-
Notifications
You must be signed in to change notification settings - Fork 39
/
train.py
208 lines (172 loc) · 8.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import logging
import os
import sys
import math
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim.lr_scheduler as lr_scheduler
from torch import optim
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, random_split
from apex import amp
from tqdm import tqdm
from unet import UNet
from unet import UNet2Plus
from unet import UNet3Plus, UNet3Plus_DeepSup, UNet3Plus_DeepSup_CGM
from utils.dataset import BasicDataset
from utils.eval import eval_net
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
dir_img = 'D:/datasets/Portraits/train/imgs/'
dir_mask = 'D:/datasets/Portraits/train/masks/'
dir_checkpoint = 'ckpts/'
def train_net(unet_type, net, device, epochs=5, batch_size=1, lr=0.1, val_percent=0.1, save_cp=True, img_scale=0.5):
dataset = BasicDataset(unet_type, dir_img, dir_mask, img_scale)
n_val = int(len(dataset) * val_percent)
n_train = len(dataset) - n_val
train, val = random_split(dataset, [n_train, n_val])
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False, num_workers=8, pin_memory=True)
writer = SummaryWriter(comment=f'LR_{lr}_BS_{batch_size}_SCALE_{img_scale}')
global_step = 0
logging.info(f'''Starting training:
UNet type: {unet_type}
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Dataset size: {len(dataset)}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_cp}
Device: {device.type}
Images scaling: {img_scale}''')
optimizer = optim.RMSprop(net.parameters(), lr=lr, weight_decay=1e-8)
model, optimizer = amp.initialize(net, optimizer, opt_level="O1")
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: (((1 math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.95 0.05 #cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
scheduler.last_epoch = global_step
if net.n_classes > 1:
criterion = nn.CrossEntropyLoss()
else:
criterion = nn.BCEWithLogitsLoss()
lrs = []
best_loss = 10000
for epoch in range(epochs):
cur_lr = optimizer.param_groups[0]['lr']
print('\nEpoch=', (epoch 1), ' lr=', cur_lr)
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == net.n_channels, f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that the images are loaded correctly.'
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if net.n_classes == 1 else torch.long
true_masks = true_masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs)
loss = criterion(masks_pred, true_masks)
epoch_loss = loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
#loss.backward()
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
optimizer.step()
pbar.update(imgs.shape[0])
global_step = 1
dataset_len = len(dataset)
a1 = dataset_len // 10 if dataset_len // 10 > 0 else 1
a2 = dataset_len / 10 if dataset_len / 10 > 0 else 1
b1 = global_step % a1
b2 = global_step % a2
if global_step % (len(dataset) // (10 * batch_size)) == 0:
val_score = eval_net(net, val_loader, device, n_val)
if net.n_classes > 1:
logging.info('Validation cross entropy: {}'.format(val_score))
writer.add_scalar('Loss/test', val_score, global_step)
else:
logging.info('Validation Dice Coeff: {}'.format(val_score))
writer.add_scalar('Dice/test', val_score, global_step)
writer.add_images('images', imgs, global_step)
if net.n_classes == 1:
writer.add_images('masks/true', true_masks, global_step)
writer.add_images('masks/pred', torch.sigmoid(masks_pred) > 0.5, global_step)
# update scheduler
scheduler.step()
lrs.append(cur_lr)
if save_cp:
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
if loss.item() < best_loss:
torch.save(net.state_dict(), dir_checkpoint f'CP_epoch{epoch 1}_loss_{str(loss.item())}.pth')
best_loss = loss.item()
logging.info(f'Checkpoint {epoch 1} saved ! loss (batch) = ' str(loss.item()))
# plot lr scheduler
plt.plot(lrs , '.-', label='LambdaLR')
plt.xlabel('epoch')
plt.ylabel('LR')
plt.tight_layout()
plt.savefig('LR.png', dpi=300)
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-g', '--gpu_id', dest='gpu_id', metavar='G', type=int, default=0, help='Number of gpu')
parser.add_argument('-u', '--unet_type', dest='unet_type', metavar='U', type=str, default='v3', help='UNet type is v1/v2/v3 (unet unet unet3 )')
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=10000, help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=2, help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.1, help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False, help='Load model from a .pth file')
parser.add_argument('-s', '--scale', dest='scale', type=float, default=0.5, help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0, help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
gpu_id = args.gpu_id
unet_type = args.unet_type
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
# - For 1 class and background, use n_classes=1
# - For 2 classes, use n_classes=1
# - For N > 2 classes, use n_classes=N
if unet_type == 'v2':
net = UNet2Plus(n_channels=3, n_classes=1)
elif unet_type == 'v3':
net = UNet3Plus(n_channels=3, n_classes=1)
#net = UNet3Plus_DeepSup(n_channels=3, n_classes=1)
#net = UNet3Plus_DeepSup_CGM(n_channels=3, n_classes=1)
else:
net = UNet(n_channels=3, n_classes=1)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n')
#f'\t{'Bilinear' if net.bilinear else 'Dilated conv'} upscaling')
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
# faster convolutions, but more memory
# cudnn.benchmark = True
try:
train_net(unet_type=unet_type, net=net, epochs=args.epochs, batch_size=args.batchsize,
lr=args.lr, device=device, img_scale=args.scale, val_percent=args.val / 100)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os.exit(0)