-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain.py
171 lines (124 loc) · 5.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import model
import numpy as np
class FlowWarper(nn.Module):
def __init__(self, w, h):
super(FlowWarper, self).__init__()
x = np.arange(0,w)
y = np.arange(0,h)
gx, gy = np.meshgrid(x,y)
self.w = w
self.h = h
self.grid_x = torch.autograd.Variable(torch.Tensor(gx), requires_grad=False).cuda()
self.grid_y = torch.autograd.Variable(torch.Tensor(gy), requires_grad=False).cuda()
def forward(self, img, uv):
u = uv[:,0,:,:]
v = uv[:,1,:,:]
X = self.grid_x.unsqueeze(0).expand_as(u) + u
Y = self.grid_y.unsqueeze(0).expand_as(v) + v
X = 2*(X/self.w - 0.5)
Y = 2*(Y/self.h - 0.5)
grid_tf = torch.stack((X,Y), dim=3)
img_tf = torch.nn.functional.grid_sample(img, grid_tf)
return img_tf
def train_val():
#cudnn.benchmark = True
flowModel = model.UNet_flow().cuda()
interpolationModel = model.UNet_refine().cuda()
### ResNet for Perceptual Loss
res50_model = torchvision.models.resnet18(pretrained=True)
res50_conv = nn.Sequential(*list(res50_model.children())[:-2])
res50_conv.cuda()
for param in res50_conv.parameters():
param.requires_grad = False
#dataFeeder = dataloader.expansionLoader('/home/user/data/nfs')
dataFeeder = dataloader.expansionLoader('/home/user/data/original_high_fps_videos')
train_loader = torch.utils.data.DataLoader(dataFeeder, batch_size=2,
shuffle=True, num_workers=1,
pin_memory=True)
criterion = nn.L1Loss().cuda()
criterionMSE = nn.MSELoss().cuda()
optimizer = torch.optim.Adam(list(flowModel.parameters()) + list(interpolationModel.parameters()), lr=0.0001)
flowModel.train()
interpolationModel.train()
warper = FlowWarper(352,352)
for epoch in range(5):
for i, (imageList) in enumerate(train_loader):
I0_var = torch.autograd.Variable(imageList[0]).cuda()
I1_var = torch.autograd.Variable(imageList[-1]).cuda()
#torchvision.utils.save_image((I0_var),'samples/'+ str(i+1) +'1.jpg',normalize=True)
#brak
flow_out_var = flowModel(I0_var, I1_var)
F_0_1 = flow_out_var[:,:2,:,:]
F_1_0 = flow_out_var[:,2:,:,:]
loss_vector = []
perceptual_loss_collector = []
warping_loss_collector = []
image_collector = []
for t_ in range(1,8):
t = t_/8
It_var = torch.autograd.Variable(imageList[t_]).cuda()
F_t_0 = -(1-t)*t*F_0_1 + t*t*F_1_0
F_t_1 = (1-t)*(1-t)*F_0_1 - t*(1-t)*(F_1_0)
g_I0_F_t_0 = warper(I0_var, F_t_0)
g_I1_F_t_1 = warper(I1_var, F_t_1)
interp_out_var = interpolationModel(I0_var, I1_var, F_0_1, F_1_0, F_t_0, F_t_1, g_I0_F_t_0, g_I1_F_t_1)
F_t_0_final = interp_out_var[:,:2,:,:] + F_t_0
F_t_1_final = interp_out_var[:,2:4,:,:] + F_t_1
V_t_0 = torch.unsqueeze(interp_out_var[:,4,:,:],1)
V_t_1 = 1 - V_t_0
g_I0_F_t_0_final = warper(I0_var, F_t_0_final)
g_I0_F_t_1_final = warper(I1_var, F_t_1_final)
normalization = (1-t)*V_t_0 + t*V_t_1
interpolated_image_t_pre = (1-t)*V_t_0*g_I0_F_t_0_final + t*V_t_1*g_I0_F_t_1_final
interpolated_image_t = interpolated_image_t_pre / normalization
image_collector.append(interpolated_image_t)
### Reconstruction Loss Collector ###
loss_reconstruction_t = criterion(interpolated_image_t, It_var)
loss_vector.append(loss_reconstruction_t)
### Perceptual Loss Collector ###
feat_pred = res50_conv(interpolated_image_t)
feat_gt = res50_conv(It_var)
loss_perceptual_t = criterionMSE(feat_pred, feat_gt)
perceptual_loss_collector.append(loss_perceptual_t)
### Warping Loss Collector ###
g_I0_F_t_0_i = warper(I0_var, F_t_0)
g_I1_F_t_1_i = warper(I1_var, F_t_1)
loss_warping_t = criterion(g_I0_F_t_0_i, It_var) + criterion(g_I1_F_t_1_i, It_var)
warping_loss_collector.append(loss_warping_t)
### Reconstruction Loss Computation ###
loss_reconstruction = sum(loss_vector)/len(loss_vector)
### Perceptual Loss Computation ###
loss_perceptual = sum(perceptual_loss_collector)/len(perceptual_loss_collector)
### Warping Loss Computation ###
g_I0_F_1_0 = warper(I0_var, F_1_0)
g_I1_F_0_1 = warper(I1_var, F_0_1)
loss_warping = (criterion(g_I0_F_1_0, I1_var) + criterion(g_I1_F_0_1, I0_var)) + sum(warping_loss_collector)/len(warping_loss_collector)
### Smoothness Loss Computation ###
loss_smooth_1_0 = torch.mean(torch.abs(F_1_0[:, :, :, :-1] - F_1_0[:, :, :, 1:])) + torch.mean(torch.abs(F_1_0[:, :, :-1, :] - F_1_0[:, :, 1:, :]))
loss_smooth_0_1 = torch.mean(torch.abs(F_0_1[:, :, :, :-1] - F_0_1[:, :, :, 1:])) + torch.mean(torch.abs(F_0_1[:, :, :-1, :] - F_0_1[:, :, 1:, :]))
loss_smooth = loss_smooth_1_0 + loss_smooth_0_1
### Overall Loss
loss = 0.8*loss_reconstruction + 0.005*loss_perceptual + 0.4*loss_warping + loss_smooth
### Optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
if ((i+1) % 10) == 0:
print("Loss at iteration", i+1, "/", len(train_loader), ":", loss.item())
if ((i+1) % 100) == 0:
torchvision.utils.save_image((I0_var),'samples/'+ str(i+1) +'1.jpg',normalize=True)
for jj,image in enumerate(image_collector):
torchvision.utils.save_image((image),'samples/'+ str(i+1) + str(jj+1)+'.jpg',normalize=True)
torchvision.utils.save_image((I1_var),'samples/'+str(i+1)+'9.jpg',normalize=True)
if __name__ == '__main__':
train_val()