-
Notifications
You must be signed in to change notification settings - Fork 3
/
loading.py
106 lines (81 loc) · 4.26 KB
/
loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
The `loading` module implements loading and boundary conditions data structures.
"""
from typing import Callable, Dict
import jax.numpy as jnp
from difflexmm.geometry import DOFsInfo, Geometry
def build_loading(
geometry: Geometry,
loaded_block_DOF_pairs: jnp.ndarray,
loading_fn: Callable,
constrained_block_DOF_pairs: jnp.ndarray = jnp.array([])):
"""Defines the loading function.
Args:
geometry (Geometry): geometry.
loaded_block_DOF_pairs (jnp.ndarray): array of shape (Any, 2) where each row defines a pair of [block_id, DOF_id] where DOF_id is either 0, 1, or 2
loading_fn (Callable): Loading function. Output shape should either be scalar or match (len(loaded_block_DOF_pairs),).
constrained_block_DOF_pairs (jnp.ndarray, optional): Array of shape (n_constraints, 2) where each row is of the form [block_id, DOF_id]. Defaults to jnp.array([]).
Returns:
Callable: vector loading function evaluating to `loading_fn` for the DOFs defined by `loaded_block_DOF_pairs` and 0 otherwise.
"""
# loaded DOF ids based on global numeration
loaded_DOF_ids = jnp.array(
[block_id * 3 DOF_id for block_id, DOF_id in loaded_block_DOF_pairs])
# Retrieve free DOFs from constraints info (this information is assumed to be static)
free_DOF_ids, _, all_DOF_ids = DOFsInfo(
geometry.n_blocks, constrained_block_DOF_pairs)
def global_loading_fn(state, t, loading_params: Dict):
loading_vector = jnp.zeros((len(all_DOF_ids),))
loading_vector = loading_vector.at[loaded_DOF_ids].set(
loading_fn(state, t, **loading_params)
)
# Reduce loading vector to the free DOFs
loading_vector = loading_vector[free_DOF_ids]
return loading_vector
return global_loading_fn
def build_node_loading(
geometry: Geometry,
loaded_block_node_DOF_triples: jnp.ndarray,
loading_fn: Callable,
centroid_node_vectors: jnp.ndarray,
constrained_block_DOF_pairs: jnp.ndarray = jnp.array([])):
"""
docstring
"""
# TODO: Implement nodal loading function in one of the following ways:
# - Compute virtual power and let jax take the gradient with respect to virtual velocity.
# - Find the appropriate way to vectorize something like (A_n)^T . F_n where A_n is the gradient of n node displacement with respect to block DOFs and F_n the nodal loading.
# In both cases, be sure to constrained the resulting loading vector to the freeDOFs using constraints info.
# node_displacements = block_to_node_kinematics(
# block_displacement,
# centroid_node_vectors
# )
def build_viscous_damping(
geometry: Geometry,
damped_blocks: jnp.ndarray,
constrained_block_DOF_pairs: jnp.ndarray = jnp.array([])):
"""Defines viscous damping forces.
Args:
geometry (Geometry): geometry.
damped_blocks (jnp.ndarray): array of shape (n_damped_blocks,) collecting the block ids of the damped blocks.
damping_values (jnp.ndarray): array of shape (n_damped_blocks, 3) collecting the damping values for each block and DOF.
constrained_block_DOF_pairs (jnp.ndarray): Array of shape (n_constraints, 2) where each row is of the form [block_id, DOF_id]. Defaults to jnp.array([]).
Returns:
Callable: function evaluating the viscous damping forces.
"""
damped_DOF_ids = jnp.concatenate(
[jnp.arange(block_id * 3, (block_id 1) * 3) for block_id in damped_blocks])
# Retrieve free DOFs from constraints info (this information is assumed to be static)
free_DOF_ids, _, all_DOF_ids = DOFsInfo(
geometry.n_blocks, constrained_block_DOF_pairs)
# This is to ensure correct shape of loading vector when damping is either a scalar or an array of shape (n_damped_blocks, 3)
reshaping_array = jnp.ones((len(damped_blocks), 3))
def loading_fn(state, t, damping: jnp.ndarray):
_, velocity = state
loading_vector = jnp.zeros((len(all_DOF_ids),))
loading_vector = loading_vector.at[damped_DOF_ids].set(
(damping * reshaping_array).reshape(damped_DOF_ids.shape)
)
loading_vector = loading_vector[free_DOF_ids]
return -loading_vector * velocity
return loading_fn