Skip to content

[NIVT Workshop @ ICCV 2023] SeMask: Semantically Masked Transformers for Semantic Segmentation

License

Notifications You must be signed in to change notification settings

Picsart-AI-Research/SeMask-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SeMask: Semantically Masked Transformers

Framework: PyTorch License

Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi

[arXiv] [pdf] [BibTeX]

This repo contains the code for our paper SeMask: Semantically Masked Transformers for Semantic Segmentation.

semask

Contents

  1. Results
  2. Setup Instructions
  3. Citing SeMask

1. Results

Note: † denotes the backbones were pretrained on ImageNet-22k and 384x384 resolution images.

ADE20K

Method Backbone Crop Size mIoU mIoU (ms flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 42.06 43.36 35M config checkpoint
SeMask-S FPN SeMask Swin-S 512x512 45.92 47.63 56M config checkpoint
SeMask-B FPN SeMask Swin-B 512x512 49.35 50.98 96M config checkpoint
SeMask-L FPN SeMask Swin-L 640x640 51.89 53.52 211M config checkpoint
SeMask-L MaskFormer SeMask Swin-L 640x640 54.75 56.15 219M config checkpoint
SeMask-L Mask2Former SeMask Swin-L 640x640 56.41 57.52 222M config checkpoint
SeMask-L Mask2Former FaPN SeMask Swin-L 640x640 56.88 58.25 227M config checkpoint
SeMask-L Mask2Former MSFaPN SeMask Swin-L 640x640 57.00 58.25 224M config checkpoint

Cityscapes

Method Backbone Crop Size mIoU mIoU (ms flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 768x768 74.92 76.56 34M config checkpoint
SeMask-S FPN SeMask Swin-S 768x768 77.13 79.14 56M config checkpoint
SeMask-B FPN SeMask Swin-B 768x768 77.70 79.73 96M config checkpoint
SeMask-L FPN SeMask Swin-L 768x768 78.53 80.39 211M config checkpoint
SeMask-L Mask2Former SeMask Swin-L 512x1024 83.97 84.98 222M config checkpoint

COCO-Stuff 10k

Method Backbone Crop Size mIoU mIoU (ms flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 37.53 38.88 35M config checkpoint
SeMask-S FPN SeMask Swin-S 512x512 40.72 42.27 56M config checkpoint
SeMask-B FPN SeMask Swin-B 512x512 44.63 46.30 96M config checkpoint
SeMask-L FPN SeMask Swin-L 640x640 47.47 48.54 211M config checkpoint

demo

2. Setup Instructions

We provide the codebase with SeMask incorporated into various models. Please check the setup instructions inside the corresponding folders:

3. Citing SeMask

@inproceedings{jain2023semask,
title={SeMask: Semantically Masked Transformers for Semantic Segmentation}, 
author={Jitesh Jain and Anukriti Singh and Nikita Orlov and Zilong Huang and Jiachen Li and Steven Walton and Humphrey Shi},
year={2023},
booktitle={ICCV Workshops 2023},
}

Acknowledgements

Code is based heavily on the following repositories: Swin-Transformer-Semantic-Segmentation, Mask2Former, MaskFormer and FaPN-full.

Releases

No releases published

Packages

No packages published