-
Notifications
You must be signed in to change notification settings - Fork 23
/
figure5.R
198 lines (166 loc) · 8.63 KB
/
figure5.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
source('~/CHARR/R/constants.R')
library(magick)
phenotype_levels <- rev(c('Mean sphered cell volume', 'High light scatter reticulocyte count', 'Glycated haemoglobin (HbA1c)', 'Red blood cell (erythrocyte) distribution width', 'Red blood cell (erythrocyte) count'))
phenotype_labels <- rev(c('MCV', 'RET', 'HbA1c', 'RDW', 'RBC'))
OUTPUT <- '~/Dropbox (Partners HealthCare)/analysis/ukb_pan_ancestry/figures/figure5/'
pops = c('AFR', 'AMR', 'EAS', 'MID', 'EUR', 'CSA', 'Meta (raw)', 'Meta (hq)')
names(pops) = c('afr', 'amr', 'eas', 'mid', 'nfe', 'sas', 'meta_raw', 'meta_hq')
pop_colors['mid'] = "#33CC33"
pop_colors['meta_raw'] = "gray40"
pop_colors['meta_hq'] = "black"
pop_colors['meta'] = "black"
figure5a <- function(text_size = 3 , height=85/in2mm, width=100/in2mm, output_path=OUTPUT, save=T){
g6pd_p <- read_delim('~/Dropbox (Partners HealthCare)/analysis/ukb_pan_ancestry/data/x_153764217_g6pd_all_associations.csv')
g6pd_corr <- read_delim('~/Dropbox (Partners HealthCare)/analysis/ukb_pan_ancestry/data/rg_rp_5_pheno_g6pd.txt.bgz', delim='\t')
sub_p <- g6pd_p %>%
filter(Pvalue < 1e-3) %>% # phewas threshold:
filter(pop == 'meta') %>%
select(description, Pvalue) %>%
distinct()
rg_missing <- g6pd_corr %>%
filter(!is.na(rg) & phenotype1 != phenotype2) %>%
select(phenotype1 = phenotype2, description1=description2, phenotype2=phenotype1, description2=description1, rg=rg)
g6pd_corr <- g6pd_corr %>%
merge(., rg_missing, by = colnames(g6pd_corr)[1:4], all.x=T) %>%
mutate(rg = if_else(is.na(rg.x), rg.y, rg.x)) %>%
select(-rg.x, -rg.y) %>%
mutate(r = if_else(phenotype1<phenotype2, rg, rp),
label = if_else(phenotype1<phenotype2, 'rg', 'rp')) %>%
merge(., sub_p, by.x='description1', by.y = 'description') %>%
merge(., sub_p, by.x='description2', by.y = 'description') %>%
mutate(description1 = factor(description1, levels = phenotype_levels, labels = phenotype_labels),
description2 = factor(description2, levels = phenotype_levels, labels = phenotype_labels)) %>%
mutate(description1 = if_else(Pvalue.x < 5e-8, paste0(description1, '*'), description1),
description2 = if_else(Pvalue.y < 5e-8, paste0(description2, '*'), description2),) %>%
mutate(description1 = factor(description1, levels = rev(c('MCV*', 'RET*', 'HbA1c*', 'RDW', 'RBC'))),
description2 = factor(description2, levels = rev(c('MCV*', 'RET*', 'HbA1c*', 'RDW', 'RBC'))))
p <- g6pd_corr %>%
mutate(x = 'r[g]', y= 'r[p]') %>%
filter(!is.na(rg)) %>%
ggplot()
geom_tile(aes(x = description2, y = description1, fill = r))
geom_text(aes(x = description2, y = description1, label = round(r,2)), size=text_size)
coord_equal()
scale_fill_gradient2(mid="#FBFEF9",low="#0C6291",high="#A63446", limits=c(-1,1))
labs(x =NULL, y = NULL)
themes
theme_classic()
theme( axis.text = element_text(size = text_size*2.5, color = 'black'),
strip.text = element_text(size = text_size*2.5, face = 'bold'),
legend.text = element_text(size = text_size*2),
legend.title = element_text(size = text_size*2.5, face = 'bold'),
)
facet_grid(y~x, labeller = label_parsed)
if(save){
png(paste0(output_path, 'figure5a_g6pd_phenotype_correlation.png'), height = height, width = width, units = 'in', res = 300)
print(p)
dev.off()
}
return(p)
}
figure5c <- function(text_size = 6, height = 100/in2mm, width = 174/in2mm, output_path=OUTPUT, save=T, no_amr = F, no_meta_hq = F){
result_data <- read_delim('/Users/wlu/Dropbox (Partners HealthCare)/analysis/ukb_pan_ancestry/figures/figure5/archived/pop_analysis_x_153764217_g6pd_all.txt.bgz', delim='\t')
meta_data <- read_delim('/Users/wlu/Dropbox (Partners HealthCare)/analysis/ukb_pan_ancestry/figures/figure5/archived/meta_analysis_x_153764217_g6pd_all.txt.bgz', delim='\t')
data <- result_data %>%
mutate(type = 'pop') %>%
select(phenocode, pop, type, Pvalue, BETA, SE) %>%
rbind(meta_data %>%
mutate(pop = 'Meta (raw)',
type = 'Meta') %>%
select(phenocode, pop, type, Pvalue, BETA, SE)
)
if(!no_meta_hq){
data <- data %>%
rbind(meta_data %>%
mutate(pop = 'Meta (hq)',
type = 'Meta') %>%
select(phenocode, pop, type, Pvalue = Pvalue_hq, BETA= BETA_hq, SE=SE_hq)
)
n_meta = 2
}else{
data <- data %>%
mutate(pop = if_else(pop == 'Meta (raw)', 'Meta', pop))
pops <- c(pops[1:(length(pops)-2)], 'Meta')
names(pops)[length(pops)] <- 'meta'
n_meta = 1
}
data <- data %>%
filter(complete.cases(.)) %>%
mutate(pop = factor(pop, levels=rev(pops), labels=rev(names(pops))),
phenocode = factor(phenocode,
levels = rev(c(30270, 30300, 30750, 30070, 30010)),
labels = rev(c('MCV*', 'RET*', 'HbA1c*', 'RDW', 'RBC'))))
if(no_amr){
data <- data %>%
filter(pop != 'amr')
}
figure <- data %>%
ggplot
geom_point(aes(x = BETA, y = phenocode, color = pop, size=pop),position=position_dodge(width = 1))
geom_pointrange(aes(x = BETA, y = phenocode, color = pop, xmax = BETA 1.96*SE, xmin = BETA-1.96*SE, size=pop),position=position_dodge(width = 1)) themes
geom_hline(yintercept = c(1.5,2.5,3.5,4.5), lty=2, lwd=0.1)
labs(color='Ancestry group', pch='Ancestry group', x = 'Beta', y = NULL)
scale_color_manual(name='Ancestry group', values = pop_colors,
breaks = rev(names(pops)),
labels = rev(pops))
scale_size_manual(name='Ancestry group',
values = rev(c(rep(0.2, 6),rep(0.5,n_meta))),
breaks = rev(names(pops)),
labels = rev(pops))
themes
theme_classic()
theme( axis.text = element_text(size = text_size*2.5, color = 'black'),
axis.title = element_text(size = text_size*2.5, face = 'bold'),
legend.text = element_text(size = text_size*2),
legend.title = element_text(size = text_size*2.5, face = 'bold'),
legend.position = 'top'
)
guides(colour = guide_legend(nrow = 1),
size = guide_legend(nrow = 1))
print(figure)
if(save){
png(paste0(output_path, 'figure5c_g6pd_forest_plot',if_else(no_amr, '_no_amr', ''),if_else(no_meta_hq, '_no_meta_hq', ''),'.png'), width = width, height = height, units = 'in', res = 300)
print(figure)
dev.off()
}
return(figure)
}
figure5 <- function(output_format, output_path=OUTPUT){
# Layout parameters:
# image_widths = image_info(figure5b_raw)$width/300 # = 7.23
# image_heights = image_info(figure5b_raw)$height/300 # = 5.27
relative_heights = c(1, 1.5)
factor = 0.9
width = 7.23 * 2.25 * factor
height = 5.27 * sum(relative_heights) * factor
# Prepare panels:
figure5a <- figure5a(text_size = 7, height=4, width=6, output_path=output_path, save=F)
figure5b_path <- '~/PycharmProjects/ukbb_pan_ancestry/G6PD_pan_ukb_X_153764217_META_500000_1Mb_continuous-30270-both_sexes--irnt.pdf'
figure5b_raw <- image_read_pdf(figure5b_path)
figure5b <- ggplot()
annotation_raster(figure5b_raw, xmin=-Inf, xmax=Inf, ymin=-Inf, ymax=Inf)
geom_blank() theme_nothing()
figure5c <- figure5c(text_size = 7, height=6, width=10, output_path=output_path, save=F, no_amr=T, no_meta_hq=T)
# Arrange panels:
top = ggpubr::ggarrange(figure5a, figure5b, ncol = 2, labels = c("a", "b"), font.label = list(size = 20), widths = c(1,1.2))
combined = ggpubr::ggarrange(top, figure5c, ncol=1, labels = c("", "c"), font.label = list(size = 20))
# Save the top two panels (sanity check):
output_type(output_format, paste0(output_path, 'figure5_top.', output_format), height=height/2, width=width)
print(top)
dev.off()
# ggsave(filename = paste0(output_path, 'figure5_top.', output_format),top, height=height/2, width=width)
# Save the full figure:
output_type(output_format, paste0(output_path, 'figure5.', output_format), height=height, width=width)
print(combined)
dev.off()
# ggsave(filename = paste0(OUTPUT, 'figure5.', output_format),combined, height=height, width=width)
return(combined)
}
figure5('pdf', OUTPUT)
figure5('png', OUTPUT)
# Other adjustments
figure5a <- figure5a(text_size = 7, height=4, width=6, output_path=OUTPUT, save=T)
figure5c <- figure5c(text_size = 7, height=6, width=10, output_path=OUTPUT, save=T)
figure5c <- figure5c(text_size = 7, height=6, width=10, output_path=OUTPUT, save=T, no_amr=T)
figure5c <- figure5c(text_size = 7, height=6, width=10, output_path=OUTPUT, save=T, no_meta_hq=T)
figure5c <- figure5c(text_size = 7, height=6, width=10, output_path=OUTPUT, save=T, no_amr=T, no_meta_hq=T)