Skip to content
/ TG-ODE Public

Official reference implementation of our paper "Temporal Graph ODEs for Irregularly-Sampled Time Series" accepted at IJCAI 24

Notifications You must be signed in to change notification settings

gravins/TG-ODE

Repository files navigation

TG-ODE

This repository provides the official reference implementation of our paper "Temporal Graph ODEs for Irregularly-Sampled Time Series" accepted at the International Joint Conference on Artificial Intelligence (IJCAI) 2024.

Please consider citing us

@inproceedings{gravina2024tgode,
  title     = {Temporal Graph ODEs for Irregularly-Sampled Time Series},
  author    = {Gravina, Alessio and Zambon, Daniele and Bacciu, Davide and Alippi, Cesare},
  booktitle = {Proceedings of the Thirty-Third International Joint Conference on
           Artificial Intelligence, {IJCAI-24}},
  publisher = {International Joint Conferences on Artificial Intelligence Organization},
  editor    = {Kate Larson},
  pages     = {4025--4034},
  year      = {2024},
  month     = {8},
  note      = {Main Track},
  doi       = {10.24963/ijcai.2024/445},
  url       = {https://doi.org/10.24963/ijcai.2024/445},
}

Requirements

Note: we assume Miniconda/Anaconda is installed, otherwise see this link for correct installation. The proper Python version is installed during the first step of the following procedure.

  1. Install the required packages and create the environment

    • conda env create -f env.yml
  2. Activate the environment

    • conda activate tgode

How to reproduce our experiments

First, extract the preprocessed data through the command: tar -xvf RESULTS.tar.xz

Then:

export data="" # choose one from ['metrla', 'pems03', 'pems04', 'pems07', 'pems08', 'montevideo', 'heat', 'pow_2_heat', 'pow_5_heat', 'tanh_heat', 'expand_heat', 'reduce_heat', 'gaussian_noise_heat']
export model="" # choose one from ['DCRNN', 'GCRN_LSTM', 'GCRN_GRU', 'TGCN', 'A3TGCN', 'NODE', 'GDE', 'TGODE']
export NUM_CPUS=90 # number of available cpus for the entire experiment
export PERC_GPUS=0.0 # percentage of gpus for one configuration
export CUDA_VISIBLE_DEVICES="" # list of cuda visible devices
  • Single-spike heat diffusion
export batch=16
export dir=RESULTS/single_spike/$data/
nohup python3 -u main.py --singlespike --data $data --model $model --batch $batch --savedir $dir --x_scaler StandardScaler >$dir/out_$model_$data 2>$dir/err_$model_$data
  • Multi-spike heat diffusion
export batch=16
export dir=RESULTS/multi_spike/$data/
nohup python3 -u main.py --data $data --model $model --batch $batch --savedir $dir --x_scaler StandardScaler >$dir/out_$model_$data 2>$dir/err_$model_$data
  • Traffic forecasting
export batch=1
export dir=RESULTS/$data/
nohup python3 -u main.py --data $data --model $model --batch $batch --savedir $dir --x_scaler StandardScaler >$dir/out_$model_$data 2>$dir/err_$model_$data

About

Official reference implementation of our paper "Temporal Graph ODEs for Irregularly-Sampled Time Series" accepted at IJCAI 24

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages