Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reflective global subuniverses #1228

Open
wants to merge 17 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
extensions of types in subuniverses
  • Loading branch information
fredrik-bakke committed Nov 26, 2024
commit f6da36abc11ae1da72b55cf547a70a5f8f6fe184
2 changes: 2 additions & 0 deletions src/foundation.lagda.md
Original file line number Diff line number Diff line change
Expand Up @@ -175,6 175,8 @@ open import foundation.exclusive-sum public
open import foundation.existential-quantification public
open import foundation.exponents-set-quotients public
open import foundation.extensions-types public
open import foundation.extensions-types-global-subuniverses public
open import foundation.extensions-types-subuniverses public
open import foundation.faithful-maps public
open import foundation.families-of-equivalences public
open import foundation.families-of-maps public
Expand Down
230 changes: 230 additions & 0 deletions src/foundation/extensions-types-global-subuniverses.lagda.md
Original file line number Diff line number Diff line change
@@ -0,0 1,230 @@
# Extensions of types in a global subuniverse

```agda
module foundation.extensions-types-global-subuniverses where
```

<details><summary>Imports</summary>

```agda
open import foundation.action-on-identifications-functions
open import foundation.commuting-triangles-of-maps
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.equivalences
open import foundation.extensions-types
open import foundation.fibers-of-maps
open import foundation.function-types
open import foundation.functoriality-dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.global-subuniverses
open import foundation.homotopies
open import foundation.homotopy-induction
open import foundation.identity-types
open import foundation.propositional-maps
open import foundation.propositions
open import foundation.torsorial-type-families
open import foundation.type-arithmetic-dependent-pair-types
open import foundation.univalence
open import foundation.universe-levels
```

</details>

## Idea

Consider a type `X`. An
{{#concept "extension" Disambiguation="type in global subuniverse" Agda=extension-type-global-global-subuniverse}}
of `X` in a [global subuniverse](foundation.global-subuniverses.md) `𝒫` is an
object in the [coslice](foundation.coslice.md) under `X` in `𝒫`, i.e., it
consists of a type `Y` in `𝒫` and a map `f : X → Y`.

In the above definition of extensions of types in a global subuniverse our aim
is to capture the most general concept of what it means to be an extension of a
type in a subuniverse.

Our notion of extensions of types are not to be confused with extension types of
cubical type theory or
[extension types of simplicial type theory](https://arxiv.org/abs/1705.07442).

## Definitions

### The predicate on an extension of types of being in a global subuniverse

```agda
module _
{α : Level → Level} {l1 l2 : Level}
(𝒫 : global-subuniverse α) {X : UU l1}
(E : extension-type l2 X)
where

is-in-global-subuniverse-extension-type-Prop : Prop (α l2)
is-in-global-subuniverse-extension-type-Prop =
is-in-global-subuniverse-Prop 𝒫 (type-extension-type E)

is-in-global-subuniverse-extension-type : UU (α l2)
is-in-global-subuniverse-extension-type =
is-in-global-subuniverse 𝒫 (type-extension-type E)

is-prop-is-in-global-subuniverse-extension-type :
is-prop is-in-global-subuniverse-extension-type
is-prop-is-in-global-subuniverse-extension-type =
is-prop-is-in-global-subuniverse 𝒫 (type-extension-type E)
```

### Extensions of types in a subuniverse

```agda
extension-type-global-subuniverse :
{α : Level → Level} {l1 : Level}
(𝒫 : global-subuniverse α) (l2 : Level) (X : UU l1) →
UU (α l2 ⊔ l1 ⊔ lsuc l2)
extension-type-global-subuniverse 𝒫 l2 X =
Σ (type-global-subuniverse 𝒫 l2) (λ Y → X → inclusion-global-subuniverse 𝒫 Y)

module _
{α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) {X : UU l1}
(Y : extension-type-global-subuniverse 𝒫 l2 X)
where

type-global-subuniverse-extension-type-global-subuniverse :
type-global-subuniverse 𝒫 l2
type-global-subuniverse-extension-type-global-subuniverse = pr1 Y

type-extension-type-global-subuniverse : UU l2
type-extension-type-global-subuniverse =
inclusion-global-subuniverse 𝒫
type-global-subuniverse-extension-type-global-subuniverse

is-in-global-subuniverse-type-extension-type-global-subuniverse :
is-in-global-subuniverse 𝒫 type-extension-type-global-subuniverse
is-in-global-subuniverse-type-extension-type-global-subuniverse =
is-in-global-subuniverse-inclusion-global-subuniverse 𝒫
type-global-subuniverse-extension-type-global-subuniverse

inclusion-extension-type-global-subuniverse :
X → type-extension-type-global-subuniverse
inclusion-extension-type-global-subuniverse = pr2 Y

extension-type-extension-type-global-subuniverse : extension-type l2 X
extension-type-extension-type-global-subuniverse =
type-extension-type-global-subuniverse ,
inclusion-extension-type-global-subuniverse
```

## Properties

### Extensions of types in a subuniverse are extensions of types by types in the subuniverse

```agda
module _
{α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) {X : UU l1}
where

compute-extension-type-global-subuniverse :
extension-type-global-subuniverse 𝒫 l2 X ≃
Σ (extension-type l2 X) (is-in-global-subuniverse-extension-type 𝒫)
compute-extension-type-global-subuniverse = equiv-right-swap-Σ
```

### The inclusion of extensions of types in a subuniverse into extensions of types is an embedding

```agda
module _
{α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) {X : UU l1}
where

compute-fiber-extension-type-extension-type-global-subuniverse :
(Y : extension-type l2 X) →
fiber (extension-type-extension-type-global-subuniverse 𝒫) Y ≃
is-in-global-subuniverse 𝒫 (type-extension-type Y)
compute-fiber-extension-type-extension-type-global-subuniverse Y =
equivalence-reasoning
Σ ( Σ (Σ (UU l2) (λ Z → is-in-global-subuniverse 𝒫 Z)) (λ Z → X → pr1 Z))
( λ E → extension-type-extension-type-global-subuniverse 𝒫 E = Y)
≃ Σ ( Σ (extension-type l2 X) (is-in-global-subuniverse-extension-type 𝒫))
( λ E → pr1 E = Y)
by
equiv-Σ-equiv-base
( λ E → pr1 E = Y)
( compute-extension-type-global-subuniverse 𝒫)
≃ Σ ( Σ (extension-type l2 X) (λ E → E = Y))
( is-in-global-subuniverse-extension-type 𝒫 ∘ pr1)
by equiv-right-swap-Σ
≃ is-in-global-subuniverse-extension-type 𝒫 Y
by left-unit-law-Σ-is-contr (is-torsorial-Id' Y) (Y , refl)

is-prop-map-extension-type-extension-type-global-subuniverse :
is-prop-map (extension-type-extension-type-global-subuniverse 𝒫)
is-prop-map-extension-type-extension-type-global-subuniverse Y =
is-prop-equiv
( compute-fiber-extension-type-extension-type-global-subuniverse Y)
( is-prop-is-in-global-subuniverse 𝒫 (type-extension-type Y))

is-emb-extension-type-extension-type-global-subuniverse :
is-emb (extension-type-extension-type-global-subuniverse 𝒫)
is-emb-extension-type-extension-type-global-subuniverse =
is-emb-is-prop-map is-prop-map-extension-type-extension-type-global-subuniverse
```

### Characterization of identifications of extensions of types in a subuniverse

```agda
equiv-extension-type-global-subuniverse :
{α : Level → Level} {l1 l2 l3 : Level}
(𝒫 : global-subuniverse α) {X : UU l1} →
extension-type-global-subuniverse 𝒫 l2 X →
extension-type-global-subuniverse 𝒫 l3 X → UU (l1 ⊔ l2 ⊔ l3)
equiv-extension-type-global-subuniverse 𝒫 U V =
equiv-extension-type
( extension-type-extension-type-global-subuniverse 𝒫 U)
( extension-type-extension-type-global-subuniverse 𝒫 V)

module _
{α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) {X : UU l1}
where

id-equiv-extension-type-global-subuniverse :
(U : extension-type-global-subuniverse 𝒫 l2 X) →
equiv-extension-type-global-subuniverse 𝒫 U U
id-equiv-extension-type-global-subuniverse U =
id-equiv-extension-type
( extension-type-extension-type-global-subuniverse 𝒫 U)

equiv-eq-extension-type-global-subuniverse :
(U V : extension-type-global-subuniverse 𝒫 l2 X) →
U = V → equiv-extension-type-global-subuniverse 𝒫 U V
equiv-eq-extension-type-global-subuniverse U V p =
equiv-eq-extension-type
( extension-type-extension-type-global-subuniverse 𝒫 U)
( extension-type-extension-type-global-subuniverse 𝒫 V)
( ap (extension-type-extension-type-global-subuniverse 𝒫) p)

is-equiv-equiv-eq-extension-type-global-subuniverse :
(U V : extension-type-global-subuniverse 𝒫 l2 X) →
is-equiv (equiv-eq-extension-type-global-subuniverse U V)
is-equiv-equiv-eq-extension-type-global-subuniverse U V =
is-equiv-comp
( equiv-eq-extension-type
( extension-type-extension-type-global-subuniverse 𝒫 U)
( extension-type-extension-type-global-subuniverse 𝒫 V))
( ap (extension-type-extension-type-global-subuniverse 𝒫))
( is-emb-extension-type-extension-type-global-subuniverse 𝒫 U V)
( is-equiv-equiv-eq-extension-type
( extension-type-extension-type-global-subuniverse 𝒫 U)
( extension-type-extension-type-global-subuniverse 𝒫 V))

extensionality-extension-type-global-subuniverse :
(U V : extension-type-global-subuniverse 𝒫 l2 X) →
(U = V) ≃ equiv-extension-type-global-subuniverse 𝒫 U V
extensionality-extension-type-global-subuniverse U V =
equiv-eq-extension-type-global-subuniverse U V ,
is-equiv-equiv-eq-extension-type-global-subuniverse U V

eq-equiv-extension-type-global-subuniverse :
(U V : extension-type-global-subuniverse 𝒫 l2 X) →
equiv-extension-type-global-subuniverse 𝒫 U V → U = V
eq-equiv-extension-type-global-subuniverse U V =
map-inv-equiv (extensionality-extension-type-global-subuniverse U V)
```
Loading