- 주최 : LG AI Research
- 주관 : DACON
- https://dacon.io/competitions/official/235870/overview/description
* 솔루션 설명
/workspace
├── data
│ ├── train
│ │ ├── 10027
│ │ ├── 10027.csv
│ │ ├── 10027.jpg
│ │ └── 10027.json
│ │ ├── ...
│ │ └── 67678
│ ├── test
│ │ ├── 10000
│ │ ├── ...
│ │ └── 67677
│ │
│ ├── train.csv
│ └── sample_submission.csv
│
├── main.ipynb (실행 코드 - jupyter notebook)
├── baseline.py (실행 코드)
├── dataset.py (데이터셋 클래스)
├── model.py (모델 클래스)
├── loss.py (손실함수 클래스)
├── single_gpu_inference.py (단일 GPU로 추론하는 코드)
├── image_model_list.txt (참고 : 사용 가능한 이미지 모델 이름)
├── requirement.txt
├── Dockerfile
└── docker-compose.yml
-
Install Library
pip3 install -r requirement.txt pip3 install jupyter
-
Download data.zip from https://dacon.io/competitions/official/235870/data to container workspace data path.
#./LG_Plant_Disease_Diagnosis mkdir data cd data (Download data to ./LG_Plant_Disease_Diagnosis/data/)
-
Unzip train, test data
#./LG_Plant_Disease_Diagnosis/data unzip data.zip unzip train.zip unzip test.zip
-
Train
main.ipynb
-
Submit
./submission_xxx.csv
-
git clone https://github.com/glee1228/LG_Plant_Disease_Diagnosis.git
-
Edit
docker-compose.yml
services: main: container_name: plant-lg-dacon build: context: ./ dockerfile: Dockerfile {If Ubuntu version is 20.04, Edit it w/ Dockerfile2} ... ports: - "{host ssh}:22" ipc: host stdin_open: true
-
Download data.zip from https://dacon.io/competitions/official/235870/data to container workspace data path.
#./LG_Plant_Disease_Diagnosis mkdir data cd data (Download data to ./LG_Plant_Disease_Diagnosis/data/)
-
Build docker image clearly and create containers
#./LG_Plant_Disease_Diagnosis docker-compose build --no-cache docker-compose up -d docker attach plant-lg-dacon
-
Unzip train, test data
#/workspace/data unzip data.zip unzip train.zip unzip test.zip
-
(Option) Set password and Restart SSH for SFTP connection
passwd /etc/init.d/ssh restart
-
Train
baseline.py
#/workspace python baseline.py
-
Submit
/workspace/submission_xxx.csv
- edit single_gpu_inference.py
Enter the paths of 5 models as a string in the model_path_list list.(line192)
```
model_path_list = [model path 1..,
model path 2..,
model path 3..,
model path 4..,
model path 5..]
```
- inference using single GPU
#/workspace python single_gpu_inference.py
Ubuntu 18.04.5 LTS
- h5py>=2.10.0
- numpy>=1.18.1
- tqdm>=4.43.0
- albumentations==1.1.0
- matplotlib==3.5.1
- opencv-python-headless==4.5.5.62
- pandas==1.3.5
- Pillow==9.0.0
- scikit-image==0.19.1
- scikit-learn==1.0.2
- scipy==1.7.3
- timm==0.5.4
- torch==1.8.0
- torch-optimizer==0.3.0
- torchvision==0.9.0
- wandb==0.12.9
- easydict==1.9