Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best with time series that have strong seasonal effects and several seasons of historical data. Prophet is robust to missing data and shifts in the trend, and typically handles outliers well.
Prophet is open source software released by Facebook's Core Data Science team. It is available for download on CRAN and PyPI.
- Homepage: https://facebook.github.io/prophet/
- HTML documentation: https://facebook.github.io/prophet/docs/quick_start.html
- Issue tracker: https://github.com/facebook/prophet/issues
- Source code repository: https://github.com/facebook/prophet
- Contributing: https://facebook.github.io/prophet/docs/contributing.html
- Prophet R package: https://cran.r-project.org/package=prophet
- Prophet Python package: https://pypi.python.org/pypi/prophet/
- Release blogpost: https://research.fb.com/prophet-forecasting-at-scale/
- Prophet paper: Sean J. Taylor, Benjamin Letham (2018) Forecasting at scale. The American Statistician 72(1):37-45 (https://peerj.com/preprints/3190.pdf).
Prophet is a CRAN package so you can use install.packages
.
install.packages('prophet')
After installation, you can get started!
You can also choose an experimental alternative stan backend called cmdstanr
. Once you've installed prophet
,
follow these instructions to use cmdstanr
instead of rstan
as the backend:
# R
# We recommend running this in a fresh R session or restarting your current session
install.packages(c("cmdstanr", "posterior"), repos = c("https://mc-stan.org/r-packages/", getOption("repos")))
# If you haven't installed cmdstan before, run:
cmdstanr::install_cmdstan()
# Otherwise, you can point cmdstanr to your cmdstan path:
cmdstanr::set_cmdstan_path(path = <your existing cmdstan>)
# Set the R_STAN_BACKEND environment variable
Sys.setenv(R_STAN_BACKEND = "CMDSTANR")
On Windows, R requires a compiler so you'll need to follow the instructions provided by rstan
. The key step is installing Rtools before attempting to install the package.
If you have custom Stan compiler settings, install from source rather than the CRAN binary.
Prophet is on PyPI, so you can use pip
to install it.
python -m pip install prophet
- From v0.6 onwards, Python 2 is no longer supported.
- As of v1.0, the package name on PyPI is "prophet"; prior to v1.0 it was "fbprophet".
- As of v1.1, the minimum supported Python version is 3.7.
After installation, you can get started!
Prophet can also be installed through conda-forge: conda install -c conda-forge prophet
.
To get the latest code changes as they are merged, you can clone this repo and build from source manually. This is not guaranteed to be stable.
git clone https://github.com/facebook/prophet.git
cd prophet/python
python -m pip install -r requirements.txt
python setup.py develop
By default, Prophet will use a fixed version of cmdstan
(downloading and installing it if necessary) to compile the model executables. If this is undesired and you would like to use your own existing cmdstan
installation, you can set the environment variable PROPHET_REPACKAGE_CMDSTAN
to False
:
export PROPHET_REPACKAGE_CMDSTAN=False; python setup.py develop
Make sure compilers (gcc, g , build-essential) and Python development tools (python-dev, python3-dev) are installed. In Red Hat systems, install the packages gcc64 and gcc64-c . If you are using a VM, be aware that you will need at least 4GB of memory to install prophet, and at least 2GB of memory to use prophet.
Using cmdstanpy
with Windows requires a Unix-compatible C compiler such as mingw-gcc. If cmdstanpy is installed first, one can be installed via the cmdstanpy.install_cxx_toolchain
command.
- Replaced
pystan2
dependency withcmdstan
cmdstanpy
. - Pre-packaged model binaries for Python package, uploaded binary distributions to PyPI.
- Improvements in the
stan
model code, cross-validation metric calculations, holidays.
- Python package name changed from fbprophet to prophet
- Fixed R Windows build issues to get latest version back on CRAN
- Improvements in serialization, holidays, and R timezone handling
- Plotting improvements
- Built-in json serialization
- Added "flat" growth option
- Bugfixes related to
holidays
andpandas
- Plotting improvements
- Improvements in cross validation, such as parallelization and directly specifying cutoffs
- Fix bugs related to upstream changes in
holidays
andpandas
packages. - Compile model during first use, not during install (to comply with CRAN policy)
cmdstanpy
backend now available in Python- Python 2 no longer supported
- Conditional seasonalities
- Improved cross validation estimates
- Plotly plot in Python
- Bugfixes
- Added holidays functionality
- Bugfixes
- Multiplicative seasonality
- Cross validation error metrics and visualizations
- Parameter to set range of potential changepoints
- Unified Stan model for both trend types
- Improved future trend uncertainty for sub-daily data
- Bugfixes
- Bugfixes
- Forecasting with sub-daily data
- Daily seasonality, and custom seasonalities
- Extra regressors
- Access to posterior predictive samples
- Cross-validation function
- Saturating minimums
- Bugfixes
- Bugfixes
- New options for detecting yearly and weekly seasonality (now the default)
- Initial release
Prophet is licensed under the MIT license.