Skip to content

📐 Measure upload/download speed/bandwidth for your network with R

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

hrbrmstr/speedtest

Repository files navigation

Project Status: Active – The project has reached a stable, usable state and is being actively developed. Signed by Signed commit % Linux build Status Windows build status Coverage Status Minimal R Version License

speedtest

Tools to Test and Compare Internet Bandwidth Speeds

Description

The ‘Ookla’ ‘Speedtest’ site https://beta.speedtest.net/about provides interactive and programmatic services to test and compare bandwidth speeds from a source node on the Internet to thousands of test servers. Tools are provided to obtain test server lists, identify target servers for testing and performing speed/bandwidth tests.

What’s Inside The Tin

The following functions are implemented:

  • install_speedtest_cli: Provides instructions for installing the official speedtest CLI application
  • nice_speed: Convert a test speed, in Mbits/s, to its string representation along with appropriate units for the magnitude of the test speed
  • spd_best_servers: Find “best” servers (latency-wise) from master server list
  • spd_closest_servers: Find “closest” servers (geography-wise) from master server list
  • spd_compute_bandwidth: Compute bandwidth from bytes transferred and time taken
  • spd_config: Retrieve client configuration information for the speedtest
  • spd_download_test: Perform a download speed/bandwidth test
  • spd_servers: Retrieve a list of SpeedTest servers
  • spd_test: Test your internet speed/bandwidth
  • spd_upload_test: Perform an upload speed/bandwidth test
  • speedtest_cli: Perform an official Ookla Speed Test via their command line tools

Make a CLI utility

While you can run spd_test() from an R console, it was desgined to be an easily wrapped into a bash (et al) alias or put into a small batch script. Or, you can just type out the following if you’re fleet-of-finger/have dexterous digits:

Rscript --quiet -e 'speedtest::spd_test()'

which will look something like:

TODO

Folks interested in contributing can take a look at the TODOs and pick as many as you like! Ones with question marks are truly a “I dunno if we shld” kinda thing. Ones with exclamation marks are essentials.

  • Cache config in memory at startup vs pass around to functions?
  • Figure out how to use beta sockets hidden API vs the old Flash API?
  • Ensure the efficacy of relying on the cURL timings for speed measures for the Flash API
  • Figure out best way to capture the results for post-processing
  • Upload results to speedtest (tis only fair)!
  • Incorporate more network or host measures for better statistical determination of the best target!
  • autoplot support!
  • RStudio Add-in
  • Shiny app?

Installation

install.packages("speedtest", repos = c("https://cinc.rud.is", "https://cloud.r-project.org/"))
# or
remotes::install_git("https://git.rud.is/hrbrmstr/speedtest.git")
# or
remotes::install_git("https://git.sr.ht/~hrbrmstr/speedtest")
# or
remotes::install_gitlab("hrbrmstr/speedtest")
# or
remotes::install_bitbucket("hrbrmstr/speedtest")
# or
remotes::install_github("hrbrmstr/speedtest")

NOTE: To use the ‘remotes’ install options you will need to have the {remotes} package installed.

Usage

library(speedtest)
library(stringi)
library(hrbrthemes)
library(ggbeeswarm)
library(tidyverse)

# current verison
packageVersion("speedtest")
## [1] '0.3.0'

Download Speed

config <- spd_config()

servers <- spd_servers(config=config)
closest_servers <- spd_closest_servers(servers, config=config)
only_the_best_severs <- spd_best_servers(closest_servers, config)

Individual download tests

glimpse(spd_download_test(closest_servers[1,], config=config))
## Observations: 1
## Variables: 15
## $ url     <chr> "http://speedtest.peregrinenetworks.net:8080/speedtest/upload.php"
## $ lat     <dbl> 42.9956
## $ lng     <dbl> -71.4548
## $ name    <chr> "Manchester, NH"
## $ country <chr> "United States"
## $ cc      <chr> "US"
## $ sponsor <chr> "Peregrine Networks"
## $ id      <chr> "30644"
## $ host    <chr> "speedtest.peregrinenetworks.net:8080"
## $ url2    <chr> NA
## $ min     <dbl> 17.00748
## $ mean    <dbl> 63.20918
## $ median  <dbl> 66.31945
## $ max     <dbl> 81.70783
## $ sd      <dbl> 18.60229

glimpse(spd_download_test(only_the_best_severs[1,], config=config))
## Observations: 1
## Variables: 17
## $ total_time     <dbl> 0.082232
## $ retrieval_time <dbl> 3.2e-05
## $ url            <chr> "http://stosat-ndhm-01.sys.comcast.net:8080/speedtest/upload.php"
## $ lat            <dbl> 42.3578
## $ lng            <dbl> -71.0617
## $ name           <chr> "Boston, MA"
## $ country        <chr> "United States"
## $ cc             <chr> "US"
## $ sponsor        <chr> "Comcast"
## $ id             <chr> "1774"
## $ host           <chr> "stosat-ndhm-01.sys.comcast.net:8080"
## $ url2           <chr> "http://a-stosat-ndhm-01.sys.comcast.net/speedtest/upload.php"
## $ min            <dbl> 10.76603
## $ mean           <dbl> 38.85852
## $ median         <dbl> 39.13755
## $ max            <dbl> 70.70089
## $ sd             <dbl> 20.80209

Individual upload tests

glimpse(spd_upload_test(only_the_best_severs[1,], config=config))
## Observations: 1
## Variables: 17
## $ total_time     <dbl> 0.082232
## $ retrieval_time <dbl> 3.2e-05
## $ url            <chr> "http://stosat-ndhm-01.sys.comcast.net:8080/speedtest/upload.php"
## $ lat            <dbl> 42.3578
## $ lng            <dbl> -71.0617
## $ name           <chr> "Boston, MA"
## $ country        <chr> "United States"
## $ cc             <chr> "US"
## $ sponsor        <chr> "Comcast"
## $ id             <chr> "1774"
## $ host           <chr> "stosat-ndhm-01.sys.comcast.net:8080"
## $ url2           <chr> "http://a-stosat-ndhm-01.sys.comcast.net/speedtest/upload.php"
## $ min            <dbl> 8.765322
## $ mean           <dbl> 18.67036
## $ median         <dbl> 20.3484
## $ max            <dbl> 23.0133
## $ sd             <dbl> 5.342232

glimpse(spd_upload_test(closest_servers[1,], config=config))
## Observations: 1
## Variables: 15
## $ url     <chr> "http://speedtest.peregrinenetworks.net:8080/speedtest/upload.php"
## $ lat     <dbl> 42.9956
## $ lng     <dbl> -71.4548
## $ name    <chr> "Manchester, NH"
## $ country <chr> "United States"
## $ cc      <chr> "US"
## $ sponsor <chr> "Peregrine Networks"
## $ id      <chr> "30644"
## $ host    <chr> "speedtest.peregrinenetworks.net:8080"
## $ url2    <chr> NA
## $ min     <dbl> 5.640102
## $ mean    <dbl> 18.29085
## $ median  <dbl> 20.99412
## $ max     <dbl> 21.7017
## $ sd      <dbl> 6.299546

Moar download tests

Choose closest, “best” and randomly (there can be, and are, some dups as a result for best/closest), run the test and chart the results. This will show just how disparate the results are from these core/crude tests. Most of the test servers compensate when they present the results. Newer, “socket”-based tests are more accurate but there are no free/hidden exposed APIs yet for most of them.

set.seed(8675309)

bind_rows(

  closest_servers[1:3,] %>%
    mutate(type="closest"),

  only_the_best_severs[1:3,] %>%
    mutate(type="best"),

  filter(servers, !(id %in% c(closest_servers[1:3,]$id, only_the_best_severs[1:3,]$id))) %>%
    sample_n(3) %>%
    mutate(type="random")

) %>%
  group_by(type) %>%
  ungroup() -> to_compare

select(to_compare, sponsor, name, country, host, type)
## # A tibble: 9 x 5
##   sponsor              name           country       host                                 type   
##   <chr>                <chr>          <chr>         <chr>                                <chr>  
## 1 Peregrine Networks   Manchester, NH United States speedtest.peregrinenetworks.net:8080 closest
## 2 Otelco               Portland, ME   United States oak-speedtest.otelco.com:8080        closest
## 3 netBlazr             Somerville, MA United States speed0.xcelx.net:8080                closest
## 4 Comcast              Boston, MA     United States stosat-ndhm-01.sys.comcast.net:8080  best   
## 5 netBlazr             Somerville, MA United States speed0.xcelx.net:8080                best   
## 6 Peregrine Networks   Manchester, NH United States speedtest.peregrinenetworks.net:8080 best   
## 7 Studenten Net Twente Enschede       Netherlands   ookla.snt.utwente.nl:8080            random 
## 8 MIIT                 Kiev           Ukraine       speedtest.miit.ua:8080               random 
## 9 Netcity              Kielce         Poland        speedtest.netcity.pl:8080            random

map_df(1:nrow(to_compare), ~{
  spd_download_test(to_compare[.x,], config=config, summarise=FALSE, timeout=30)
}) -> dl_results_full

mutate(dl_results_full, type=stri_trans_totitle(type)) %>%
  ggplot(aes(type, bw, fill=type))  
  geom_quasirandom(aes(size=size, color=type), width=0.15, shape=21, stroke=0.25)  
  scale_y_continuous(expand=c(0,5))  
  scale_size(range=c(2,6))  
  scale_color_manual(values=c(Random="#b2b2b2", Best="#2b2b2b", Closest="#2b2b2b"))  
  scale_fill_ipsum()  
  labs(x=NULL, y=NULL, title="Download bandwidth test by selected server type",
       subtitle="Circle size scaled by size of file used in that speed test")  
  theme_ipsum_rc(grid="Y")  
  theme(legend.position="none")

Moar upload tests

Choose closest and “best” and filter duplicates out since we’re really trying to measure here vs show the disparity:

bind_rows(
  closest_servers[1:3,] %>% mutate(type="closest"),
  only_the_best_severs[1:3,] %>% mutate(type="best")
) %>%
  distinct(.keep_all=TRUE) -> to_compare

select(to_compare, sponsor, name, country, host, type)
## # A tibble: 6 x 5
##   sponsor            name           country       host                                 type   
##   <chr>              <chr>          <chr>         <chr>                                <chr>  
## 1 Peregrine Networks Manchester, NH United States speedtest.peregrinenetworks.net:8080 closest
## 2 Otelco             Portland, ME   United States oak-speedtest.otelco.com:8080        closest
## 3 netBlazr           Somerville, MA United States speed0.xcelx.net:8080                closest
## 4 Comcast            Boston, MA     United States stosat-ndhm-01.sys.comcast.net:8080  best   
## 5 netBlazr           Somerville, MA United States speed0.xcelx.net:8080                best   
## 6 Peregrine Networks Manchester, NH United States speedtest.peregrinenetworks.net:8080 best

map_df(1:nrow(to_compare), ~{
  spd_upload_test(to_compare[.x,], config=config, summarise=FALSE, timeout=30)
}) -> ul_results_full

ggplot(ul_results_full, aes(x="Upload Test", y=bw))  
  geom_quasirandom(aes(size=size, fill="col"), width=0.1, shape=21, stroke=0.25, color="#2b2b2b")  
  scale_y_continuous(expand=c(0,0.5))  
  scale_size(range=c(2,6))  
  scale_fill_ipsum()  
  labs(x=NULL, y=NULL, title="Upload bandwidth test by selected server type",
       subtitle="Circle size scaled by size of file used in that speed test")  
  theme_ipsum_rc(grid="Y")  
  theme(legend.position="none")

speedtest Metrics

Lang # Files (%) LoC (%) Blank lines (%) # Lines (%)
R 15 0.88 286 0.77 90 0.60 192 0.76
Rmd 1 0.06 64 0.17 51 0.34 62 0.24
make 1 0.06 20 0.05 9 0.06 0 0.00

Code of Conduct

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

About

📐 Measure upload/download speed/bandwidth for your network with R

Topics

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •