This repository has been archived by the owner on Jul 8, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathmodel_helper.py
170 lines (131 loc) · 6.4 KB
/
model_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import tensorflow as tf
import las
import utils
__all__ = [
'las_model_fn',
]
def compute_loss(logits, targets, final_sequence_length, target_sequence_length, mode):
assert mode != tf.estimator.ModeKeys.PREDICT
if mode == tf.estimator.ModeKeys.TRAIN:
target_weights = tf.sequence_mask(
target_sequence_length, dtype=tf.float32)
loss = tf.contrib.seq2seq.sequence_loss(
logits, targets, target_weights)
else:
'''
# Reference: https://github.com/tensorflow/nmt/issues/2
# Note that this method always trim the tensor with larger length to shorter one,
# and I think it is unfair.
# Consider targets = [[3, 3, 2]], and logits with shape [1, 2, VOCAB_SIZE].
# This method will trim targets to [[3, 3]] and compute sequence_loss on new targets and logits.
# However, I think the truth is that the model predicts less word than ground truth does,
# and hence, both targets and logits should be padded to the same sequence length (dimension 1)
# to compute loss.
current_sequence_length = tf.to_int32(
tf.minimum(tf.shape(targets)[1], tf.shape(logits)[1]))
targets = tf.slice(targets, begin=[0, 0],
size=[-1, current_sequence_length])
logits = tf.slice(logits, begin=[0, 0, 0],
size=[-1, current_sequence_length, -1])
target_weights = tf.sequence_mask(
target_sequence_length, maxlen=current_sequence_length, dtype=tf.float32)
loss = tf.contrib.seq2seq.sequence_loss(
logits, targets, target_weights)
'''
max_ts = tf.reduce_max(target_sequence_length)
max_fs = tf.reduce_max(final_sequence_length)
max_sequence_length = tf.to_int32(
tf.maximum(max_ts, max_fs))
logits = tf.slice(logits, begin=[0, 0, 0], size=[-1, max_fs, -1])
# pad EOS to make targets and logits have same shape
targets = tf.pad(targets, [[0, 0], [0, tf.maximum(
0, max_sequence_length - tf.shape(targets)[1])]], constant_values=utils.EOS_ID)
logits = tf.pad(logits, [[0, 0], [0, tf.maximum(
0, max_sequence_length - tf.shape(logits)[1])], [0, 0]], constant_values=0)
# find larger length between predictions and targets
sequence_length = tf.reduce_max(
[target_sequence_length, final_sequence_length], 0)
target_weights = tf.sequence_mask(
sequence_length, maxlen=max_sequence_length, dtype=tf.float32)
loss = tf.contrib.seq2seq.sequence_loss(
logits, targets, target_weights)
return loss
def las_model_fn(features,
labels,
mode,
config,
params):
encoder_inputs = features['encoder_inputs']
source_sequence_length = features['source_sequence_length']
decoder_inputs = None
targets = None
target_sequence_length = None
if mode != tf.estimator.ModeKeys.PREDICT:
decoder_inputs = labels['targets_inputs']
targets = labels['targets_outputs']
target_sequence_length = labels['target_sequence_length']
tf.logging.info('Building listener')
with tf.variable_scope('listener'):
(encoder_outputs, source_sequence_length), encoder_state = las.model.listener(
encoder_inputs, source_sequence_length, mode, params.encoder)
tf.logging.info('Building speller')
with tf.variable_scope('speller'):
decoder_outputs, final_context_state, final_sequence_length = las.model.speller(
encoder_outputs, encoder_state, decoder_inputs,
source_sequence_length, target_sequence_length,
mode, params.decoder)
with tf.name_scope('prediction'):
if mode == tf.estimator.ModeKeys.PREDICT and params.decoder.beam_width > 0:
logits = tf.no_op()
sample_ids = decoder_outputs.predicted_ids
else:
logits = decoder_outputs.rnn_output
sample_ids = tf.to_int32(tf.argmax(logits, -1))
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'sample_ids': sample_ids,
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
with tf.name_scope('metrics'):
edit_distance = utils.edit_distance(
sample_ids, targets, utils.EOS_ID, params.mapping)
metrics = {
'edit_distance': tf.metrics.mean(edit_distance),
}
tf.summary.scalar('edit_distance', metrics['edit_distance'][1])
with tf.name_scope('cross_entropy'):
loss = compute_loss(
logits, targets, final_sequence_length, target_sequence_length, mode)
if mode == tf.estimator.ModeKeys.EVAL:
with tf.name_scope('alignment'):
attention_images = utils.create_attention_images(
final_context_state)
attention_summary = tf.summary.image(
'attention_images', attention_images)
eval_summary_hook = tf.train.SummarySaverHook(
save_steps=10,
output_dir=os.path.join(config.model_dir, 'eval'),
summary_op=attention_summary)
logging_hook = tf.train.LoggingTensorHook({
'edit_distance': tf.reduce_mean(edit_distance),
'max_edit_distance': tf.reduce_max(edit_distance),
'max_predictions': sample_ids[tf.argmax(edit_distance)],
'max_targets': targets[tf.argmax(edit_distance)],
'min_edit_distance': tf.reduce_min(edit_distance),
'min_predictions': sample_ids[tf.argmin(edit_distance)],
'min_targets': targets[tf.argmin(edit_distance)],
}, every_n_iter=10)
return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=metrics, evaluation_hooks=[logging_hook, eval_summary_hook])
with tf.name_scope('train'):
optimizer = tf.train.AdamOptimizer(params.learning_rate)
train_op = optimizer.minimize(
loss, global_step=tf.train.get_global_step())
logging_hook = tf.train.LoggingTensorHook({
'loss': loss,
'edit_distance': tf.reduce_mean(edit_distance),
#'max_edit_distance': tf.reduce_max(edit_distance),
#'predictions': sample_ids[tf.argmax(edit_distance)],
#'targets': targets[tf.argmax(edit_distance)],
}, every_n_secs=10)
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op, training_hooks=[logging_hook])