-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathviz.jl
177 lines (126 loc) · 4.59 KB
/
viz.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
using Plots
@userplot SSADist
@recipe function f(dist::SSADist; true_label="SSA")
yy = dist.args[1]
push!(yy, 0f0)
nmax = length(yy) - 1
@series begin
seriestype := :steppost
seriescolor --> colorant"#e4f0f8ff"
label --> true_label
linecolor --> nothing
fillrange --> yy
(0:nmax) .- 0.5, zeros(nmax+1)
end
@series begin
seriestype := :steppost
linecolor --> colorant"#808080ff"
linewidth --> 0.5
linealpha --> 0.8
label --> ""
# +1 to finish the contour nicely
(0:nmax) .- 0.5, yy
end
end
@userplot CMENetDist
@recipe function f(dist::CMENetDist; nmax=nothing)
loc = dist.args[1]
model = dist.args[2]
mnb = Distribution(model, loc)
if nmax === nothing
nmax = ceil(Int, mean(mnb) + 3 * std(mnb))
end
yy = pred_pdf(model, loc, 0:nmax)
@series begin
seriestype := :steppost
linecolor --> colorant"#0088c3ff"
linealpha --> 0.9
linewidth --> 1.5
label --> "Nessie"
(0:nmax) .- 0.5, yy
end
end
plot_dist(args...; kwargs...) = plot_dist!(plot(), args...; kwargs...)
function plot_dist!(plt::AbstractPlot, loc, data, model; params=nothing, true_label="SSA", kwargs...)
X, y = data
ind = findfirst(x -> x == loc, X)
ind === nothing && error("Could not find parameters in data: $loc")
ssadist!(plt, y[ind]; true_label)
cmenetdist!(loc, model; nmax=length(y[ind]) - 1)
title = if params === nothing
"t = $(loc[1])"
else
"t = $(loc[1]), " * join([ params[i] = loc[i+1] for i in 1:length(loc) - 1 ], ", ")
end
ylim = maximum(Plots.axis_limits(plt.subplots[1], :y))
plot!(plt, xlabel="n", ylabel="P(n)", grid=nothing,
xlims=(-0.5, Inf), ylims=(0, ylim), tick_direction=:out,
title=title; kwargs...)
end
function loss_heatmap(data, model, ps; loss = loss_crossentropy, syms=nothing, kwargs...)
X, y = data
p_inds = findall(p -> !isnothing(p), ps)
inds = findall(col -> col[p_inds] == ps[p_inds], X)
X = @view X[inds]
y = @view y[inds]
ls = loss.(X, y, Ref(model))
inds = setdiff(1:length(ps), p_inds)
max1 = maximum(x[inds[1]] for x in X)
dim1 = findfirst(x -> x[inds[1]] == max1, X)
v1 = [x[inds[1]] for x in X[1:dim1]]
dim2 = Int(length(y) / dim1)
v2 = [x[inds[2]] for x in X[1:dim1:length(y)]]
plt = heatmap(v1, v2, reshape(ls, (dim1, dim2))')
if !isnothing(syms)
plot!(plt, xlabel=syms[inds[1]], ylabel=syms[inds[2]])
plot!(plt, title=join(("$(syms[i]) = $(ps[i])" for i in p_inds), ", "))
end
plot!(plt; kwargs...)
end
## Interactive plotting utilities
function plot_losses(clear=true)
train_losses = Float32[]
val_losses = Float32[]
rounds = Int[]
ax = plot(Int[], Float32[], yscale=:log10, label="train", color=:blue)
plot!(ax, Int[], Float32[], label="valid", color=:orange)
eta = 0f0
rounds = ax.series_list[1].plotattributes[:x]
rounds_val = ax.series_list[2].plotattributes[:x]
train_losses = ax.series_list[1].plotattributes[:y]
val_losses = ax.series_list[2].plotattributes[:y]
ymax = -Inf
ymin = Inf
annotate!(ax, 0, 0, text("0", :blue, :right, 8))
annotate!(ax, 0.1, 0, text("0", :orange, :right, 8))
plot!(ax, size=(500,250))
return (eta_new, train_loss, val_loss) -> begin
rd = length(rounds) + 1
push!(rounds, rd)
push!(rounds_val, rd)
push!(train_losses, train_loss)
push!(val_losses, val_loss)
if eta_new != eta
eta = eta_new
vline!(ax, [rd], linestyle=:dash, color=:red, label=false)
end
ymax = max(ymax, val_loss, train_loss)
ymin = min(ymin, val_loss, train_loss)
plot!(ax, xlims=(1,rd*1.1), ylims=(ymin, ymax), show=true)
ax.subplots[1].attr[:annotations][1] = (rd, train_loss, text("$train_loss", :blue, :left, 8))
ax.subplots[1].attr[:annotations][2] = (rd, val_loss, text("$val_loss", :orange, :left, 8))
clear && IJulia.clear_output(true)
display(ax)
end
end
function plot_sample_dists(test_data, model, clear=true)
X_test = first(test_data)
return (eta_new, train_loss, val_loss) -> begin
plts = [ plot_dist(X_test[i], test_data, model, legend=(i == 1)) for i in 1:length(X_test) ]
clear && IJulia.clear_output(true)
display(plot(plts..., size=(500, 500)))
end
end
function combine(fcts...)
return (args...) -> foreach(f -> f(args...), fcts)
end