-
Notifications
You must be signed in to change notification settings - Fork 109
/
dgemm-cuda.jl
140 lines (120 loc) · 4.84 KB
/
dgemm-cuda.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#
# Copyright (c) 2015, Intel Corporation
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Intel Corporation nor the names of its
# contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#*******************************************************************
#
# NAME: dgemm
#
# PURPOSE: This program tests the efficiency with which a dense matrix
# dense multiplication is carried out
#
# USAGE: The program takes as input the matrix order,
# the number of times the matrix-matrix multiplication
# is carried out.
#
# <progname> <# iterations> <matrix order>
#
# The output consists of diagnostics to make sure the
# algorithm worked, and of timing statistics.
#
# HISTORY: Written by Rob Van der Wijngaart, February 2009.
# Converted to Python by Jeff Hammond, February 2016.
# Fixed timing err, Ave std_dev, more pythonic, Tim Mattson May 2021
# Converted to Julia by Jeff Hammond, October, 2024.
# Improved by Carsten Bauer, November 2024.
# CUDA version by Carsten Bauer, November 2024.
#
# *******************************************************************
using LinearAlgebra
using CUDA
function do_dgemm!(C, A, B, order)
mul!(C, A, B, 1.0, 1.0)
end
function do_verify(C, order, iterations)
reference = 0.25 * order^3 * (order-1)^2 * (iterations 1)
checksum = sum(C)
return checksum - reference
end
function (@main)(args)
# ********************************************************************
# read and test input parameters
# ********************************************************************
println("Parallel Research Kernels version")
println("Julia Dense matrix-matrix multiplication: C = A x B")
if length(args) != 2
println("argument count = ", length(args))
println("Usage: julia dgemm.jl <# iterations> <matrix order>")
exit(1)
end
argv = map(x->tryparse(Int64,x),args)
# iterations
iterations = argv[1]
if isnothing(iterations) || iterations < 1
println("ERROR: iterations must be an integer >= 1")
exit(2)
end
# matrix order
order = argv[2]
if isnothing(order) || order < 1
println("ERROR: length must be an integer >= 1")
exit(3)
end
println("BLAS/LAPACK = ", "CUBLAS")
println("Number of iterations = ", iterations)
println("Matrix order = ", order)
# ********************************************************************
# ** Allocate space for the input and transpose matrix
# ********************************************************************
A = CuArray([float(j) for j in 0:order-1, j in 0:order-1])
B = copy(A)
C = CUDA.zeros(Float64, order,order)
t0 = time_ns()
for k in 0:iterations
k == 1 && (t0 = time_ns())
do_dgemm!(C, A, B, order)
end
t1 = time_ns()
dgemm_time = (t1 - t0) * 1.e-9
# ********************************************************************
# ** Analyze and output results.
# ********************************************************************
abserr = do_verify(B, order, iterations)
epsilon = 1.e-8
nflops = 2 * order^3
if abserr < epsilon
println("Solution validates")
avgtime = dgemm_time/iterations
println("Rate (MF/s): ",1.e-6*nflops/avgtime, " Avg time (s): ", avgtime)
else
println("error ",abserr, " exceeds threshold ",epsilon)
println("ERROR: solution did not validate")
exit(1)
end
end