The Essence of XML

Jérome Siméon
Bell Laboratories

simeon@research.bell-labs.com

Abstract

The World-Wide Web Consortium (W3C) promotes XML
and related standards, including XML Schema, XQuery, and
XPath. This paper describes a formalization XML Schema.
A formal semantics based on these ideas is part of the offi-
cial XQuery and XPath specification, one of the first uses of
formal methods by a standards body. XML Schema features
both named and structural types, with structure based on
tree grammars. While structural types and matching have
been studied in other work (notably XDuce, Relax NG, and
a previous formalization of XML Schema), this is the first
work to study the relation between named types and struc-
tural types, and the relation between matching and valida-
tion.

1 Introduction

What’s in a name? A Montague and a Capulet possess
the same structure, and some would argue that is all that
matters.

Traditionally, there are two approaches to type systems,
named and structural. The named approach is prevalent
in most widely-used programming languages, including For-
tran, Cobol, Algol, Pascal, C, Modula, Java, and others.
The structural approach is prevalent in most theories of
types, including theories of record and object types devised
by Reynolds, Wand, Abadi and Cardelli, Kim, and others
[9, 1, 15].

As a simple example of the distinction between named
and structural typing, consider the following type declara-
tions.

type Feet = Integer
type Miles = Integer

In a language with named typing, this creates two new types,
and one cannot pass a parameter of type Feet where a pa-
rameter of type Miles is expected. They are different types
because they have different names. In a language with struc-
tural typing, both Feet and Miles are synonyms for the type
Integer. They are the same type because they have the same
structure.

(Astronauts may prefer named typing. In a 1985 test
for the Strategic Defense Initiative, a laser aimed from an
observatory in Hawaii was to be bounced off a mirror on
the space shuttle. An astronaut entered the height of the
laser and the shuttle rolled over. The problem is that the
astronaut entered a height of 10,023 feet (below the shuttle),

Philip Wadler
Avaya Labs
wadler@avaya.com

which the software interpreted as 10,023 miles (above the
shuttle), hence the roll. [13].)

The dichotomy between names and structures is not
quite so stark as at first it might appear. Many languages
use combinations of named and structural typing. For in-
stance, in ML record types are purely structural, but two
types declared with “datatype” are distinct, even if they
have the same structure. Further, relations between names
always imply corresponding relations between structures.
For instance, in Java if one class is declared to extend an-
other then the first class always has a structure that extends
the second. Conversely, structural relations depend upon
names. For instance, names are used to identify the fields
of a record.

Types and languages for XML. As types spread to
new areas of computing, so too does the feud between names
and structures. A case in point is XML, a standard for
describing documents promulgated by the World-Wide Web
Consortium (W3C) [2].

There are a number of type systems for XML, including;:
DTDs, part of the original W3C recommendation defining
XML [2]; XML Schema, a W3C recommendation which su-
persedes DTDs [18]; Relax NG, an Oasis standard [6]; Re-
lax [12] and TREX [5], two ancestors of Relax NG; and the
type systems of XDuce [10] and YATL [7]. All of these take
a structural approach to typing, with the exception of XML
Schema, which takes a named approach, and the possible
exception of DTDs, which are so restricted that the named
and structural approaches might be considered to coincide.

A type system without a programming language is like
Juliet without Romeo — unable to survive alone. The
W3C is responsible for three programming languages con-
nected with XML: XSLT, a language for stylesheets [4, 11];
XQuery, an analogue of SQL for XML data [20]; and XPath,
the common core of XSLT and XQuery, which is jointly
managed by the working groups responsible for the other
two languages [19]. All three of these are functional lan-
guages. XSLT 1.0 and XPath 1.0 became recommendations
in November 1999 — they are untyped. XML Schema 1.0
became a recommendation in May 2001. XSLT 2.0, XQuery
1.0, and XPath 2.0 are currently being designed — they have
type systems based on XML Schema.

This paper presents a formalization of XML Schema, de-
veloped in conjunction with the XQuery and XPath working
groups. The paper presents a simplified version, treating the
essential constructs. The full version is being developed as
part of the XQuery and XPath Formal Semantics [21], one of

the first industrial specifications to exploit formal methods.
The full version treats not just XML Schema, but also the
dynamic and static semantics of the XQuery and XPath.

(As of this writing, the draft of the XQuery Formal Se-
mantics that incorporates named typing has not yet been
approved for publication by the XQuery working group. Ap-
proval should be granted within the next month or two.)

XQuery has both a specification in prose [20] and a for-
mal semantics [21], each with parallel structure. Formal
methods are particularly helpful for typing — the only com-
plete description of the static type system of XQuery and
XPath is in the formal specification. However, keeping two
specifications in sync has not always been easy.

The act of preparing the formal semantics has uncovered
a number of errors or omissions in the prose specification.
In particular, developing the material on the formal seman-
tics of named typing led to the formulation of ten issues for
consideration by the XQuery working group, each dealing
with a point that was omitted in the prose specification of
XQuery [22]

An earlier formal specification of XML Schema [3] was
influenced by XDuce [10]; it ignored the named aspects of
Schema and took a purely structural approach. The spec-
ification of Relax NG [6] also uses formal methods, also is
purely structural, and was influenced by the earlier work on
XML Schema [3].

Matching and validation. Types in XML differ in
some ways from types as used elsewhere in computing. Tra-
ditionally, a value matches a type — given a value and a
type, either the value belongs to the type or it does not. In
XML, a value validates against a type — given an (external)
value and a type, validation produces an (internal) value or
it fails.
For instance, consider the following XML Schema.

<xs:simpleType name=""feet" >
<xs:restriction base="xs:integer” />

</xs:simpleType>

<xs:element name="height" type=""feet" />

In our type system, this is written as follows.

define type feet restricts xs:integer
define element height of type feet

Now consider the following XML document.
<height>10023</height>
In our model, before validation this is represented as follows.

<height>10023</height>
=
element height { "10023" }

And after validation it is represent as follows.

validate as element height { <height>10023</height> }
=
element height of type feet { 10023 }

Validation has annotated the element with its type, and
converted the text "10023" into the corresponding integer
number 10023.

Our model provides both validation and matching. Val-
idation attaches types to XML data. Unvalidated data may
not match against a type. The following does not hold.

element height { "10023" }
matches
element height

After validation, matching succeeds. The following does
hold.

element height of type feet { 10023 }
matches
element height

The inverse of validation is type erasure.

element height of type feet { 10023 }
erases to
element height { "10023" }

The following theorem characterizes validation in terms
of matching and erasure.

Theorem 1 We have that
validate as Type { UntypedValue } = Value

if and only if
Value matches Type

and
Value erases to Untyped Value.

Perhaps this theorem looks obvious, but if so let us assure
you that it was not obvious to us when we began. It took
some time to come to this formulation, and some tricky ad-
justments were required to ensure that it holds.

One trick is that we model validation and erasure by re-
lations, not functions. Naively, one might expect validation
to be a partial function and erasure to be a function. That
is, for a given type each untyped value validates to yield at
most one typed value, and each typed values erases to one
untyped value. One subtlety of the system presented here
is that validation and erasure are modeled by relations. For
example, the strings "7" and "007" both validate to yield
the integer 7, and hence we also have that the integer erases
to yield either string.

Relation of our model to Schema. Schema is a large
and complex standard. In this paper, we attempt to model
only the most essential features. These include: simple types
and complex types; named and anonymous types; global
and local elements; atomic, list, and union simple types;
and derivation by restriction and by extension. We model
only two primitive datatypes, xs:integer and xs:string, while
Schema has nineteen primitive datatypes.

Many features of Schema that are omitted here are dealt
with in the formal semantics for XQuery [21]. These in-
clude: namespaces; attributes; all groups (interleaving); text
nodes; mixed content; substitution groups; xsi:nil attributes;
and xsi:type attributes. There are other features of Schema
that are not yet dealt with in the full formal semantics, but
which we hope to model in future. These include: abstract
types; default and fixed values; skip, lax, and strict wild-
cards; and facets of simple types.

Schema is normally written in an XML notation, but
here we use a notation that is more readable and compact.
The mapping of XML notation into our notation is described
in the XQuery formal semantics.

There are a few aspects in which our treatment diverges
from Schema. First, we permit ambiguous content mod-
els, while Schema does not. We do this because it makes
our model simpler, and because ambiguity is important to
support type checking, as discussed in Section 8. Second,
we permit one type to be a restriction of another whenever
any value that matches against the first type also matches
against the second, while Schema imposes ad hoc syntac-
tic constraints. Again, we do this because it makes our
model simpler, and because our more general model better
supports type checking. Third, we only support the occur-
rence operators 7, +, and *, while Schema supports arbitrary
counts for minimum and maximum occurrences. This is be-
cause arbitrary counts may lead to a blow-up in the size of
the finite-state automata we use to check when one type is
included in another.

Shortcomings of XML and Schema. Our aim is to
model XML and Schema as they exist — we do not claim
that these are the best possible designs. Indeed, we would
argue that XML and Schema have several shortcomings.

First, we would argue that a data representation should
explicitly distinguish, say, integers from strings, rather than
to infer which is which by validation against a Schema. (This
is one of the many ways in which Lisp S-expressions are
superior to XML.)

Second, while derivation by extension in Schema super-
ficially resembles subclassing in object-oriented program-
ming, in fact there are profound differences. In languages
such as Java, one can typecheck code for a class without
knowing all subclasses of that class (this supports separate
compilation). But in XML Schema, one cannot validate
against a type without knowing all types that derive by ex-
tension from that type (and hence separate compilation is
problematic).

Nonetheless, XML and Schema are widely used stan-
dards, and there is value in modeling these standards. In
particular, such models may: (i) improve our understand-
ing of exactly what is mandated by the standard, (ii) help
implementors create conforming implementations, and (iii)
suggest how to improve the standards.

Related publications. A preliminary version of this
paper was delivered as an invited talk at FLOPS 2002 [17].
This version has revised material in Sections 1, 4, 6, and 7,
entirely new material in Sections 9 and 10, and numerous
improvements throughout.

Organization. The remainder of this paper is organized
as follows. Section 2 introduces XML Schema by example.
Section 3 describes values and types. Section 4 describes
four ancillary judgements. Section 5 describes matching.
Section 6 describes erasure. Section 7 describes validation.
Section 8 discusses ambiguity and the validation theorem.
Section 9 describes subtyping and constraints on sensible
types. Section 10 returns to the relation between names
and structures, and describes an optimization theorem for
matching.

2 XML Schema by example

XML Schema supports a wide range of features. These in-
clude simple types and complex types, anonymous types,

global and local declarations, derivation by restriction, and
derivation by extension.

Simple and complex types. Here are declarations for
two elements of simple type, one element with a complex
type, and one complex type.

define element title of type xs:string
define element author of type xs:string
define element paper of type paperType
define type paperType {

element title ,

element author +

}

Schema specifies nineteen primitive simple type types, in-
cluding xs:string and xs:integer.

A type declaration associates a name and a structure.
The structure of a complex type is a regular expression over
elements. As usual, , denotes sequence, | denotes alterna-
tion, ? denotes an optional occurrence, + denotes one or
more occurrences, and * denotes zero or more occurrences.

Validating annotates each element with its type.

validate as paper {
<paper>
<title>The Essence of Algol</title>
<author>John Reynolds</author>
</paper>
}
=
element paper of type paperType {
element title of type string { " The Essence of Algol” },
element author of type string { "John Reynolds” }
}

Anonymous types. Instead of naming a type, it can
defined in place without a name. Here is the paper element
with its type expanded in place.

define element paper {
element title , element author +

}
Validating now yields the following result.

validate as paper {
<paper>
<title>The Essence of ML</title>
<author>Robert Harper</author>
<author>John Mitchell</author>
</paper>
¥
=
element paper {
element title of type xs:string { " The Essence of ML" } ,
element author of type xs:string { " Robert Harper” } ,
element author of type xs:string { " John Mitchell” }
}

Now the paper element has no type annotation, because
there is no type name to annotate it with. The other el-
ements still have type annotations.

Global and local declarations. Similarly, one may
include an element declaration in place. Here is the paper
element with the nested elements expanded in place.

define element paper {
element title of type xs:string ,
element author of type xs:string +

}

Here the paper is declared globally, while title and author are
declared locally. In this case, validation proceeds exactly as
before.

Allowing local declarations increases expressiveness, be-
cause now it is possible for elements with the same name
to be assigned different types in different places; see [14, 8].
An example of such a definition appears later.

Atomic, list, and union types. Every simple type is an
atomic type, a list type, or a union type. The atomic types
are the nineteen primitive types of Schema, such as xs:string
and xs:integer, and the types derived from them. List types
are formed using the occurrence operators 7, +, and *, taken
from regular expressions. Union types are formed using the
alternation operator |, also taken from regular expressions.
Here is an example of a list type.

element ints { xs:integer + }
In XML notation, lists are written space-separated.

validate as ints { <ints>1 2 3</ints> }
=
element ints {1, 2,3 }

Some types may be ambiguous. XML Schema specifies how
to resolve this ambiguity: every space is taken as a list sepa-
rator, and in case of a union the first alternative that works
is chosen.

define element trouble { (xs:integer | xs:string) * }

validate as trouble { <trouble>this is not 1 string</trouble> }
=
element trouble "this", "is", "not", 1, "string”

Ambiguous types can be problematic; this will be further
discussed in Section 8.

Derivation by restriction on simple types. New
simple types may be derived by restriction.

define type miles restricts xs:integer
define type feet restricts xs:integer

Here is an example where two height elements have different
types.

define element configuration {
element shuttle { element height of type miles } ,
element laser { element height of type feet }

}

Validation annotates the different height elements with
different types.

validate as element configuration {
<configuration>
<shuttle><height>120</height></shuttle>
<laser><height>10023</height></laser>
</configuration>
}
=
element configuration {
element shuttle { element height of type miles { 120 } } ,
element laser { element height of type feet { 10023 } }
}

Both miles and feet are subtypes of xs:integer, but neither
is a subtype of the other. The following function definition
is legal.

define function laser’height (
element configuration $c

) returns element height of type feet {
$c/laser/height

It would still be legal if feet was replaced by xs:integer, but
not if feet was replaced by miles. In this example, element
configuration is the type of the formal parameter $c, and the
XPath expression $c/laser/height extracts the height child of
the laser child of the configuration element.

Derivation by restriction on complex types. New
complex types may also be derived by restriction. The fol-
lowing example is a simplified form of the information that
may occur in a bibliographic database, such as that used by
BibTeX.

define element bibliography {
element of type publicationType *
}
define type publicationType {
element author *
element title 7,
element journal 7,
element year ?
}
define type articleType restricts publicationType {
element author + ,
element title ,
element journal ,
element year
}
define type bookType restricts publicationType {
element author + ,
element title ,
element year
}
define element book of type bookType
define element article of type articleType

Here a publication may have any number of authors, a
mandatory title, and a optional journal and year. An ar-
ticle must have at least one author, and a mandatory title,
journal, and year. A book must have at least one author, a
mandatory title and year, and no journal.

Derivation by restriction declares a relationship between
two types. This relation depends on both names and struc-
tures, in the sense that one name may be derived by restric-
tion from another name only if every value that matches

the structure of the first also matches the structure of the
second.

When one type is derived from another by restriction,
it is fine to pass the restricted type where the base type is
expected. For example, consider the following function.

define function getTitle (

element of type publicationType $p
) returns element title {

$p/title

Here it is acceptable to pass either an article or book element
to the function getTitle().

There is a type xs:anyType from which all other types are
derived. If a type definition does not specify otherwise, it is
considered a restriction of xs:anyType. There is also a type
xs:anySimpleType that is derived from xs:anyType and from
which all other simple types are derived.

Derivation by extension. New complex types may also

be derived by extension.

define type color restricts xs:string

define type pointType {
element x of type xs:integer ,
element y of type xs:integer

}

define type colorPointType extends pointType {
element c of type color

}

define element point of type pointType

define element colorPoint of type colorPointType

When one type restricts another, one must check that the
proper relation holds between the types. When one type ex-
tends another, the relation holds automatically, since values
of the new type are defined to consist of the concatenation
of values of the base type with values of the extension.

Again, when one type is derived from another by exten-
sion, it is fine to pass the extended type where the base
type is expected. Unlike with restriction, this can lead to
surprising consequences. Consider the following.

define function countChildren (
element of type pointType $p

) returns xs:integer {
count($p/*)

}

This function counts the number of children of the element
$p, which will be 2 or 3, depending on whether $p is an
element of type point or colorPoint.

In XQuery, type checking requires that one knows all the
types that can be derived from a given type — the type is
then treated as the union of all types that can be derived
from it. Types derived by restriction add nothing new to
this union, but types derived by extension do. This “closed
world” approach — that type checking requires knowing all
the types derived from a type — is quite different from the
“open world” approach used in many object-oriented lan-
guages — where one can type-check a class without knowing
all its subclasses.

In an object-oriented language, one might expect that
if an element of type colorPoint is passed to this function,
then the x and y elements would be visible but the c element

would not be visible. Could the XQuery design adhere bet-
ter to the object-oriented expectation? It is not obvious
how to do so. For instance, consider the above function
when pointType is replaced by xs:anyType.

define function countChildren (
element of type xs:anyType $x

) returns xs:integer {
count($x/*)

Here it seems natural to count all the children, while an
object-oriented interpretation might suggest counting none
of the children, since xs:anyType is the root of the type hi-
erarchy.

3 Values and types

3.1 Values

We now give a formal defintion of values. We take names,
string, and integers as primitive. We do not formalize the
mapping between XML notation and our notation for values,
as it is straightforward.

A value is a sequence of zero or more items. An item is
either an element or an atomic value. An element has an
element name, an optional type annotation, and a value. An
element with no type annotation is the same as an element
with the type annotation xs:anyType. An atomic value is
a string or an integer. We write Value; , Values for the
concatenation of two values.

Value = ()
| Item(,Item)x
Item = Element
| Atom
Element ::= element ElementName OfType? { Value }
OfType = of type TypeName
Atom := String | Integer

An untyped value is a sequence of zero or more untyped
items. An untyped item is either an element without type
annotation or a string. Untyped values are used to described
XML documents before validation. Every untyped value is
a value.

Untyped Value 0
UntypedItem(, UntypedItem)=
Untypedltem

String

A simple value consists of a sequence of zero or more
atomic values. Every simple value is a value.

SimpleValue == ()
| Atom(,Atom)x

Here is an example of a value.

element paper of type paperType {
element title of type xs:string { " The Essence of Algol” } ,
element author of type xs:string { " John Reynolds” }

}

Here is an example of an untyped value.

element ElementName { UntypedValue }

element paper {
element title { " The Essence of Algol” },
element author { "John Reynolds” }

}
Here are examples of simple values.

" John Reynolds”
10023
1,23

3.2 Types

Types are modeled on regular tree grammars [16, 8]. A type
is either the empty sequence (()), an item type, or composed
by sequence (,), choice (), or multiple occurrence — either
optional (?), one or more (+), or zero or more (*).

0

Type =
| ItemType
| Type, Type
| Type | Type
| Type Occurrence
Occurrence == 7 |+|*

An item type is an element type or an atomic type.
Atomic types are specified by name; these names include
xs:string and xs:integer. Every AtomicTypeName is also a
TypeName.

ItemType = FElementType
| AtomicTypeName

An element type gives an optional name and an optional
type specifier. A name alone refers to a global declaration
(element author). A name with a type specifier is a local dec-
laration (element author of type xs:string). A type specifier
alone is a local declaration that matches any name (element
of type xs:string). The word element alone refers to any ele-
ment.

ElementType := element ElementName? TypeSpecifier?

A type specifier either references a global type, or defines
a type by derivation. A type derivation either restricts an
atomic type, or restricts a named type to a given type, or
extends a named type by a given type.

TypeSpecifier := TypeReference

| TypeDerivation
TypeReference = of type TypeName
TypeDerivation restricts AtomicTypeName

restricts TypeName { Type }
extends TypeName { Type }

A simple type is composed from atomic types by choice
or occurrence. Every simple type is a type.

= AtomicTypeName
| SimpleType | SimpleType
| SimpleType Occurrence

Simple Type

We saw many examples of types and simple types in
Section 2.

3.3 Top level definitions

At the top level one can define elements and types. A global
element declaration, like a local element declaration, consists
of an element name and a type specifier. A global type
declaration consists of a type name and a type derivation.

Definition ::= define element ElementName TypeSpecifier
| define type TypeName TypeDerivation

We saw many examples of element and type declarations
in Section 2.

3.4 Built-in type declarations

The two XML Schema built-in types xs:anyType and
xs:anySimpleType are defined as follows.

define type xs:anyType restricts xs:any Type {
xs:anySimpleType | element *

}

define type xs:anySimpleType restricts xs:anyType {
(xs:integer | xs:string) *

}

4 Ancillary judgments

We now define four ancillary judgments that are used in
matching and validation. Here is the rule from matching
that uses these judgments.

ElementType yields BaseElementName TypeSpecifier
TypeSpecifier resolves to BaseTypeName { Type }
ElementName substitutes for BaseElementName

TypeName derives from BaseTypeName
Value matches Type

element ElementName of type TypeName { Value }
matches FElementType

The element type yields an element name set and a type
specifier, and the type specifier resolves to a base type name
and a type. Then the given element matches the element
type if three things hold: the element name must be within
the element name set, the type name must derive from the
base type name, and the value must match the type.

The next four sections define the first four judgments in
the hypothesis of the above rule.

4.1 Yields
The judgment

ElementType yields ElementName TypeSpecifier

takes an element type and yields an element name and a type
specifier. If the element type does not specify an element
name, then the distinguished element name * is returned.
For example,

element author yields author of type xs:string
element height of type feet yields height of type feet
element of type feet yields * of type feet

element yields * of type xs:anyType

If the element type is a reference to a global element,
then it yields the the name of the element and the type
specifier from the element declaration. (Note the use of a
top-level definition as a hypothesis.)

define element ElementName TypeSpecifier

element ElementName yields ElementName TypeSpecifier

If the element type contains an element name and a type
specifier, then it yields the given element name and type
specifier.

element ElementName { TypeSpecifier }
yields ElementName TypeSpecifier

If the element type contains only a type specifier, then
it yields the wildcard name and the type specifier.

element { TypeSpecifier } yields * TypeSpecifier

If the element type has no element name and no type
specifier, then it yields the wildcard name and the type
xs:anyType.

element yields * of type xs:anyType

4.2 Resolution
The judgment

TypeSpecifier resolves to TypeName { Type }

resolves a type specifier to a type name and a type. For
example,

of type colorPoint
resolves to
colorPoint {
element x of type xs:integer ,
element y of type xs:integer ,
element c of type color

}
and

restricts xs:integer
resolves to
xs:integer { xs:integer }

and

restricts publicationType {
element author + ,
element title ,
element year

}

resolves to

publicationType {
element author + ,
element title ,
element year

}

and

extends pointType {
element c of type color

}

resolves to

colorPoint {
element x of type xs:integer ,
element y of type xs:integer ,
element c of type color

}

If the type specifier references a global type, then resolve
the type derivation in its definition, yielding a base type
name and a type. Resolution returns the type name and
the type. (The base type name is discarded.)

define type TypeName TypeDerivation
TypeDerivation resolves to BaseTypeName { Type }

of type TypeName resolves to TypeName { Type }

If the type specifier restricts an atomic type, then return
the atomic type as both the type name and the type.

restricts AtomicTypeName
resolves to AtomicTypeName { AtomicTypeName }

If the type specifier is a restriction of a non-atomic type,
then return the given type name and the given type.

restricts TypeName { Type }
resolves to TypeName { Type }

If the type specifier is an extension, then resolve the name
to get the base type, and return the given type name, and

the result of concatenating the base type and the given type.

of type TypeName resolves to TypeName { BaseType }

extends TypeName { Type }
resolves to TypeName { BaseType, Type }

4.3 Element name sets
The judgment
ElementName; substitutes for ElementNames

holds when the first element name may substitute for the
second element name. This happens when the two names
are equal, or when the second name is the distinguished
element name *. For example:

paper substitutes for paper
paper substitutes for *

(We do not discuss element substitution groups here, but
the judgment generalizes neatly to handle these.)
An element name may substitute for itself.

ElementName substitutes for ElementName

An element name may substitute for the distinguished
element name *.

FElementName substitutes for *

4.4 Derives
The judgment

TypeName, derives from TypeName,

holds when the first type name derives from the second type
name. For example,

bookType derives from bookType
bookType derives from publicationType
bookType derives from xs:anyType

This relation is a partial order: it is reflexive and tran-
sitive by the rules below, and it is asymmetric because no
cycles are allowed in derivation by restriction or extension.

Derivation is reflexive and transitive.

TypeName derives from TypeName

TypeName, derives from TypeName,
TypeName, derives from TypeName,

TypeName, derives from TypeName,

Every type name derives from the type it is declared to
derive from by restriction or extension.

define type TypeName restricts Base TypeName

TypeName derives from Base TypeName

define type TypeName restricts Base TypeName { Type }

TypeName derives from Base TypeName

define type TypeName extends BaseTypeName { Type }

TypeName derives from BaseTypeName

5 Matches

The judgment
Value matches Type

holds when the given value matches the given type. For
example,

element author of type xs:string { " Robert Harper” } ,

element author of type xs:string { " John Mitchell” }
matches

element author of type xs:string +

and
10023 matches feet
and

element colorPoint of type colorPointType {
element x of type xs:integer { 1 }
element y of type xs:integer { 2 }
element c of type color { "blue” }
}
matches
element colorPoint

The empty sequence matches the empty sequence type.

() matches ()

If two values match two types, then their sequence
matches the corresponding sequence type.

Value: matches Type,
Valuez matches Type,

Value: , Valuez matches Type, , Type,

If a value matches a type, then it also matches a choice
type where that type is one of the choices.

Value matches Type,

Value matches Type, | Type,

Value matches Type,

Value matches Type, | Type,

A value matches an optional occurrence of a type if it
matches either the empty sequence or the type.

Value matches () | Type

Value matches Type?

A value matches one or more occurrences of a type if
it matches a sequence of the type followed by zero or more
occurrences of the type.

Value matches Type, Type*

Value matches Type+

A value matches zero or more occurrences of a type if it
matches an optional one or more occurrences of the type.

Value matches Type+?

Value matches Typex

A string matches an atomic type name if the atomic type
name derives from xs:string. Similarly for integers.

AtomicTypeName derives from xs:string

String matches Atomic TypeName

AtomicTypeName derives from xs:integer

Integer matches AtomicTypeName

The rule for matching elements was explained at the be-
ginning of Section 4.

ElementType yields BaseElementName TypeSpecifier
TypeSpecifier resolves to BaseTypeName { Type }
ElementName substitutes for BaseElementName

TypeName derives from Base TypeName
Value matches Type

element ElementName of type TypeName { Value }
matches ElementType

6 Erasure
The judgment
Value erases to Untyped Value

holds when the given value erases to the untyped value. For
example,

element author of type xs:string { " John Reynolds” }
erases to
element author { "John Reynolds” }

and

element configuration {
element shuttle { element height of type miles { 120 } } ,
element laser { element height of type feet { 10023 } }
}
erases to
element configuration {
element shuttle { element height { "120” } } ,
element laser { element height { "10023" } }
}

Erasure turns all atomic values into strings, and concate-
nates any adjacent strings in the result with a separating
space. No space is added when an atomic value is adjacent
to an element. For example,

1,2, 3erasesto 123"
and

element fact { "l saw”, 8, "cats” }
erases to
element fact { "l saw 8 cats” }

and

element fact { "l saw”, 8, , element em { } "cats” }
erases to

element fact { "l saw 8 ", element em { } "cats” }

Erasure is defined as a relation. Since an integer has
more than one string representation, it may have more than
one erasure. For example,

7 erases to " 7"
7 erases to " 007"

The empty sequence erases to itself.

() erases to ()

The erasure of the concatenation of two values yields the
concatenation of their erasures. If the first erasure ends in a
string and the second erasure begins with a string, concate-
nate the strings with an intervening space.

Value, erases to UntypedValue, , String,
Valuey erases to String, , Untyped Value,

Valuey , Values
erases to
Untyped Value, , concat(String,,” ", String,) , Untyped Value,

Value, erases to UntypedValue,
Valuey erases to Untyped Value,
UntypedValue, does not end in a string or
UntypedValue, does not begin with a string

Value: , Values erases to UntypedValue, , Untyped Value,

The erasure of an element is an element that has the
same name and the erasure of the given content.

Value erases to Untyped Value

element ElementName of type TypeName { Value }
erases to element ElementName { UntypedValue }

A string erases to itself.

String erases to String

An integer erases to any string that represents it.

integer-of-string(String) erases to String

7 Validation
The judgment
validate as Type { UntypedValue } = Value

holds if validating the string against the simple type suc-
ceeds and returns the validated value. For example,

validate as element of type xs:string {
element author { " John Reynolds” }
}
=
element author of type xs:string { "John Reynolds” }

and

validate as element configuration {
element configuration {
element shuttle { element height { "120" } },
element laser { element height { "10023" } }
}
} =
element configuration {
element shuttle { element height of type miles { 120 } } ,
element laser { element height of type feet { 10023 } }
}

and
validate as xs:integer * { "1 23" } = 1,2, 3

Validating the empty sequence as the empty type yields
the empty sequence.

validateas () { () } = ()

Validating a concatenation of untyped values against a
concatenation of types yields the concatenation of the vali-
dated values. Decomposing a concatenation of untyped val-
ues removes a space between adjacent strings, inverting the
corresponding rule for erasure.

validate as Type, { UntypedValue, , String, } = Value:
validate as Type, { UntypedValue, , String, } = Values

validate as Type, , Type, {

Untyped Value, , concat(String,,” ", String,) , Untyped Value,

} = Valuey , Values

validate as Type, { UntypedValue, } = Value;

validate as Type, { UntypedValue, } = Valuez
UntypedValue, does not end in a string or
Untyped Value, does not begin with a string

validate as Type, , Type, { UntypedValue, , Untyped Value, }

= Value, , Values

Validating a value against a choice type yields the result
of validating the value as either the first or second type in
the choice.

validate as Type, { UntypedValue } = Value
validate as Type; | Type, { UntypedValue } = Value

validate as Type, { UntypedValue } = Value

validate as Type, | Type, { UntypedValue } = Value

The validation rules for occurrences are similar to the
rules for occurrences in matching.

validate as (() | Type) { UntypedValue } = Value
validate as Type? { UntypedValue } = Value

validate as (Type, Typex) { UntypedValue } = Value
validate as Typet+ { UntypedValue } = Value

validate as Type+? { UntypedValue } = Value
validate as Typex { UntypedValue } = Value

Validating a string against an atomic type derived from
xs:string yields the string itself.

AtomicTypeName derives from xs:string

validate as AtomicTypeName { String } = String

Validating a string against an atomic type derived from
xs:integer yields the result of converting the string to an
integer.

AtomicTypeName derives from xs:integer

validate as AtomicTypeName { String }
= integer-of-string(String)

Validating an element against an element type is de-
scribed by the following rule.

ElementType yields BaseElementName TypeSpecifier
TypeSpecifier resolves to TypeName { Type }
FElementName substitutes for BaseElementName
validate as Type { UntypedValue } = Value

validate as ElementType {
element ElementName { UntypedValue }
} = element ElementName of type TypeName { Value }

10

The element type yields an element name set and a type
specifier, and the type specifier resolves to a type name and
a type. Then the given element matches the element type
if two things hold: the element name must be within the
element name set, and validating the untyped value against
the type must yield a value. The resulting element has the
element name, the type name, and the validated value.

8 Ambiguity and the validation theorem

For a given type, validation takes an external representation
(an untyped value) into an internal representation (a value
annotated with types). For a given type, we would like each
external representation to correspond to just one internal
representation, and conversely. We show that this is the
case if the type is unambiguous, using a characterization of
validation in terms of erasure and matching.

8.1 Ambiguity

Validation is a judgment that relates a type and an untyped
value to a value.

validate as Type { UntypedValue } = Value

In most of the examples we have seen, validation behaves
as a partial function. That is, for a given type, for every
untyped value, there is at most one value such that the above
judgment holds. In this case, we say the type is unambiguous
for validation. But just as there is more than one way to
skin a cat, sometimes there is more than one way to validate
a value.
Here is an example of an ambiguous complex type:

define element amb {
element elt of type xs:integer |
element elt of type xs:string

}

validate as amb { <amb><elt>1</elt></amb> }
=
element amb { element elt of type xs:integer { 1 } }

validate as amb { <amb><elt>1</elt></amb> }
=
element amb { element elt of type xs:string { "1" } }

Here is an example of an ambiguous simple type:
"ab

"ab' e
2" b ¢
et rpr e

validate as xs:string * { "abc" } =
validate as xs:string x { "abc" } =
validate as xs:string * { "abc’ } =
validate as xs:string x { "abc" } =

There are well-known algorithms for determining when
regular expressions are ambiguous, and there are similar al-
gorithms for regular tree grammars [16, 8]. These are easily
adapted to give an algorithm for determining when a given
type is ambiguous.

In Schema, the issue of ambiguity is resolved differently
than here. Complex types are required to be unambiguous.
Simple types have rules that resolve the ambiguity: every
space is taken as a list separator, and in a union the first
alternative that matches is chosen. Thus, for the first ex-
ample above Schema deems the type illegal, while for the
second example above Schema validation yields the last of
the four possibilities.

Our formal model differs from Schema for two reasons.
First, while Schema is concerned solely with validation
against types written by a user, XQuery must also support
type inference. And while it may be reasonable to require
that a user write types that are unambiguous, it is not rea-
sonable to place this restriction on a type inference system.
For example, if expression e has type xs:boolean and e; has
type t1 and ez has type t2, the expression if (eo) then e; else
e2 has type t1 |t2, and it is not reasonable to require that t;
and t2 be disjoint.

Second, defining validation as a relation rather than a
function permits a simple characterization of validation in
terms of matching and erasure, as given in the next section.

Erasure is a judgement that relates a value to an untyped
value.

Value erases to Untyped Value

Again, in most of the examples we have seen, erasure be-
haves as a function. That is, for a given value, there is
exactly one untyped value such that the above judgement
holds. Indeed, the only ambiguity arises when the value is
an integer or contains an integer. This ambiguity occurs
because there is more than one string represents the same
integer, and hence there is more than one way to erase it.
For example, the integer 7 is represented by both "7" and
"007", and so has both of these as erasures. If a type does
not contain any integers, then we say it is unambiguous for
erasure.

8.2 The validation theorem

We can characterize validation in terms of erasure and
matching.

Theorem 1 We have that
validate as Type { UntypedValue } = Value

if and only if
Value matches Type

and
Value erases to Untyped Value.

The proof is by induction over derivations.

We would like to know that if we convert an external
value to an internal value (using validation) and then convert
the internal value back to an external value (using erasure)
that we end up back where we started, so long as the type
is unambiguous for erasure. This follows immediately from
the validation theorem.

Corollary 1 If

validate as Type { UntypedValue } = Value

and
Value erases to Untyped Value'
and
Type is unambiguous for erasure
then

Untyped Value = Untyped Value'.

11

Proof From the first hypothesis and the validation the-
orem we have that

Value erases to Untyped Value

Taking this together with the second hypothesis and the
fact that erasure is a function, the conclusion follows imme-
diately. O

Similarly, we would like to know that if we convert an
internal value of a given type to an external value (using era-
sure) and then convert the internal value back to an external
value (using validation against that type) that we again end
up back where we started, so long as the type is unambigu-
ous. Again, this follows immediately from the validation
theorem.

Corollary 2 If

Value matches Type

and
Value erases to Untyped Value
and
validate as Type { UntypedValue } = Value'
and
Type is unambiguous for validation
then

Value = Value'.

Proof By the validation theorem, we have that the first
two hypotheses are equivalent to

validate as Type { UntypedValue } = Value

Taking this together with the third hypothesis and the fact
that validate is a partial function when the type is unam-
biguous, the conclusion follows immediately. O

9 Sensible types

We can easily define a notion of structural subtyping, sim-
ilar to that used in XDuce [10]. We say that one type is
a subtype of another if every value that matches the first
type also matches the second. When one type is declared
to derive from another type by restriction, we expect that
the first type should be a subtype of the second. This sec-
tion defines subtyping and the rules to ensure that types are
sensible.

A value is sensible if whenever it contains an element
with a type annotation, then the value of the element
matches the type in the annotation. This section also de-
fines sensible values, and observes that the value returned
by validation is always sensible.

9.1 Subtype

The judgment
Type, subtype Type,

holds if every value that matches the first type also matches
the second. For example,

element of type feet subtype element of type xs:integer
element author + subtype element author *

element of type bookType
subtype
element of type publicationType

Subtyping is the only judgement that is not defined by
structural inference rules. Instead, it is defined by a logical
equivalence. We have

Type, subtype Type,
if and only if
V Value. Value matches Type, =—> Value matches Type,.
There are well-known algorithms for determining when one

type is a subtype of another, based on tree automata [16, 8,
10].

9.2 Sensible type

The judgment
Type ok

holds if a type is sensible.
An element type is sensible if its type specifier is sensible.

TypeSpecifier ok

element ElementName? TypeSpecifier ok

An element type with no type specifier is sensible.

element ElementName? ok

A sequence type is sensible if the types it contains are
sensible.

Type, ok
Type, ok
Type, , Type, ok

The sensibility rules for (), 7, +, *, and | are similar.

9.3 Sensible type specifier

The judgment
TypeSpecifier ok

holds if a type specifier is sensible.
A reference to a global type is always sensible.

of type TypeName ok

A restriction of an atomic type is always sensible.

restricts Atomic TypeName ok

A restriction to a given type is sensible if the type is
sensible and is a subtype of the base type.

define type TypeName TypeDerivation
TypeDerivation resolves to TypeName { Type' }
Type subtype Type’
Type ok

restricts TypeName { Type } ok
An extension is sensible if the type is sensible.

Type ok

extends TypeName { Type } ok

9.4 Sensible definition

The judgment
Definition ok

holds if a type or element definition is sensible.
An element definition is sensible if its type specifier is
sensible.

TypeSpecifier ok

define element ElementName TypeSpecifier ok

A type definition is sensible if its type derivation is sen-
sible.

TypeDerivation ok

define type TypeName TypeDerivation ok

9.5 Sensible value

The judgment
Value ok

holds if a value is sensible.
The empty sequence is sensible.

() ok
If two values are sensible, then their sequence is sensible.

Value; ok
Values ok

Valuey , Values ok

An element is sensible if the value is sensible, and if the
value matches the annotated type.

define type TypeName TypeDerivation
TypeDerivation resolves to BaseTypeName { Type }
Value ok
Value matches Type

element ElementName of type TypeName { Value } ok

An atomic value is sensible.

Atom ok

9.6 Sensibility theorem

Validation always yields a sensible value.
Theorem 2 (Sensibility theorem) If
validate as Type { UntypedValue } = Value

then
Value ok

The proof is by induction on derivations.

10 Name vs. structure: the optimization theorem

Finally, we return to the relation between names and struc-
tures. The notion of matching defined in Section 5 is struc-
tural: it examines whether the structure of a value matches
the structure of the corresponding type. There is a sec-
ond notion of matching that is named: just check whether
the type name that annotates an element is derived from a
given type name. In this section, we consider when named
matching can safely replace structural matching.

Recall the rule for matching an element against an ele-
ment type.

ElementType yields BaseElementName TypeSpecifier
TypeSpecifier resolves to BaseTypeName { Type }
FElementName substitutes for BaseElementName

TypeName derives from Base TypeName
Value matches Type

element ElementName of type TypeName { Value }
matches ElementType
(STRUCTURAL MATCH)

This rule checks not only that the named relationship
holds (TypeName derives from BaseTypeName), but also
that the structural relationship holds (Value matches Type).
However, in common cases it is possible to check only the
named relation, and skip checking the structural relation
entirely.

This is reflected by the fact that the above rule simplifies
considerably in the case that the type specifier is a reference
to a global type. In such cases, we may replace it with the
following rule.

ElementType yields BaseElementName of type BaseTypeName

FElementName substitutes for BaseFElementName
TypeName derives from Base TypeName

element ElementName of type TypeName { Value }
matches FlementType
(NAMED MATCH)

Here it is not necessary to check the structural relationship,
because it is guaranteed by the way in which validation an-
notates elements with types.

The result that allows one to replace the first rule by the
second is called the optimization theorem, because checking
the structural relationship can be expensive (it requires a
tree automaton or a recursive traversal), while checking the
named relationship can be efficient (it just requires walking
up the type hierarchy). The increased efficiency of named
typing is one of the major motivations for pursuing its use
in XQuery.

13

Recall that a value is sensible if whenever an element is
annotated with a type then the value of the element matches
that type. The optimization theorem applies only for sensi-
ble value.

Theorem 3 (Optimization theorem) Consider computing
Value matches Type when Value ok. Then whenever rule
(NAMED MATCH) applies it may be used in place of
(STRUCTURAL MATCH), without changing the result.

The proof is by induction over derivations.

The optimization theorem applies only when the element
type in question contains a type reference (of type) rather
than a type derivation (restricts, extends). In other words,
named matching works only when there is a top-level type
definition; if the type is anonymous, one must fall back on
structural matching. For this reason, one design question
currently faced by XQuery is whether to introduce some
way of naming anonymous types, so that named matching
may always be used in preference to structural matching.

References

[1] Martin Abadi and Luca Cardelli A Theory of Objects
Springer-Verlag, 1996.

[2] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0. W3C Rec-
ommendation, February 1998.

[3] Allen Brown, Matthew Fuchs, Jonathan Robie, and
Philip Wadler. MSL - a model for W3C XML Schema.
In Proceedings of International World Wide Web Con-
ference, pages 191-200, Hong Kong, China, 2001.

[4] James Clarke. XSL Transformations (XSLT) version
1.0. W3C Proposed Recommendation, October 1999.

[5] James Clarke. TREX — Tree Regular Expressions for
XML. Thai Open Source Software Center, February
2001.

[6] James Clarke and Murata Makoto. RELAX NG speci-
fication. Oasis, December 2001.

[7] Sophie Cluet, Claude Delobel, Jérome Siméon, and
Katarzyna Smaga. Your mediators need data conver-
sion! In Proceedings of ACM Conference on Man-
agement of Data (SIGMOD), pages 177-188, Seattle,
Washington, June 1998.

[8] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 1997.

[9] Carl Gunter and John Mitchell. Theoretical Aspects of
Object-Oriented Programming. MIT Press, 1994.

[10] Haruo Hosoya and Benjamin C. Pierce. XDuce: an
XML processing language. In International Work-
shop on the Web and Databases (WebDB’2000), Dallas,

Texas, May 2000.

[11] Michael Kay. XSL Transformations (XSLT) version 2.0.

W3C Working Draft, April 2002.

Murata Makoto. Document description and process-
ing languages — regular language description for XML
(relax), October 2000.

(12]

[13]

[14]

Peter Neumann. Risks to the public from the use of
computers. ACM Software Engineering Notes 10(3),
July 1985.

Yannis Papakonstantinou and Victor Vianu. DTD in-
ference for views of XML data. In Proceedings of
ACM Symposium on Principles of Database Systems
(PODS), Dallas, Texas, May 2000.

Benjamin C. Pierce. Types and Programming Lan-
guages. MIT Press, 2002.

Grzegorz Rozenberg and Arto Salomaa, editors. Hand-
book of Formal Languages. Springer-Verlag, 1997.

Jéréme Siméon and Philip Wadler. The essence of
XML (preliminary version) [invited talk]. In Inter-
national Symposium on Functional and Logic Pro-
gramming (FLOPS), Aizu, Japan, September 2002.
Springer-Verlag, 2002.

Henri S. Thompson, David Beech, Murray Maloney,
and N. Mendelsohn. XML Schema part 1: Structures.
W3C Recommendation, May 2001.

XPath 2.0. W3C Working Draft, April 2002.

XQuery 1.0: An XML Query Language. W3C Working
Draft, April 2002.

XQuery 1.0 Formal Semantics. W3C Working Draft,
March 2002.

XQuery Formal Semantics FS Issue-0141 — FS Issue-
0151.

14

