forked from hadley/r4ds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model-building.Rmd
360 lines (261 loc) · 15.1 KB
/
model-building.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
```{r setup, include = FALSE}
library(broom)
library(ggplot2)
library(dplyr)
library(lubridate)
library(tidyr)
library(nycflights13)
library(modelr)
```
# Model building
In the previous chapter you learned how some basic models worked, and learned some basic tools for understanding what a model is telling you about your data. In this chapter, we're going talk more about the model building process: how you start from nothing, and end up with a good model.
* Regression modelling strategies.
The way we're going to work is to subtract patterns from the data, while adding them to the model. The goal is to transition from implicit knowledge in the data and your head to explicit knowledge in a quantitative model. This makes it easier to apply to new domains, and easier for others to use.
If you had a "perfect" model the residuals would be perfectly independent noise. But "perfect" is not always what you strive for: sometimes you actually want a model that leaves some signal on the table because you want a model that is simpler, faster, or easier to understand.
For very large and complex datasets this is going to be a lot of work. There are certainly alternative approaches - a more machine learning approach is simply to focus on improving the predictive ability of the model, being careful to fairly assess it (i.e. not assessing the model on the data that was used to train it). These approaches tend to produce black boxes - i.e. the model does a really good job, but you don't know why. This is fine, but the main problem is that you can't apply your real world knowledge to the model to think about whether or not it's likely to work in the long-term, as fundamentals change. For most real models, I'd expect you to use some combination of this approach and a ML model building approach. If prediction is important, get to a good point, and then use visulisation to understand the most important parts of the model.
> A long time ago in art class, my teacher told me "An artist needs to know
> when a piece is done. You can't tweak something into perfection - wrap it up.
> If you don't like it, do it over again. Otherwise begin something new". Later
> in life, I heard "A poor seamstress makes many mistakes. A good seamstress
> works hard to correct those mistakes. A great seamstress isn't afraid to
> throw out the garment and start over."
-- Reddit user Broseidon241, https://www.reddit.com/r/datascience/comments/4irajq/mistakes_made_by_beginningaspiring_data_scientists/
### Prerequisites
```{r}
library(modelr)
options(
contrasts = c("contr.treatment", "contr.treatment"),
na.option = na.exclude
)
library(nycflights13)
library(lubridate)
library(dplyr)
```
## What affects the number of daily flights?
We're going to start by building a model to help us understand the number of flights per day that leave NYC. We're not going to end up with a fully realised model, but as you'll see, the steps along the way will help us better understand the data.
We'll start by using dplyr to generate the data of interest:
```{r}
daily <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(n = n())
daily
```
And then we'll plot it with ggplot2:
```{r}
ggplot(daily, aes(date, n))
geom_line()
```
### Day of week
This is a small dataset, but there's a lot of pattern to explore. Understanding the long-term trend is challenging because there's a very strong day-of-week effect that dominates the subtler patterns:
```{r}
daily <- daily %>%
mutate(wday = wday(date, label = TRUE))
ggplot(daily, aes(wday, n))
geom_boxplot()
```
There are fewer flights on weekends because a very large proportion of travel is for business. You might sometimes have to less on Sunday for an early flight, but it's very rare that you'd leave on Saturday: you'd much rather be home with your family.
One way to remove this strong pattern is to fit a model that "explains" (i.e. attempts to predict) the day of week effect, and then look at the residuals. Another way of thinking about this is that we're capturing the day-of-week effect, moving it from the data, into a model.
```{r}
mod <- lm(n ~ wday, data = daily)
daily <- daily %>% add_residuals(mod)
daily %>%
ggplot(aes(date, resid))
geom_hline(yintercept = 0, size = 2, colour = "white")
geom_line()
daily %>%
expand(wday) %>%
add_predictions(mod) %>%
ggplot(aes(wday, pred))
geom_point()
```
Note the change in the y-axis: now we are seeing the deviation from the expected number of flights, given the day of week. This plot is interesting because now that we've removed much of the large day-of-week effect, we can see some of the subtler patterns that remain:
1. Our day of week adjustment seems to fail starting around June: you can
still see a strong regular pattern that our model hasn't removed. Drawing
a plot with one line for each day of the week makes the cause easier
to see:
```{r}
ggplot(daily, aes(date, resid, colour = wday))
geom_hline(yintercept = 0, size = 2, colour = "white")
geom_line()
```
The problem appears to be Saturdays: it seems like during summer there are
more flights on Saturdays than we expect, and during Fall there are fewer.
I suspect this is because of summer holidays: many people go on holiday
in the summer, and people don't mind travelling on Saturdays for vacation.
(This doesn't, however, explain why there are more Satruday flights in
spring than fall).
1. There are some days with far fewer flights than expected:
```{r}
daily %>% filter(resid < -100)
```
If you're familiar with American public holidays, you might spot New Year's
day, July 4th, Thanksgiving and Christmas. There are some others that don't
seem to correspond immediately to public holidays. You'll work on those
in the exercise below.
1. There seems to be some smoother long term trend over the course of a year.
We can highlight that trend with `geom_smooth()`:
```{r}
daily %>%
ggplot(aes(date, resid))
geom_hline(yintercept = 0, size = 2, colour = "white")
geom_line(colour = "grey50")
geom_smooth(se = FALSE, span = 0.20)
```
There are fewer flights in January (and December), and more in summer
(May-Sep). We can't do much more with this trend than brainstorm possible
explanations because we only have a single year's worth of data.
### Seasonal Saturday effect
We'll tackle the day of week effect first. Let's zoom in on Saturdays, going back to raw numbers:
```{r}
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n))
geom_line()
geom_point(alpha = 1/3)
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
So it looks like summer holidays are from early June to late August. That seems to line up fairly well with the [state's school terms](http://schools.nyc.gov/Calendar/2013-2014 School Year Calendars.htm): summer break is Jun 26 - Sep 9. Few families travel in the fall because of the big Thanksgiving and Christmas holidays. So lets add a "term" variable to attemp to control for that.
```{r}
term <- function(date) {
cut(date,
breaks = as.POSIXct(ymd(20130101, 20130605, 20130825, 20140101)),
labels = c("spring", "summer", "fall")
)
}
daily <- daily %>% mutate(term = term(date))
daily %>%
filter(wday == "Sat") %>%
ggplot(aes(date, n, colour = term))
geom_point(alpha = 1/3)
geom_line()
scale_x_datetime(NULL, date_breaks = "1 month", date_labels = "%b")
```
(I manually tweaked the dates to get nice breaks in the plot. Using a visualisation to help you understand what your function is doing is a really powerful and general technique.)
It's useful to see how this new variable affects the other days of the week:
```{r}
daily %>%
ggplot(aes(wday, n, colour = term))
geom_boxplot()
```
It looks like there is significant variation across the terms, so fitting a separate day of week effect for each term is reasonable. This improves our model, but not as much as we might hope:
```{r}
mod1 <- lm(n ~ wday, data = daily)
mod2 <- lm(n ~ wday * term, data = daily)
daily %>%
gather_residuals(mod1, mod2) %>%
ggplot(aes(date, resid, colour = model))
geom_line(alpha = 0.75)
```
That's because this model is basically calculating an average for each combination of wday and school term. (How many observations do we have for each day of week in each term?) We have a lot of big outliers, so they tend to drag the mean far away from the typical value. We can alleviate this problem by using a model that is robust to the effect of outliers: `rlm`. This greatly reduces the impact of the outliers on our estimates, and gives a result that does a good job of removing the day of week pattern:
```{r, warn = FALSE}
mod3 <- MASS::rlm(n ~ wday * term, data = daily)
daily %>%
add_residuals(mod3, "resid") %>%
ggplot(aes(date, resid))
geom_hline(yintercept = 0, size = 2, colour = "white")
geom_line()
```
It's now much easier to see the long-term trend, and the positive and negative outliers.
Very common to use residual plots when figuring out if a model is ok. But it's easy to get the impression that there's just one type of residual plot you should do, when in fact there are infinite.
### Time of year: an alternative approach
In the previous section we used our knowledge of phenomonen to improve the model. An alternative to using making our knowledge explicit in the model is to give the data more room to speak. We could use a more flexible model and allow that to capture the pattern we're interested in.
When you have a continuous variable in the model, rather than using the unique values that you've seen, it's often more useful to generate an evenly spaced grid. One convenient way to do this is with `modelr::seq_range()` which takes a continuous variable, calculates its range, and then generates an evenly spaced points between the minimum and maximum.
```{r, warn = FALSE}
mod <- MASS::rlm(n ~ wday * yday(date), data = daily)
grid <- daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod)
ggplot(grid, aes(date, pred, colour = wday))
geom_line()
geom_point()
```
(Why use `yday(date)` instead of `date`? That's saying we think that the pattern depends only the day of the year, so we might expect it to be the same in other years. Again, since we only have a single year of data we can't test that hypothesis.)
We know that this pattern doesn't do a good job of capturing the variation in the data. There isn't a simple linear trend across the entire year, so instead we could use a natural spline to allow a smoothly varying trend across the year.
```{r}
library(splines)
mod <- MASS::rlm(n ~ wday * ns(date, 5), data = daily)
daily %>%
tidyr::expand(wday, date = seq_range(date, n = 13)) %>%
add_predictions(mod) %>%
ggplot(aes(date, pred, colour = wday))
geom_line()
geom_point()
```
Particularly, we see the strongly pattern in Saturdays that we identified when coming in the opposite direction. It's always a good sign when you see the same signal from multiple approaches. (But note our previous model was explanatory - this is just predictatory.)
How many degrees of freedom to use? Either pick manually to extract the shape of the data, or you can use one of the model assessment techniques in the following chapter to pick algorithmically. Here we're most interested in explanation, so picking by hand (with a little though and plenty of scepticism) is typically fine.
### Public holidays
### Computed variables
If you're experimenting with many models and many visualisations, it's a good idea to bundle the creation of variables up into a function so there's no chance of accidentally applying a different transformation in different places.
```{r}
compute_vars <- function(data) {
data %>% mutate(
term = term(date),
wday = wday(date, label = TRUE)
)
}
```
Another option is to wrap it ito the model formula:
```{r}
wday2 <- function(x) wday(x, label = TRUE)
mod3 <- lm(n ~ wday2(date) * term(date), data = daily)
daily %>%
expand(date) %>%
add_predictions(mod3)
```
I think this is fine to do provided that you've carefully checked that the functions do what you think they do (i.e. with a visualisation). There are two disadvantages:
1. You may need to add the variables back in anyway if you want to use
them in a visualsiation.
1. When looking at the coefficients, their values are longer and harder to
read. (But this is a general problem with the way that linear models report
categorical coefficients in R, not a specific problem with this case.)
### Exercises
1. Use your google sleuthing skills to brainstorm why there were fewer than
expected flights on Jan 20, May 26, and Sep 9. (Hint: they all have the
same explanation.) How would these days generalise to another year?
1. What do the three days with high positive residuals represent?
How would these days generalise to another year?
```{r}
daily %>% filter(resid > 80)
```
1. Create a new variable that splits the `wday` variable into terms, but only
for Saturdays, i.e. it should have `Thurs`, `Fri`, but `Sat-summer`,
`Sat-spring`, `Sat-fall`. How does this model compare with the model with
every combination of `wday` and `term`?
1. Create a new wday variable that combines the day of week, term
(for Saturdays), and public holidays. What do the residuals of
that model look like?
1. What happens if you fit a day of week effect that varies by month?
Why is this not very helpful?
1. Above we made the hypothesis that people leaving on Sundays are more
likely to be business travellers who need to be somewhere on Monday.
Explore that hypothesis by seeing how it breaks down based on distance:
if it's true, you'd expect to see more Sunday flights to places that
are far away.
1. It's a little frustrating that Sunday and Saturday are on separate ends
of the plot. Write a small function to set the levels of the factor so
that the week starts on Monday.
1. Compare the predictions for each `wday` combined with `term` for the
`lm` and `rlm`
## Case study: predicting flight delays
Finish off with a somewhat more realistic case study where we combine the techniques of visualising predictions and residuals to attack the problem of predicting flight delays.
Can't predict delays for next year. Why not? Instead we'll focus on predicting the amount that your flight will be delayed if it's leaving soon.
To tackle a problem like this, it's worthwhile to start with some brainstorming. More ideas will come to you as you proceed but it's a good idea to start by seeding the pot
* time of day
* weather
* plane?
* number of flights
We'll start with some exploratory analysis, and then work on the model:
```{r}
delays <- flights %>%
mutate(date = make_datetime(year, month, day)) %>%
group_by(date) %>%
summarise(delay = mean(arr_delay, na.rm = TRUE), cancelled = mean(is.na(dep_time)), n = n())
# delays %>%
# ggplot(aes(wday(date, label = TRUE), delay))
# geom_boxplot()
delays %>%
ggplot(aes(n, delay))
geom_point()
geom_smooth(se = F)
```