Trong khóa học này, chúng ta sẽ lập trình bằng ngôn ngữ lập trình Python, sử dụng Jupyter Notebook.
Làm theo hướng dẫn để có môi trường thực hành đúng theo yêu cầu của khóa học.
Có 2 cách cài đặt Python 3.6 trên máy tính: sử dụng bản cài đặt của Python hoặc sử dụng bản phân phối Anaconda.
Anaconda là bản phân phối có chứa nhiều package Python thông dụng cho khoa học, toán học, kỹ thuật và phân tích dữ liệu. Đây là lựa chọn được ưu tiên hơn khi cài đặt các phụ thuộc khi làm bài tập trong khóa học này.
Download và cài đặt Anaconda tại đây.
- Lưu ý: Khi cài đặt Anaconda, để chạy Python trong môi trường dòng lệnh (command line), lựa chọn option
Add Anaconda to the system PATH enviroment variable
trong quá trình cài đặt.
Để thêm mới một package trong quá trình làm bài tập, các bạn sử dụng lệnh $ pip install <package_name>
.
Ví dụ, để cài đặt gói numpy
, chạy lệnh $ pip install numpy
.
Bài tập từng tuần đều được tạo bằng file IPython.
Sử dụng lệnh $ jupyter notebook
để khởi động IPython, sau đó chọn file bài tập tương ứng và bắt đầu làm bài.
Trong từng tuần, cần cài đặt các gói (package) cần thiết để hoàn thành bài tập. Các gói phụ thuộc sẽ được ghi trong file requirement.txt (nếu có).
Chạy lệnh $ pip install -r requirement.txt
để cài đặt các ràng buộc cần thiết.
Đọc file README.txt
trong từng tuần (nếu có) để xem hướng dẫn làm bài.
Bài tập được update hàng tuần tại đây.
Các bạn cần tải bài tập và cài đặt môi trường cần thiết cho từng tuần trước khi đến lớp.
Mỗi sinh viên được yêu cầu tạo tài khoản trên Github, tạo repository với tên Machine Learning
.
Deadline: 23h59' ngày thứ 3 mỗi tuần.
Điểm thực hành được chấm ngẫu nhiên một trong số các bài tập từng tuần. Yêu cầu nộp bài đúng hạn và CẤM SAO CHÉP.
Xây dựng mô hình phân lớp đối với dữ liệu ảnh CIFAR10.
Bộ dữ liệu ảnh nhỏ CIFAR10 trong thư viện Keras
. Xem thêm tại đây.
Mô hình phân lớp cho toàn bộ dữ liệu ảnh.
- Độ chính xác được sử dụng làm thước đo độ tốt của mô hình.
- Xây dựng bộ phân lớp (được phép sử dụng các thư viện), không sử dụng các mô hình đã được huấn luyện sẵn.
- Trình bày được quá trình chọn, đánh giá mô hình, tối ưu tham số,... để đạt được mô hình với hiệu năng cuối cùng.
Trình bày về mô hình tại tuần thứ 14 của khóa học Học máy.