Skip to content

Analyses conducting GWAS across the UKBB diverse superpopulations

License

Notifications You must be signed in to change notification settings

atgu/ukbb_pan_ancestry

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UKBB-Diverse-pops

GWAS across all analyzable phenotypes and diverse ancestry groups in the UK Biobank.

A full description of how these summary statistics were generated and how to work with them can be found here: http://pan.ukbb.broadinstitute.org/.

Code overview

The code in this repo can be used to generate all the figures in the manuscript. They look for data files in ./data, and if they are not found, downloads them as needed from the public data repository.

Each figure panel can be generated individually, or figures as a whole. For instance, in R/fig3_spectrum.R, we provide a function called figure3() which can generate the entirety of figure 3. Alternatively, running the code inside the function can generate each figure panel separately. Note that for some figures, on some R setups, attempting to generate the full figure by calling the function directly can crash R: we are uncertain of the cause of the issue, but it can be resolved by running the code inside the function step-wise.

System Requirements

Hardware requirements

There are no specific hardware requirements, except enough RAM to fit the datasets in memory (~16Gb).

Software requirements

OS Requirements

This package has been tested on macOS Sonoma (14.5).

R Dependencies

The code depends on R packages, including those listed at the top of constants.R, using R 4.3.3 (sessionInfo() used below).

Installation Guide:

git clone https://github.com/atgu/ukbb_pan_ancestry
cd ukbb_pan_ancestry
R
  • Install any packages needed, and run constants.R - if this runs without error, the remaining files will load.

Citation

To cite the Pan-UKB resource, please use the citation: Karczewski, Gupta, Kanai et al., 2024.

Session info

> sessionInfo()
R version 4.3.3 (2024-02-29)
Platform: aarch64-apple-darwin23.2.0 (64-bit)
Running under: macOS Sonoma 14.5

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 
LAPACK: /opt/local/Library/Frameworks/R.framework/Versions/4.3/Resources/lib/libRlapack.dylib;  LAPACK version 3.11.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] googlesheets4_1.1.1  colorspace_2.1-0     reticulate_1.35.0    magick_2.8.1         png_0.1-8           
 [6] IsoplotR_5.6         ggpmisc_0.6.0        ggpp_0.5.8-1         ggbreak_0.1.2        ggthemes_5.0.0      
[11] ggwordcloud_0.6.1    cowplot_1.1.1        RMySQL_0.10.27       DBI_1.1.3            ggrepel_0.9.4       
[16] pbapply_1.7-2        rlang_1.1.4          tidygraph_1.3.1      meta_6.5-0           ggrastr_1.0.2       
[21] ggpubr_0.6.0         ggridges_0.5.4       readxl_1.4.3         corrr_0.4.4          corrplot_0.92       
[26] patchwork_1.1.3.9500 naniar_1.0.0         plotROC_2.3.1        gghighlight_0.4.0    skimr_2.1.5         
[31] gapminder_1.0.0      trelliscopejs_0.2.10 scales_1.3.0         magrittr_2.0.3       slackr_3.3.1        
[36] plotly_4.10.3        broom_1.0.5          lubridate_1.9.3      forcats_1.0.0        stringr_1.5.1       
[41] dplyr_1.1.4          purrr_1.0.2          readr_2.1.4          tidyr_1.3.0          tibble_3.2.1        
[46] ggplot2_3.5.1        tidyverse_2.0.0      plyr_1.8.9           RCurl_1.98-1.16      Hmisc_5.1-1         

loaded via a namespace (and not attached):
  [1] splines_4.3.3           bitops_1.0-7            ggplotify_0.1.2         locusviz_0.1.0         
  [5] cellranger_1.1.0        rpart_4.1.21            lifecycle_1.0.4         rstatix_0.7.2          
  [9] doParallel_1.0.17       vroom_1.6.4             lattice_0.22-5          MASS_7.3-60            
 [13] backports_1.4.1         metafor_4.4-0           rmarkdown_2.25          minqa_1.2.6            
 [17] RColorBrewer_1.1-3      abind_1.4-5             fidelius_0.0.2          BiocGenerics_0.48.1    
 [21] yulab.utils_0.1.0       nnet_7.3-19             circlize_0.4.15         IRanges_2.36.0         
 [25] S4Vectors_0.40.2        MatrixModels_0.5-3      codetools_0.2-19        xml2_1.3.6             
 [29] tidyselect_1.2.0        shape_1.4.6             aplot_0.2.2             farver_2.1.1           
 [33] lme4_1.1-35.1           matrixStats_1.1.0       stats4_4.3.3            base64enc_0.1-3        
 [37] googledrive_2.1.1       webshot_0.5.5           mathjaxr_1.6-0          jsonlite_1.8.8         
 [41] GetoptLong_1.0.5        Formula_1.2-5           survival_3.5-7          iterators_1.0.14       
 [45] foreach_1.5.2           tools_4.3.3             progress_1.2.2          Rcpp_1.0.11            
 [49] glue_1.6.2              gridExtra_2.3           xfun_0.41               withr_2.5.2            
 [53] numDeriv_2016.8-1.1     fastmap_1.1.1           boot_1.3-28.1           fansi_1.0.5            
 [57] SparseM_1.81            digest_0.6.33           timechange_0.2.0        R6_2.5.1               
 [61] gridGraphics_0.5-1      visdat_0.6.0            scattermore_1.2         utf8_1.2.4             
 [65] generics_0.1.3          data.table_1.14.8       prettyunits_1.2.0       httr_1.4.7             
 [69] htmlwidgets_1.6.3       pkgconfig_2.0.3         gtable_0.3.4            ComplexHeatmap_2.18.0  
 [73] htmltools_0.5.7         carData_3.0-5           autocogs_0.1.4          clue_0.3-65            
 [77] ggfun_0.1.3             knitr_1.45              rstudioapi_0.15.0       tzdb_0.4.0             
 [81] rjson_0.2.21            curl_5.1.0              checkmate_2.3.1         nlme_3.1-164           
 [85] nloptr_2.0.3            repr_1.1.6              cachem_1.0.8            GlobalOptions_0.1.2    
 [89] parallel_4.3.3          vipor_0.4.5             metadat_1.2-0           foreign_0.8-86         
 [93] pillar_1.9.0            vctrs_0.6.5             car_3.1-2               cluster_2.1.6          
 [97] beeswarm_0.4.0          htmlTable_2.4.2         evaluate_0.23           cli_3.6.1              
[101] compiler_4.3.3          crayon_1.5.2            ggsignif_0.6.4          labeling_0.4.3         
[105] mclust_6.0.1            fs_1.6.3                ggbeeswarm_0.7.2        stringi_1.8.4          
[109] viridisLite_0.4.2       munsell_0.5.0           lazyeval_0.2.2          CompQuadForm_1.4.3     
[113] quantreg_5.97           Matrix_1.6-4            hms_1.1.3               bit64_4.0.5            
[117] gridtext_0.1.5          gargle_1.5.2            igraph_2.0.3            memoise_2.0.1          
[121] bit_4.0.5               DistributionUtils_0.6-1 polynom_1.4-1

About

Analyses conducting GWAS across the UKBB diverse superpopulations

Resources

License

Stars

Watchers

Forks