forked from wyharveychen/CloserLookFewShot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_features.py
125 lines (108 loc) · 4.69 KB
/
save_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from torch.autograd import Variable
import os
import glob
import h5py
import configs
import backbone
from data.datamgr import SimpleDataManager
from methods.baselinetrain import BaselineTrain
from methods.baselinefinetune import BaselineFinetune
from methods.protonet import ProtoNet
from methods.matchingnet import MatchingNet
from methods.relationnet import RelationNet
from methods.maml import MAML
from io_utils import model_dict, parse_args, get_resume_file, get_best_file, get_assigned_file
def save_features(model, data_loader, outfile ):
f = h5py.File(outfile, 'w')
max_count = len(data_loader)*data_loader.batch_size
all_labels = f.create_dataset('all_labels',(max_count,), dtype='i')
all_feats=None
count=0
for i, (x,y) in enumerate(data_loader):
if i == 0:
print('{:d}/{:d}'.format(i, len(data_loader)))
x = x.cuda()
x_var = Variable(x)
feats = model(x_var)
if all_feats is None:
all_feats = f.create_dataset('all_feats', [max_count] list( feats.size()[1:]) , dtype='f')
all_feats[count:count feats.size(0)] = feats.data.cpu().numpy()
all_labels[count:count feats.size(0)] = y.cpu().numpy()
count = count feats.size(0)
count_var = f.create_dataset('count', (1,), dtype='i')
count_var[0] = count
f.close()
if __name__ == '__main__':
params = parse_args('save_features')
assert params.method != 'maml' and params.method != 'maml_approx', 'maml do not support save_feature and run'
if 'Conv' in params.model:
if params.dataset in ['omniglot', 'cross_char']:
image_size = 28
else:
image_size = 84
else:
image_size = 224
if params.dataset in ['omniglot', 'cross_char']:
assert params.model == 'Conv4' and not params.train_aug ,'omniglot only support Conv4 without augmentation'
params.model = 'Conv4S'
split = params.split
if params.dataset == 'cross':
if split == 'base':
loadfile = configs.data_dir['miniImagenet'] 'all.json'
else:
loadfile = configs.data_dir['CUB'] split '.json'
elif params.dataset == 'cross_char':
if split == 'base':
loadfile = configs.data_dir['omniglot'] 'noLatin.json'
else:
loadfile = configs.data_dir['emnist'] split '.json'
else:
loadfile = configs.data_dir[params.dataset] split '.json'
checkpoint_dir = '%s/checkpoints/%s/%s_%s' %(configs.save_dir, params.dataset, params.model, params.method)
if params.train_aug:
checkpoint_dir = '_aug'
if not params.method in ['baseline', 'baseline '] :
checkpoint_dir = '_%dway_%dshot' %( params.train_n_way, params.n_shot)
if params.save_iter != -1:
modelfile = get_assigned_file(checkpoint_dir,params.save_iter)
# elif params.method in ['baseline', 'baseline '] :
# modelfile = get_resume_file(checkpoint_dir) #comment in 2019/08/03 updates as the validation of baseline/baseline is added
else:
modelfile = get_best_file(checkpoint_dir)
if params.save_iter != -1:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), split "_" str(params.save_iter) ".hdf5")
else:
outfile = os.path.join( checkpoint_dir.replace("checkpoints","features"), split ".hdf5")
datamgr = SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(loadfile, aug = False)
if params.method in ['relationnet', 'relationnet_softmax']:
if params.model == 'Conv4':
model = backbone.Conv4NP()
elif params.model == 'Conv6':
model = backbone.Conv6NP()
elif params.model == 'Conv4S':
model = backbone.Conv4SNP()
else:
model = model_dict[params.model]( flatten = False )
elif params.method in ['maml' , 'maml_approx']:
raise ValueError('MAML do not support save feature')
else:
model = model_dict[params.model]()
model = model.cuda()
tmp = torch.load(modelfile)
state = tmp['state']
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key:
newkey = key.replace("feature.","") # an architecture model has attribute 'feature', load architecture feature to backbone by casting name from 'feature.trunk.xx' to 'trunk.xx'
state[newkey] = state.pop(key)
else:
state.pop(key)
model.load_state_dict(state)
model.eval()
dirname = os.path.dirname(outfile)
if not os.path.isdir(dirname):
os.makedirs(dirname)
save_features(model, data_loader, outfile)