http://www.gorillatoolkit.org/pkg/mux
Package gorilla/mux
implements a request router and dispatcher for matching incoming requests to
their respective handler.
The name mux stands for "HTTP request multiplexer". Like the standard http.ServeMux
, mux.Router
matches incoming requests against a list of registered routes and calls a handler for the route that matches the URL or other conditions. The main features are:
- It implements the
http.Handler
interface so it is compatible with the standardhttp.ServeMux
. - Requests can be matched based on URL host, path, path prefix, schemes, header and query values, HTTP methods or using custom matchers.
- URL hosts and paths can have variables with an optional regular expression.
- Registered URLs can be built, or "reversed", which helps maintaining references to resources.
- Routes can be used as subrouters: nested routes are only tested if the parent route matches. This is useful to define groups of routes that share common conditions like a host, a path prefix or other repeated attributes. As a bonus, this optimizes request matching.
With a correctly configured Go toolchain:
go get -u github.com/gorilla/mux
Let's start registering a couple of URL paths and handlers:
func main() {
r := mux.NewRouter()
r.HandleFunc("/", HomeHandler)
r.HandleFunc("/products", ProductsHandler)
r.HandleFunc("/articles", ArticlesHandler)
http.Handle("/", r)
}
Here we register three routes mapping URL paths to handlers. This is equivalent to how http.HandleFunc()
works: if an incoming request URL matches one of the paths, the corresponding handler is called passing (http.ResponseWriter
, *http.Request
) as parameters.
Paths can have variables. They are defined using the format {name}
or {name:pattern}
. If a regular expression pattern is not defined, the matched variable will be anything until the next slash. For example:
r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9] }", ArticleHandler)
The names are used to create a map of route variables which can be retrieved calling mux.Vars()
:
func ArticlesCategoryHandler(w http.ResponseWriter, r *http.Request) {
vars := mux.Vars(r)
w.WriteHeader(http.StatusOK)
fmt.Fprintf(w, "Category: %v\n", vars["category"])
}
And this is all you need to know about the basic usage. More advanced options are explained below.
Routes can also be restricted to a domain or subdomain. Just define a host pattern to be matched. They can also have variables:
r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z] }.domain.com")
There are several other matchers that can be added. To match path prefixes:
r.PathPrefix("/products/")
...or HTTP methods:
r.Methods("GET", "POST")
...or URL schemes:
r.Schemes("https")
...or header values:
r.Headers("X-Requested-With", "XMLHttpRequest")
...or query values:
r.Queries("key", "value")
...or to use a custom matcher function:
r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
return r.ProtoMajor == 0
})
...and finally, it is possible to combine several matchers in a single route:
r.HandleFunc("/products", ProductsHandler).
Host("www.example.com").
Methods("GET").
Schemes("http")
Setting the same matching conditions again and again can be boring, so we have a way to group several routes that share the same requirements. We call it "subrouting".
For example, let's say we have several URLs that should only match when the host is www.example.com
. Create a route for that host and get a "subrouter" from it:
r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()
Then register routes in the subrouter:
s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9] }", ArticleHandler)
The three URL paths we registered above will only be tested if the domain is www.example.com
, because the subrouter is tested first. This is not only convenient, but also optimizes request matching. You can create subrouters combining any attribute matchers accepted by a route.
Subrouters can be used to create domain or path "namespaces": you define subrouters in a central place and then parts of the app can register its paths relatively to a given subrouter.
There's one more thing about subroutes. When a subrouter has a path prefix, the inner routes use it as base for their paths:
r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)
Routes on a mux can be listed using the Router.Walk method—useful for generating documentation:
package main
import (
"fmt"
"net/http"
"strings"
"github.com/gorilla/mux"
)
func handler(w http.ResponseWriter, r *http.Request) {
return
}
func main() {
r := mux.NewRouter()
r.HandleFunc("/", handler)
r.HandleFunc("/products", handler).Methods("POST")
r.HandleFunc("/articles", handler).Methods("GET")
r.HandleFunc("/articles/{id}", handler).Methods("GET", "PUT")
r.Walk(func(route *mux.Route, router *mux.Router, ancestors []*mux.Route) error {
t, err := route.GetPathTemplate()
if err != nil {
return err
}
// p will contain regular expression is compatible with regular expression in Perl, Python, and other languages.
// for instance the regular expression for path '/articles/{id}' will be '^/articles/(?P<v0>[^/] )$'
p, err := route.GetPathRegexp()
if err != nil {
return err
}
m, err := route.GetMethods()
if err != nil {
return err
}
fmt.Println(strings.Join(m, ","), t, p)
return nil
})
http.Handle("/", r)
}
Note that the path provided to PathPrefix()
represents a "wildcard": calling
PathPrefix("/static/").Handler(...)
means that the handler will be passed any
request that matches "/static/*". This makes it easy to serve static files with mux:
func main() {
var dir string
flag.StringVar(&dir, "dir", ".", "the directory to serve files from. Defaults to the current dir")
flag.Parse()
r := mux.NewRouter()
// This will serve files under http://localhost:8000/static/<filename>
r.PathPrefix("/static/").Handler(http.StripPrefix("/static/", http.FileServer(http.Dir(dir))))
srv := &http.Server{
Handler: r,
Addr: "127.0.0.1:8000",
// Good practice: enforce timeouts for servers you create!
WriteTimeout: 15 * time.Second,
ReadTimeout: 15 * time.Second,
}
log.Fatal(srv.ListenAndServe())
}
Now let's see how to build registered URLs.
Routes can be named. All routes that define a name can have their URLs built, or "reversed". We define a name calling Name()
on a route. For example:
r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9] }", ArticleHandler).
Name("article")
To build a URL, get the route and call the URL()
method, passing a sequence of key/value pairs for the route variables. For the previous route, we would do:
url, err := r.Get("article").URL("category", "technology", "id", "42")
...and the result will be a url.URL
with the following path:
"/articles/technology/42"
This also works for host variables:
r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
Path("/articles/{category}/{id:[0-9] }").
HandlerFunc(ArticleHandler).
Name("article")
// url.String() will be "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
All variables defined in the route are required, and their values must conform to the corresponding patterns. These requirements guarantee that a generated URL will always match a registered route -- the only exception is for explicitly defined "build-only" routes which never match.
Regex support also exists for matching Headers within a route. For example, we could do:
r.HeadersRegexp("Content-Type", "application/(text|json)")
...and the route will match both requests with a Content-Type of application/json
as well as application/text
There's also a way to build only the URL host or path for a route: use the methods URLHost()
or URLPath()
instead. For the previous route, we would do:
// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")
// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")
And if you use subrouters, host and path defined separately can be built as well:
r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9] }").
HandlerFunc(ArticleHandler).
Name("article")
// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
The Walk
function on mux.Router
can be used to visit all of the routes that are registered on a router. For example,
the following prints all of the registered routes:
r := mux.NewRouter()
r.HandleFunc("/", handler)
r.HandleFunc("/products", handler).Methods("POST")
r.HandleFunc("/articles", handler).Methods("GET")
r.HandleFunc("/articles/{id}", handler).Methods("GET", "PUT")
r.Walk(func(route *mux.Route, router *mux.Router, ancestors []*mux.Route) error {
t, err := route.GetPathTemplate()
if err != nil {
return err
}
// p will contain a regular expression that is compatible with regular expressions in Perl, Python, and other languages.
// For example, the regular expression for path '/articles/{id}' will be '^/articles/(?P<v0>[^/] )$'.
p, err := route.GetPathRegexp()
if err != nil {
return err
}
m, err := route.GetMethods()
if err != nil {
return err
}
fmt.Println(strings.Join(m, ","), t, p)
return nil
})
Here's a complete, runnable example of a small mux
based server:
package main
import (
"net/http"
"log"
"github.com/gorilla/mux"
)
func YourHandler(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Gorilla!\n"))
}
func main() {
r := mux.NewRouter()
// Routes consist of a path and a handler function.
r.HandleFunc("/", YourHandler)
// Bind to a port and pass our router in
log.Fatal(http.ListenAndServe(":8000", r))
}
BSD licensed. See the LICENSE file for details.