-
Notifications
You must be signed in to change notification settings - Fork 9
/
generate_facerender_batch.py
134 lines (111 loc) · 5.69 KB
/
generate_facerender_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import numpy as np
from PIL import Image
from skimage import io, img_as_float32, transform
import torch
import scipy.io as scio
def get_facerender_data(coeff_path, pic_path, first_coeff_path, audio_path,
batch_size, input_yaw_list=None, input_pitch_list=None, input_roll_list=None,
expression_scale=1.0, still_mode=False, preprocess='crop', size=256, facemodel='facevid2vid'):
semantic_radius = 13
video_name = os.path.splitext(os.path.split(coeff_path)[-1])[0]
txt_path = os.path.splitext(coeff_path)[0]
data={}
img1 = Image.open(pic_path)
source_image = np.array(img1)
source_image = img_as_float32(source_image)
source_image = transform.resize(source_image, (size, size, 3))
source_image = source_image.transpose((2, 0, 1))
source_image_ts = torch.FloatTensor(source_image).unsqueeze(0)
source_image_ts = source_image_ts.repeat(batch_size, 1, 1, 1)
data['source_image'] = source_image_ts
source_semantics_dict = scio.loadmat(first_coeff_path)
generated_dict = scio.loadmat(coeff_path)
if 'full' not in preprocess.lower() and facemodel != 'pirender':
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
generated_3dmm = generated_dict['coeff_3dmm'][:,:70]
else:
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:73] #1 70
generated_3dmm = generated_dict['coeff_3dmm'][:,:70]
source_semantics_new = transform_semantic_1(source_semantics, semantic_radius)
source_semantics_ts = torch.FloatTensor(source_semantics_new).unsqueeze(0)
source_semantics_ts = source_semantics_ts.repeat(batch_size, 1, 1)
data['source_semantics'] = source_semantics_ts
# target
generated_3dmm[:, :64] = generated_3dmm[:, :64] * expression_scale
if 'full' in preprocess.lower() or facemodel == 'pirender':
generated_3dmm = np.concatenate([generated_3dmm, np.repeat(source_semantics[:,70:], generated_3dmm.shape[0], axis=0)], axis=1)
if still_mode:
generated_3dmm[:, 64:] = np.repeat(source_semantics[:, 64:], generated_3dmm.shape[0], axis=0)
with open(txt_path '.txt', 'w') as f:
for coeff in generated_3dmm:
for i in coeff:
f.write(str(i)[:7] ' ' '\t')
f.write('\n')
target_semantics_list = []
frame_num = generated_3dmm.shape[0]
data['frame_num'] = frame_num
for frame_idx in range(frame_num):
target_semantics = transform_semantic_target(generated_3dmm, frame_idx, semantic_radius)
target_semantics_list.append(target_semantics)
remainder = frame_num�tch_size
if remainder!=0:
for _ in range(batch_size-remainder):
target_semantics_list.append(target_semantics)
target_semantics_np = np.array(target_semantics_list) #frame_num 70 semantic_radius*2 1
target_semantics_np = target_semantics_np.reshape(batch_size, -1, target_semantics_np.shape[-2], target_semantics_np.shape[-1])
data['target_semantics_list'] = torch.FloatTensor(target_semantics_np)
data['video_name'] = video_name
data['audio_path'] = audio_path
if input_yaw_list is not None:
yaw_c_seq = gen_camera_pose(input_yaw_list, frame_num, batch_size)
data['yaw_c_seq'] = torch.FloatTensor(yaw_c_seq)
if input_pitch_list is not None:
pitch_c_seq = gen_camera_pose(input_pitch_list, frame_num, batch_size)
data['pitch_c_seq'] = torch.FloatTensor(pitch_c_seq)
if input_roll_list is not None:
roll_c_seq = gen_camera_pose(input_roll_list, frame_num, batch_size)
data['roll_c_seq'] = torch.FloatTensor(roll_c_seq)
return data
def transform_semantic_1(semantic, semantic_radius):
semantic_list = [semantic for i in range(0, semantic_radius*2 1)]
coeff_3dmm = np.concatenate(semantic_list, 0)
return coeff_3dmm.transpose(1,0)
def transform_semantic_target(coeff_3dmm, frame_index, semantic_radius):
num_frames = coeff_3dmm.shape[0]
seq = list(range(frame_index- semantic_radius, frame_index semantic_radius 1))
index = [ min(max(item, 0), num_frames-1) for item in seq ]
coeff_3dmm_g = coeff_3dmm[index, :]
return coeff_3dmm_g.transpose(1,0)
def gen_camera_pose(camera_degree_list, frame_num, batch_size):
new_degree_list = []
if len(camera_degree_list) == 1:
for _ in range(frame_num):
new_degree_list.append(camera_degree_list[0])
remainder = frame_num�tch_size
if remainder!=0:
for _ in range(batch_size-remainder):
new_degree_list.append(new_degree_list[-1])
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
return new_degree_np
degree_sum = 0.
for i, degree in enumerate(camera_degree_list[1:]):
degree_sum = abs(degree-camera_degree_list[i])
degree_per_frame = degree_sum/(frame_num-1)
for i, degree in enumerate(camera_degree_list[1:]):
degree_last = camera_degree_list[i]
degree_step = degree_per_frame * abs(degree-degree_last)/(degree-degree_last)
new_degree_list = new_degree_list list(np.arange(degree_last, degree, degree_step))
if len(new_degree_list) > frame_num:
new_degree_list = new_degree_list[:frame_num]
elif len(new_degree_list) < frame_num:
for _ in range(frame_num-len(new_degree_list)):
new_degree_list.append(new_degree_list[-1])
print(len(new_degree_list))
print(frame_num)
remainder = frame_num�tch_size
if remainder!=0:
for _ in range(batch_size-remainder):
new_degree_list.append(new_degree_list[-1])
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
return new_degree_np