mode new_optim --lr_decay --num_epochs 200 --batch-size 16;
Use the following script to train our model on the BEST dataset.
python run_net.py --exp_name your_exp_name \
--gpu 0,1,2,3 --seed 0 --approach g_e_graph \
--feat_distill --lambda_distill 7 \
--replay --replay_method group_replay --memory_size 30 \
--diff_loss --aug_approach aug-diff --aug_mode fs_aug --num_helpers 7 --aug_scale 0.3 --lambda_diff 10 \
--g_e_graph --fix_graph_mode no_fix --alpha 0.6\
--save_ckpt\
--optim_mode new_optim --lr_decay --num_epochs 120 --batch-size 64;
Please cite it if you find this work useful.
@ARTICLE{10518028,
author={Li, Yuan-Ming and Zeng, Ling-An and Meng, Jing-Ke and Zheng, Wei-Shi},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
title={Continual Action Assessment via Task-Consistent Score-Discriminative Feature Distribution Modeling},
year={2024},
doi={10.1109/TCSVT.2024.3396692}}
The authors thank Jia-Hui Pan for providing the code and pre-proceesed data used in her works:
@inproceedings{pan2019action,
title={Action assessment by joint relation graphs},
author={Pan, Jia-Hui and Gao, Jibin and Zheng, Wei-Shi},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={6331--6340},
year={2019}
}
@article{pan2021adaptive,
title={Adaptive action assessment},
author={Pan, Jia-Hui and Gao, Jibin and Zheng, Wei-Shi},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume={44},
number={12},
pages={8779--8795},
year={2021},
publisher={IEEE}
}