Skip to content

GunhoChoi/Deep-Learning-For-Beginners

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning for beginners

2016년 8월부터 딥러닝공부를 하면서 봤던 강의영상, 동영상, 블로그들의 목록입니다.

What is Deep Learning ?

  1. Deep Learning introduced by Nvidia (https://www.youtube.com/watch?v=C2FS9WVm7j4)
  2. Deep Learrning Roadmap (https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap)
  3. What is deep learning (http://machinelearningmastery.com/what-is-deep-learning/)

Installation

  1. Azure server NV series install (https://docs.microsoft.com/en-us/azure/virtual-machines/linux/n-series-driver-setup)

Libraries

  1. Tensorflow (https://www.tensorflow.org/)
  2. Tensorflow Cookbook (https://github.com/nfmcclure/tensorflow_cookbook)
  3. CNTK (https://github.com/Microsoft/CNTK, https://www.microsoft.com/en-us/research/product/cognitive-toolkit/)
  4. CNTK Tutorial (https://notebooks.azure.com/library/cntkbeta2)
  5. Keras Pretrained Models (https://github.com/fchollet/keras/blob/master/docs/templates/applications.md)
  6. Keras Blog (https://blog.keras.io/index.html)
  7. Python Torch tutorial (https://github.com/yunjey/pytorch-tutorial)
  8. Incredible Pytorch (https://github.com/ritchieng/the-incredible-pytorch)
  9. Caffe2 (https://caffe2.ai/)

Machine Learning Basics

  1. 딥러닝과 관련된 개념들 (https://www.youtube.com/playlist?list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu)
  2. Andrew NG 교수님의 Coursera 강의 (https://www.coursera.org/learn/machine-learning)
  3. Ian goodfellow의 책 (https://github.com/HFTrader/DeepLearningBook)
  4. Numpy-100 Tutorial (https://github.com/rougier/numpy-100)
  5. Numpy tutorial (http://www.dataquest.io/blog/numpy-tutorial-python/?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more)
  6. Kaggle 1st place for 2 years (http://course.fast.ai/lessons/lesson1.html)
  7. 아니 이 많은걸 언제 다 정리하셨대 (https://handong1587.github.io/index.html)
  8. Experiments about ReLU/LeakyReLu/PReLU (https://arxiv.org/pdf/1505.00853.pdf)
  9. Hyperparameter optimization (https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/)
  10. FastAI Linear Algebra (https://github.com/fastai/numerical-linear-algebra)

General Neural Networks

  1. 열한줄로 뉴럴넷 짜보기 (https://iamtrask.github.io/2015/07/12/basic-python-network/)
  2. 한단계 한단계 Back propagation에 대한 친절한 설명 (https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/)
  3. Batch Normalization (https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html)
  4. Gradient Descent Optimization Algorithm 비교 (http://sebastianruder.com/optimizing-gradient-descent/)
  5. Adagrad, Adadelta,RMSProp,Adam (http://prinsphield.github.io/2016/02/04/An Overview on Optimization Algorithms in Deep Learning (II)/)

Convolutional Neural Networks

  1. CNN을 쉽게 이해하도록 도와준 영상 (https://youtu.be/FmpDIaiMIeA, https://brohrer.github.io/how_convolutional_neural_networks_work.html)
  2. 그 유명한 cs231n 강의 (https://www.youtube.com/playlist?list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC)
  3. 그 유명한 cs231n 강의노트 (http://cs231n.github.io/)
  4. 한글로 설명이 잘되어있는 라온피플 블로그 (http://laonple.blog.me/220463627091)
  5. 시각화된 Convolution의 작동 (https://github.com/vdumoulin/conv_arithmetic)
  6. 강의자 Andrej Kaparthy의 볼게 많은 블로그 (http://cs.stanford.edu/people/karpathy/)
  7. 명화의 화풍을 따라 그리는 Neural Style (http://www.anishathalye.com/2015/12/19/an-ai-that-can-mimic-any-artist/, https://github.com/cysmith/neural-style-tf, https://www.youtube.com/watch?v=N14_w2RG1A8)
  8. 레이어별로 뉴런의 Activation 및 반응을 볼 수 있는 자료 (https://github.com/yosinski/deep-visualization-toolbox)
  9. Google Deepdream (https://github.com/google/deepdream)
  10. 2016 No.1 ResNet (https://github.com/KaimingHe/deep-residual-networks)
  11. Transposed Convoultion의 문제점과 해결방안 (http://distill.pub/2016/deconv-checkerboard/)
  12. 자료들이 모여있는 Awesome Deep vision (https://github.com/kjw0612/awesome-deep-vision)
  13. ResNet in Tensorflow (https://github.com/ry/tensorflow-resnet)
  14. ResNet, DenseNet (https://chatbotslife.com/resnets-highwaynets-and-densenets-oh-my-9bb15918ee32#.rbzbvof9l)
  15. Spatial Transformer Network (https://github.com/fxia22/stn.pytorch)
  16. Filtered image after convolution (http://setosa.io/ev/image-kernels/)
  17. Convolution Transposed (https://arxiv.org/pdf/1603.07285.pdf)
  18. LeNet to ResNet (http://slazebni.cs.illinois.edu/spring17/lec01_cnn_architectures.pdf,http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf)
  19. 2017 cs21n (http://cs231n.stanford.edu/)
  20. Convolution function as matrix multiplication (https://nrupatunga.github.io/convolution-2/)
  21. Depth-wise Seperable Convolution (https://www.youtube.com/watch?v=T7o3xvJLuHk)

Detection & Semantic Segmentation

  1. Fully Convolutional Network for Semantic Segmentation (https://github.com/shekkizh/FCN.tensorflow)
  2. Faster R-CNN (https://github.com/rbgirshick/py-faster-rcnn)
  3. Semantic Flow segmentation (https://ps.is.tuebingen.mpg.de/research_projects/semantic-optical-flow, https://ps.is.tuebingen.mpg.de/uploads_file/attachment/attachment/261/semanticflow.pdf)
  4. Image Segmentation (http://warmspringwinds.github.io/tensorflow/tf-slim/2016/12/18/image-segmentation-with-tensorflow-using-cnns-and-conditional-random-fields/)
  5. Localization & Detection gitbook (https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/object_localization_and_detection.html)
  6. Image Processing in classical ways(?)(https://www.giassa.net/?page_id=118)
  7. All about segmentation (https://github.com/mrgloom/Semantic-Segmentation-Evaluation)
  8. Tensorflow Faster R-CNN (https://github.com/endernewton/tf-faster-rcnn)
  9. Deeplab Resnet Tensorflow (https://github.com/DrSleep/tensorflow-deeplab-resnet)
  10. Segmentation Overview (https://meetshah1995.github.io/semantic-segmentation/deep-learning/pytorch/visdom/2017/06/01/semantic-segmentation-over-the-years.html)

Unsupervised Learning

  1. Semi-supervised Learning (http://rinuboney.github.io/2016/01/19/ladder-network.html, https://github.com/CuriousAI/ladder)

Autoencoder

  1. 김범준씨의 Variational Autoencoder의 번역 (http://nolsigan.com/blog/what-is-variational-autoencoder/)
  2. Generating Large Images from Latent Vectors (http://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/, https://arxiv.org/pdf/1512.09300.pdf)
  3. Variational Autoencoder (https://www.youtube.com/watch?v=BiWRaES2WN0&t=991s, http://blog.fastforwardlabs.com/2016/08/12/introducing-variational-autoencoders-in-prose-and.html, https://github.com/kvfrans/variational-autoencoder)

Generative Adversarial Networks

  1. Adversarial Nets papers (https://github.com/zhangqianhui/AdversarialNetsPapers)
  2. Generative Adversarial Networks by OpenAI (https://openai.com/blog/generative-models/)
  3. 김태훈씨의 쉽게 설명한 DCGAN in Tensorflow (http://www.slideshare.net/carpedm20/pycon-korea-2016, https://github.com/carpedm20/DCGAN-tensorflow)
  4. 간단한 GAN 설명과 동영상 예시 (http://keunwoochoi.blogspot.kr/)
  5. 이미지의 빈부분을 채우는 GAN (http://bamos.github.io/2016/08/09/deep-completion/, https://github.com/bamos/dcgan-completion.tensorflow)
  6. 텍스트를 이미지로 바꾸는 GAN text-to-image (https://github.com/reedscot/icml2016)
  7. GAN video generation (http://web.mit.edu/vondrick/tinyvideo/)
  8. DCGAN Tutorial (https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gdxkk32d7)
  9. InfoGAN Tutorial (https://medium.com/emergent-future/learning-interpretable-latent-representations-with-infogan-dd710852db46#.9iaqd4it5)
  10. DiscoGAN in Pytorch (https://github.com/carpedm20/DiscoGAN-pytorch)
  11. Wiseodd GANs (https://github.com/wiseodd/generative-models)
  12. DiscoGAN official (https://github.com/SKTBrain/DiscoGAN)
  13. CycleGAN tutorial (https://hardikbansal.github.io/CycleGANBlog/)

Recurrent Neural Networks

  1. RNN에 대한 친절한 설명 (https://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/)
  2. Andrej Kaparthy RNN의 활용가능성 (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
  3. Image caption generator in Tensorflow (https://github.com/tensorflow/models/tree/master/im2txt)
  4. Awesome RNN (https://github.com/kjw0612/awesome-rnn)
  5. Pytorch RNN (https://github.com/spro/practical-pytorch)
  6. LSTM experiments (http://blog.echen.me/2017/05/30/exploring-lstms/)
  7. Attention Mechanism in RNN (https://www.youtube.com/watch?v=QuvRWevJMZ4)
  8. Stanford CS224d(https://github.com/DSKSD/DeepNLP-models-Pytorch)

NLP

  1. CS224d for NLP (https://youtu.be/Qy0oEkCZkBI?list=PLlJy-eBtNFt4CSVWYqscHDdP58M3zFHIG)
  2. Oxford Deep NLP (https://github.com/oxford-cs-deepnlp-2017/lectures)
  3. Seq2seq TF1.0 code (https://github.com/ematvey/tensorflow-seq2seq-tutorials)
  4. Denny Britz Seq2seq (https://github.com/google/seq2seq)
  5. Pytorch for NLP tutorial (https://github.com/rguthrie3/DeepLearningForNLPInPytorch)
  6. Practical Pytorch for NLP (https://github.com/spro/practical-pytorch)

Word2vec

  1. Word2vec이 필요한 이유와 코드 공식사이트 번역본 (http://khanrc.tistory.com/entry/TensorFlow-6-word2vec-Theory, http://khanrc.tistory.com/entry/TensorFlow-7-word2vec-Implementation)
  2. Chris Mccormick의 Word2vec 설명 (http://mccormickml.com/tutorials/)
  3. 한국어와 NLTK, Gensim에 대한 박은정씨의 발표 (https://www.lucypark.kr/slides/2015-pyconkr/#1)
  4. Genism tutorial (https://radimrehurek.com/gensim/models/word2vec.html)
  5. Kaggle word2vec tutorial (https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-1-for-beginners-bag-of-words)
  6. Word2vec의 역사(http://sebastianruder.com/word-embeddings-1/)

Reinforcement Learning

  1. Simple Reinforcement Learning with Tensorflow by Arthur Juliani (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0#.hegtvglmg)
  2. Udacity Self Driving Car Simulator (https://github.com/udacity/self-driving-car-sim)
  3. UC Berkeley RL (http://rll.berkeley.edu/deeprlcourse/)
  4. Denny Britz RL (http://www.wildml.com/2016/10/learning-reinforcement-learning/, https://github.com/dennybritz/reinforcement-learning)
  5. RL Derivatives (http://www.alexirpan.com/rl-derivations/)

Visualization

  1. t-SNE (https://www.analyticsvidhya.com/blog/2017/01/t-sne-implementation-r-python/, http://distill.pub/2016/misread-tsne/)
  2. t-SNE 저자 설명 (https://www.youtube.com/watch?v=EMD106bB2vY)
  3. MNIST 시각화 (http://colah.github.io/posts/2014-10-Visualizing-MNIST/)
  4. Tensorboard 예시 (https://github.com/normanheckscher/mnist-tensorboard-embeddings)
  5. How to use t-SNE effectively (http://distill.pub/2016/misread-tsne/)
  6. CAM:Class Activation Map (http://cnnlocalization.csail.mit.edu/)
  7. CAM:Class Activation Map 한글설명 (http://tmmse.xyz/2016/04/10/object-localization-with-weakly-supervised-learning/)
  8. Grad-CAM Pytorch(https://github.com/jacobgil/pytorch-grad-cam)
  9. Grad-CAM Visualization(https://ramprs.github.io/2017/01/21/Grad-CAM-Making-Off-the-Shelf-Deep-Models-Transparent-through-Visual-Explanations.html)
  10. Optimizer Visualization(https://github.com/wassname/viz_torch_optim)

Data Augmentation

  1. Data Augmentation with Keras api (http://machinelearningmastery.com/image-augmentation-deep-learning-keras/)
  2. Winner of Galaxy zoo (http://benanne.github.io/2014/04/05/galaxy-zoo.html)
  3. Elastic Deformation (https://gist.github.com/chsasank/4d8f68caf01f041a6453e67fb30f8f5a)
  4. Elastic Deformation2 (https://www.kaggle.com/bguberfain/ultrasound-nerve-segmentation/elastic-transform-for-data-augmentation)
  5. Image Data Augmentations (https://github.com/aleju/imgaug)
  6. Scipy Lectures (http://www.scipy-lectures.org/index.html#)

Ensemble

  1. Snapshot Ensembles: Train 1, get M for free (https://arxiv.org/abs/1704.00109)

Attention Classification

  1. Residual Attention Network for Image Classification (http://arxiv.org/abs/1704.06904)
  2. Learn To Pay Attention (http://arxiv.org/abs/1804.02391)
  3. Tell Me Where to Look: Guided Attention Inference Network (https://arxiv.org/abs/1802.10171)

Blogs & Gist

  1. Fast Forward Labs (http://blog.fastforwardlabs.com/)
  2. Variational Autoencoder (http://oduerr.github.io/talks/)
  3. Google Experiments (https://aiexperiments.withgoogle.com/)
  4. Deep learning 2016 summary(https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/)
  5. Brandon Amos Blog (https://bamos.github.io/)
  6. Hvass_lab_tutorials (https://github.com/Hvass-Labs/TensorFlow-Tutorials)
  7. Tensorflow Queue and Threads (https://blog.metaflow.fr/tensorflow-how-to-optimise-your-input-pipeline-with-queues-and-multi-threading-e7c3874157e0#.fbfqfygsm)
  8. How to read images using tf.queue (https://gist.github.com/eerwitt/518b0c9564e500b4b50f)
  9. Sungjoon choi's blog (http://enginius.tistory.com/)
  10. Openresearch.ai(http://openresearch.ai/)
  11. Why Denoising?(https://thecuriousaicompany.com/another-test-learning-by-denoising-part-1-what-and-why-of-denoising/)

Awesome Series

  1. Awesome2vec (https://github.com/MaxwellRebo/awesome-2vec)
  2. Awesome Bayesian Deep Learning (https://github.com/robi56/awesome-bayesian-deep-learning)

Mathematics for Deep Learning

  1. Essence of Linear Algebra (https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab)
  2. 공돌이의 수학정리노트 (https://wikidocs.net/book/563)
  3. Brilliant.org (https://brilliant.org/)
  4. Cross Entropy Loss & KL divergence (http://rdipietro.github.io/friendly-intro-to-cross-entropy-loss/)
  5. PRML by Bishop in Korean (http://norman3.github.io/prml/)
  6. Mathematical Tour in Python (http://www.numerical-tours.com/python/)
  7. Statistical Distributions (http://hamelg.blogspot.kr/2015/11/python-for-data-analysis-part-22.html)
  8. PRML algorithms implemented in Python (https://github.com/ctgk/PRML)
  9. Bloomberg Foundation of Machine Learning (https://bloomberg.github.io/foml/#lectures)