University of Freiburg Institute for Computer Science

XInterfaces -

A new schema language for XML

Final thesis of

Oliver Nolle

June 12, 2002

University of Freiburg, Germany
Institute for Computer Science
Programming Languages Group

Prof. Dr. Peter Thiemann

Abstract

A new schema language for XML is proposed to enhance the interoperability
of applications sharing a common dataset.

An XML document is considered as a semi-structured database, which evolves
over time and is used by different applications. An XInterface defines a view
of an XML document by imposing constraints on structure and type of se-
lected parts. These constraints are not grammar-based but specify an open-
content model, allowing additional elements and attributes to be present any-
where in the document. This enables each application to define and validate
its own view on the document, with data being shared between applications
or specifically added by one application.

XlInterfaces feature an explicit type hierarchy, enabling easy extension of
existing schemas and documents while guaranteeing conformance of the ex-
tended documents to the existing views. This allows data evolution without
breaking compatibility of existing applications. Because different applica-
tions share one document, access mechanisms are described that guarantee
the validity of the document for all applications after modifications.

As a proof of concept, a tool was implemented that maps XInterfaces to a
class framework in Java, allowing convenient access to those parts of an XML
document that are described by XlInterfaces.

Declaration of originality

This is to certify that

1. the presented material comprises only my original work towards my
diploma,

2. due acknowledgment has been made in the text to all other material
used,

3. the material has not been accepted for the award of any other degree
or diploma.

Hiermit erklare ich, daf ich diese Diplomarbeit selbstandig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt und alle Stellen,
die wortlich oder sinngemafl aus veroffentlichten oder unverdffentlichten
Schriften entnommen wurden, als solche kenntlich gemacht habe.

Diese Diplomarbeit wurde nicht, auch nicht auszugsweise, bereits fiir eine
andere Priifung angefertigt.

Freiburg, 12.6.2002

Acknowledgments

I would like to express my full gratitude to my thesis supervisor, Prof. Dr.
Peter Thiemann. His close guidance and early feedback was invaluable help
for getting me on the way, his criticism was always justified and very con-
structive - thanks a lot! Thanks to Jenny, Bob and Hardy for proofreading
(no “sexy coding” issues this time, though...), to my family and Joe for con-
stant mental support, and to Laura for making me laugh so many times...

Contents

1 Introduction

1.1 The Extensible Markup Language
1.2 Schema Languages
1.3 A need for a different schema language
14 Roadmap

Scenario

2.1 Step1l-Basicdataset
2.2 Step2-Datasharing L oL
2.3 Step 3-Dataevolution
24 Step4-Nameconflicts
2.5 Graphical summaryo

Existing schema languages

3.1 Imtroduction o
3.2 Document Type Definition (DTD)
3.3 XML Schema
34 RELAX NG
3.5 Schematron oo
3.6 Assertion Grammars
3.7 Examplotron
3.8 Document Structure Description (DSD)

Requirements

4.1 Terminology and definitions
4.2 Open-content model
4.3 Support for multiple interfaces
4.4 Support for inheritance mechanism
4.5 Support for resolving name conflicts
4.6 Enable easy use of instance documents in applications
4.7 Support for typing of textual content

13
13
15
16
18
20
23
23
24

ii CONTENTS

4.8 Simplicity Lo 33
4.9 Use XML syntax 33
4.10 No ordering on elements 34
4.11 Favor convenience of use instead of processing performance . . 34
4.12 Enough information for keeping validity 35

5 The XInterface schema language 37
5.1 Introduction, 37
5.1.1 Xlnterface type definition 37

5.1.2 Implements statement 38

5.1.3 Validating instance documents 39

5.2 Syntax 40
5.2.1 Xlnterface type definition 40

5.2.2 Implements statement 0L 45

5.3 Semantics - informally 47
5.3.1 Dealing with name conflicts 47

5.3.2 Merging assertions 30

5.3.3 Typing of textual content 50

534 Accessmethods 51

5.4 Semantics - formallyo 53
5.4.1 Abstract data type for an element item 54

5.4.2 Interpretation of an XInterface type definition 56

5.5 Implementation o7
5.5.1 Xlnterface Validator 58

5.5.2 Class framework generator 60

6 Implementation of the scenario 65
6.1 Instance document 65
6.2 Xlnterface type definitions 65
6.3 Using the class framework 67

7 Conclusion 73
7.1 Summaryo e 73
7.2 Furtherwork, 74
7.3 Awision 76

A Schemas for XInterfaces 79
B Generated source codes 85
Index 91

Bibliography 93

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
3.3
5.4
3.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Al
A2
A3

Dataset for scenario, step 1 8
Extended contact element for scenario, step 2 9
DTD for scenario, step 1 15
XML Schema schema for scenario, step1 17
RELAX NG schema for scenario, step 1. 19
RELAX NG schema with simulated open-content model . . . 21
Schematron schema for scenario, step 1 22
Schematron schema for scenario, step 2 22
Examplotron schema for scenario, step 1 24
DSD schema for scenario, step 1 26
Syntax for an interfaceType element 41
Syntax for an element element (flat element declaration) . . . 43
Syntax for an element element (compound element declaration) 44
Syntax for an import elemento 44
Syntax for an attribute element 46
Syntax for an implements element 48
Sample input document containing errors 59
Sample output of XInterface validator. 60
Instance document for scenario, step4 66
XlInterface type definition for EmailContact 67
XlInterface type definition for MobileContactl 68
XlInterface type definition for IsoAddress 68
XlInterface type definition for MobileContact2 69
Sample application using the class framework 70
Output of sample application applied to instance document . . 71
XML Schema schema for XInterface type definitions 80
XlInterface type definition for XInterface type definitions . . . 82
XlInterface type for implements statement 83

iii

v

A4

B.1
B.2
B.3
B.4

LIST OF TABLES

Implements statement for validating implements elements . . 83
Interface source code generated for MobileContactl 86
Class source code generated for MobileContactl 87
Interface source code generated for Address 88

Class source code generated for Address 89

Chapter 1

Introduction

This chapter introduces the Extensible Markup Language and its origins,
briefly explains the basic concept of a schema and the motivation to create
a new schema language.

1.1 The Extensible Markup Language

The Extensible Markup Language, or XML[8], is a universal format for struc-
tured documents and data on the Web. A quick glance at XML’s history re-
veals that it is derived from the Standardized Generalized Markup Language
and strongly influenced by the Hypertext Markup Language.

XML’s origins in SGML

XML is derived from the Standardized Generalized Markup Language
(SGML), whose origins date back to research at IBM in the late 1960s. The
General Markup Language (GML) was published 1969 as an attempt to
satisfy the need for sharing documents in different text editing, formatting
or retrieval systems. The American National Standards Institute (ANSI)
published its first version of SGML in 1978, and it finally became an ISO-
standard in 1986 [19]. SGML was widely adopted in the document processing
and desktop publishing community. However, SGML has the reputation of
being too complex to author and to implement, and never made it into the
low-end desktop publishing market.

2 CHAPTER 1. INTRODUCTION

The Internet and HTML

With the Internet emerging and becoming a mass media an application of
SGML came into place: The Hypertext Markup Language (HTML). The
simplicity of HTML resulted in a short learning curve and thousands of
Internet users suddenly became authors of HTML documents. However,
HTML imposes a fixed document structure, and some of its markups imply
a certain layout semantics. This drawback became more and more obvious as
the Internet evolved, and applications such as E-Commerce required software
agents to gather and exchange information via the Internet. As opposed to
human readers, software agents do not care about layout, but need structural
markup to correctly parse and interpret information.

The creation of XML

With SGML being too complex (and also lacking the support of Microsoft)
and HTML being not sufficiently flexible while focusing too much on layout,
the need for something to fill the gap became urgent, and in 1996 the XML
Working Group was founded at the World Wide Web Consortium (W3C).
This group was dedicated to “bringing the key benefits of generic SGML
to the Web in a manner that is easy to implement and understand while
remaining fully compliant with the ISO standard”[18].

The efforts of the XML working group culminated with the release of XML
1.0 as a W3C recommendation (which represents a standard and is the most
popular form of standardization for web-related technologies) in February
1998. The simplicity of usage and implementation seemed to encourage the
web community to rapidly accept and support the XML standard. Tools
and standards quickly emerged around the core XML technology. Although
originating from the document markup background, XML was discovered to
be equally suited for data centric applications, establishing XML technologies
as an alternative to traditional database approaches, in particular in the area
of semi-structured data.

Today, four years after the XML standard was first published, XML is the
standard for information interchange, major technologies are relying on XML,
people talk of XML as shaping the fourth computer revolution (following
the personal computer, graphical user interfaces and the internet, [34]) and
few software products on the market do not include some kind of “XML
interoperability” in their feature list.

Here is a fragment of an XML document to illustrate how a document tagged

1.2. SCHEMA LANGUAGES 3

with markup looks like:

Fragment of an XML document
<contact Category='"business">
<Name>Peter Jones</Name>
<Phone>0172555666</Phone>
<Address>
<Street>Private Drive 4</Street>
<City>London</City>
</Address>
</contact>

1.2 Schema Languages

With the importance of XML, the importance of schema languages grew.
Many people considered the feature of configurable document types as one of
the strengths of SGML and at the same time the lack of it the main weakness
in HTML. A schema defines a type or class of documents, allowing validity
checks and an interpretation that goes far beyond the interpretation of an
untyped document.

The XML recommendation itself comes with a built-in schema language
(Document Type Definition), whose shortcomings very soon resulted in many
activities to create new schema languages. As the most recognized succes-
sor to DTDs, the W3C published the the first recommendation for XML
Schema[39] in May 2001. Document Type Definition, XML Schema and
other schema languages are further described in chapter 3.

The following is a fragment of an XML Schema schema. Leaving the de-
tails for later, it basically expresses that contact elements have to carry a
Category attribute and that their content consists of first a Name and then
a Phone element, whose content contains an integer.

Fragment of a schema
<xsd:element name="contact>
<xsd:complexType>
<xsd:attribute name="Category" type="xsd:string"/>
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Phone" type='"xsd:integer"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

4 CHAPTER 1. INTRODUCTION

Given a complete schema, an application can validate a given XML docu-
ment, i.e., check, whether the document has the format that is defined in
the schema. If the document is valid, the application can rely on a certain
structure of the document, e.g., it knows that there is a Phone element of
type integer for every contact element.

1.3 A need for a different schema language

While most of the existing schema languages are well suited for describing
the structure of one class of documents, the scenario in the next chapter
requires a different approach: With the help of XInterfaces it is possible to
describe requirements for XML documents, allowing one instance document
to satisfy the requirements of many different XInterfaces.

This distinction resembles the distinction of classes and interfaces in object-
oriented programming languages: While most existing schema languages al-
low powerful mechanisms to exhaustively define the structure of a document
(like a class), XInterfaces define a set of properties (like an interface), and
XML documents can register themselves as implementing any number of
XlInterfaces. This approach also enables XlInterfaces to support multiple
inheritance, a feature which is not available for most existing schema lan-
guages!.

The interface approach allows data sharing from otherwise independent ap-
plications, enables data evolution without breaking compatibility and al-
lows seamless integration into a single-inheritance/multiple-interfaces object-
oriented programming language such as Java. Its simplicity suggests that
this approach is a well-suited alternative (or enhancement) to existing schema
languages, in particular when the emphasis is on transparent data sharing.

The following is a very simple XlInterface type definition, very similar to
the XML Schema schema given above. It can be considered as defining a
view on an XML document, requiring that certain elements need to carry a
Category attribute and Name and Phone elements as children. Another view
could require for the same elements also a Name element, but instead of the
Phone element an Address element as content. In contrast to XML Schema,
these views allow additional elements and attributes interleaved with the

! Multiple inheritance was apparently under consideration for XML Schema, but the
working group decided for a strong single inheritance model first [41]. In a personal email
to me Henry S. Thompson confirmed that there is “No sign of multiple inheritance in the
near future.” [42]

1.4. ROADMAP 5

required ones, and do not enforce a particular order on the elements.

Sample XInterface

<schema>
<interfaceType name="MobileContactl">
<attribute name="Category" type="string"/>
<element name='"Name'" type='"string"/>
<element name="Phone" type="integer"
maxOccurs="5" initial="0"/>
</interfaceType>
</schema>

1.4 Roadmap

Chapter 2 introduces a sample scenario that motivates the requirements for
the XInterface language and will be referenced in the following chapters.

Chapter 3 gives a short overview of existing schema languages, focusing on
their shortcomings when applied to the given scenario.

Chapter 4 lists the requirements that drove the design of the XlInterface
language. Most of them are derived from the requirements illustrated in the
scenario.

Chapter 5 introduces the XInterface schema language in detail.
Chapter 6 shows the usage of XInterfaces for the sample scenario.

Chapter 7 concludes with a summary, a list of ideas for improvements and a
vision outlining another scenario where XInterfaces are a perfect fit.

Appendix A gives XML Schema and XlInterface schemas to describe the
syntax of XInterface types.

Appendix B shows source codes generated by the class framework generator
for the sample scenario.

CHAPTER 1. INTRODUCTION

Chapter 2

Scenario

The following scenario serves as a motivating example throughout the re-
mainder of this thesis and informally illustrates most of the requirements
for a new XML schema language. The scenario relies on XML as the data
storage format, but is independent of existing schema languages.

A common scenario is a person is using different applications (possibly run-
ning on different devices such as notebook, PDA or mobile phone) like a
calendar, email client, or other so-called PIM (personal information man-
agement) applications. A lot of data that is used by one application is also
important for other applications, in particular a “contacts” database could
be used by the email client on the PDA and by the mobile phone. Today,
separate datasets are often used. This requires synchronization mechanisms
as well as import and export possibilities if different applications access these
datasets.

Instead of keeping separate datasets on each device/for each application,
it is desirable to reuse existing data, thus avoiding redundancies, which in
turn avoids inconsistencies. The increasing “connectedness” of all sorts of
applications via Internet, wireless LAN or bluetooth and technologies like
flash memory enable this sharing and reusing of data from the hardware
point of view.

For this thesis we assume the dataset is represented as a file and is readable
and writable (e.g., on a flash memory card or via an Internet connection) for
all applications.

8 CHAPTER 2. SCENARIO

2.1 Step 1 - Basic dataset

The first step represents a very simple dataset which might be used by a
mobile phone for storing its telephone book in XML format. Table 2.1 shows
a possible XML document containing two contact entries.

Table 2.1: Dataset for scenario, step 1

<?xml version="1.0"7>
<!-- scenario.xml - instance document for the scenario -->
<pimData>

<contact>

<Name>Peter Jones</Name>
<Phone>0172555666</Phone>
<Address>
<Street>Private Drive 4</Street>
<City>London</City>
</Address>
</contact>

<contact>
<Name>Lucy Walsh</Name>
<Phone>0179445566</Phone>
<Address>
<Street>Parkstr. 7</Street>
<City>Munich</City>
</Address>
<Address>
<Street>Bahnstr. 8</Street>
<City>Freiburg</City>
</Address>
</contact>

</pimData>

Given a suitable schema language, an application should be able to validate
the dataset according to a given schema, e.g., to ensure that

e all contact elements provide a Name and a phone element (structure)

e all contact elements provide exactly one Name element, but up to five
Address elements (cardinality)

2.2. STEP 2 - DATA SHARING 9

e the content of all Phone elements has the appropriate type, i.e. only
containing digits (typing)

2.2 Step 2 - Data sharing

A common scenario will be another application sharing the dataset and stor-
ing additional information. For example, the email client might need an email
address and an optional nickname as well as a category attribute for each
contact, and shares the Name element. It is not problematic to simply add
elements at the appropriate locations to the XML document, so the extended
first contact element could look like shown in table 2.2.

Table 2.2: Extended contact element for scenario, step 2

<contact Category="business">
<Name>Peter Jones</Name>
<Phone>0172555666</Phone>
<Address>
<Street>Private Drive 4</Street>
<City>London</City>
</Address>
<Nickname>PJ</Nickname>
<Email>peter. jones@web.de</Email>
</contact>

The fact that two applications access the same dataset should not create
any conflicts, each application should be guaranteed its own “view” on the
data. For read access to elements this means ignoring irrelevant parts, for
write access it should be ensured that validity of the dataset is not lost when
elements are changed, added or deleted.

2.3 Step 3 - Data evolution

Even for a single application a defined data format is unlikely to stay fixed
for a long time, as not all future developments can be anticipated. As a
consequence, additions to a data format which result from data evolution
should be possible in a straightforward way, using the potential of existing
formats. Therefore a mechanism for extending existing schemas is desirable.

10 CHAPTER 2. SCENARIO

A new mobile phone might be used which is capable of accessing web pages
and offers to store one or more URLs for each contact, anticipating that
more and more contacts will be associated with internet sites. For this new
application the dataset needs to be extended with an additional homepage
field. Instead of creating a new schema it should be based on the old one,
expressing that the new schema is basically the old one plus some additional
constraints. In particular, every application designed to work with data
conforming to the old schema (e.g., the old mobile phone) should function
properly with the extended dataset as well, ensuring backward compatibility
of the dataset.

2.4 Step 4 - Name conflicts

As the dataset is not restricted in any way and a single application does not
know which elements might be added in future for other applications, naming
conflicts cannot be avoided.

For example, the email client could use the Category element for a catego-
rization into business or private contacts. That is, the element content could
be either “business” or “private”. At the same time, the mobile phone might
also make use of a Category element, using a number from 0 to 9 to classify
the contacts according to priority. As the two Category elements represent
different semantic concepts they cannot be shared (as the Name element was
shared between the different applications), but have to be distinguished in
the instance document.

The resulting instance document which uses namespaces for name conflict
resolution and has additional markup, which will be explained in chapter 5,
is given in section 6.1.

2.5 Graphical summary

Figure 2.1 summarizes the resulting data structure in terms of a UML-
style[22] class diagram. Each “view” that an application defines on the data
by specifying a set of requirements is represented as a class. The extension of
existing requirements as in step 3 is modeled as derived classes. The diagram
also includes a class “Contact” which is derived from all other classes and
therefore represents the resulting requirements for an element conforming to
all views.

2.5. GRAPHICAL SUMMARY

11

interface used by
inherited attributes old mobile phone
are marked with a '
leading ": __
“inheritedAttribute \‘/
MobileContact1
Name: string interface used by
. Phone: string il client
interface used by X email clien
new mobile phone j Address: AddressType T
1
T
1 ? !
.
: ! !
Lo : AddressType !
MobileContact2 i Street: string .
“Name: string 1 City: string .
“Phone: integer 1 Y
~Address: AddressType | EmailContact
Homepage: string 1 '
Category: integer 1 Name: string
1 Email: string
4 1 Category: string
1 1
1 1
L e e e = = — - _LI __________________ |
Contact
“Name: string
resulting requirements Aghor}?f J.rtltgger
for a contact element AHgi;pégZ'régging
implementing alll interfaces “EmailContact::Category: string
. “MobileContact2::Category: integer
| “Address: AddressType
e o e e e e e m e m e — o - A

Figure 2.1: Data structure of the scenario

12

CHAPTER 2. SCENARIO

Chapter 3

Existing schema languages

3.1 Introduction

Reflecting the importance of XML as the standard for data exchange, much
effort was put into the investigation of schema languages that allow the def-
inition of a class of documents. This chapter investigates existing schema
languages and tries to apply these languages to the sample scenario. The ap-
parent shortcomings illustrate the requirements for the XInterface language.

As comparing all existing schema languages in detail is beyond the scope of
this thesis, the focus is on the most popular and widely used languages. For
further details see the given references or available comparisons of schema
languages, such as Lee and Chu[32], who include a comprehensive list of
supported features for six schema languages, or van der Vlist[44], who also
summarizes the history of the major schema languages.

There does not seem to be a single commonly accepted approach to categorize
schema languages. Many classifications are based on the support of specific
features such as inheritance mechanisms or data types. Figure 3.1, a slightly
modified and updated version of a diagram originally provided by Jelliffe[26],
provides a family tree of XML schema languages, depicting the evolution of
the major schema languages within the last years. The diagram roughly
orders schema languages on an axis according to whether their approach is
rather grammar-based or relies on patterns and constraints.

The schema languages with a bold border are the ones that are investigated
in the next sections.

13

14

CHAPTER 3.

EXISTING SCHEMA LANGUAGES

<- grammar-based

Regular
expressions,
BNF, etc.
SGML DTDs
(ISO)
]
Lexical Types Element Definition Property Sets
(150) Documents and GROVES '
(Adobe / Frame) (IS0) !
'
1
XML DTDs
XML-Data _____-—_____——-——v (W3C)
(Microsoft)
X \
Document Content
Description (DCD) -
'
'
H
SOX 1.0
'
7'y DDML :
(XSchema) H
'
Assertion
XML-Data-Reduced Grammars
XDR (Dave Raggett) :
(Microsoft) T :
'
A3 !
\\\ Schematron '
. (Rick Jelliffe) :
S0X 2.0 N :
N DSD y
\ (AT&T, Brics) [H
N 1 '
. K H
~ 1
N
\\ TREX RELAX Core
N (James Clark) (Murata Makoto)
N
. -
. h
N 1
N [
. '
N 1
~ 1
\\ 1
XML Schema N 1
(W3C) . RELAX NG B
S S
S AN (Oasis) 1
~ 1
\\\ \\ 1
S N 3 |
Sso AN \ 1 Examplotron
N N \ ' (Eric van der Vlist)
Se N \ 1
~ N
AN S “ : :
\\\ \\ \\ | :
Se N 1 '
AR N Y\ ! :
S R el -
SO :
S XInterfaces '
| (Oliver N&lle) 1
e e 1
—~~— —~

pattern/constraint-based ->

Figure 3.1: Family tree of schema languages

3.2. DOCUMENT TYPE DEFINITION (DTD) 15

3.2 Document Type Definition (DTD)

This schema language was quickly adopted by the web community and the in-
dustry, because the specification of Document Type Definitions was included
in the XML 1.0 specification [8]. However, several important shortcomings
led to the development of many new schema languages in the last few years.
Nevertheless, DTDs are still widely used today.

XML DTD is a subset of SGML DTD. Its main building blocks consist of el-
ement and attribute declarations. DTD does not support namespaces, which
were introduced later. The lack of support for namespaces and the weak
type system which only applies to attributes were the main motivation for
the W3C to develop a new schema language. Moreover, DTD is one of the
few schema languages that does not use XML syntax, another drawback that
most alternatives are addressing.

Shortcomings

Table 3.1 shows a possible DTD for the data from step 1 of the sample
scenario.

Table 3.1: DTD for scenario, step 1

<!-- DTD for scenario, stepl -->

<!ELEMENT pimData (contact*)>
<!'ELEMENT contact (Name, Phone, Address+)>

<!ELEMENT Address (Street, City)>

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Phone (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>

The instance document has to refer to this DTD with a corresponding doc-
ument type declaration like this:

<!DOCTYPE pimData SYSTEM "contacts.dtd">

16 CHAPTER 3. EXISTING SCHEMA LANGUAGES

The DTD cannot supply type information for elements and it cannot ex-
press precise cardinalities in a straightforward way. When advancing to step
2 of the scenario more problems become obvious: The schema defined by
this DTD does not support an open-content model, i.e., any additions to the
instance document which are not specified in the DTD invalidate the doc-
ument with respect to the given schema. At the same time, the document
type declaration binds the instance document to exactly one DTD, making
it impossible to express that one document adheres to multiple schemas.

3.3 XML Schema

XML Schema [39] is the official schema language from the W3C which is in-
tended to eventually replace DTDs. The XML Schema Working Group con-
sidered several submitted proposals for XML-based schema languages and
published a requirements document in early 1999. The specification was fi-
nally published in May 2001 as a W3C recommendation. Considered propos-
als among others were XML-Data[31], XML-Data-Reduced [20], DCD (Doc-
ument Content Description for XML)[6], SOX (Schema for Object-Oriented
XML) [15], DDML (Document Definition Markup Language or XSchema)[5].

XML Schema includes an advanced type system and support for type inheri-
tance (by restriction and by extension), uses XML syntax, and allows flexible
content models. XML Schema is widely supported, but has the reputation of
being complex to use and implement. The specification itself [43] is not only
long but very technical and complex (for feedback and criticism on the speci-
fication see Robie[38] or Alschuler[1]). Nevertheless, XML Schema addresses
all of DTD’s shortcomings and by now probably is the schema language best
supported by industry and web community.

Shortcomings

Given the sample scenario, table 3.2 shows a possible schema to model the
data of step 1.

In comparison with the DTD from table 3.1 there is now type information
for element content and the cardinalities can be specified exactly. However,
the schema still does not support an open-content model. Thus validation
with the same schema fails when the information needed for step 2 is added

3.3. XML SCHEMA

Table 3.2: XML Schema schema for scenario, step 1

17

<?xml version="1.0"7>
<!-- scenario_stepl.xsd
XML Schema schema for scenario, step 1 -->

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name="pimData'">
<xsd:complexType>
<xsd:sequence>
<element name='"contact" type="ContactType"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="ContactType">
<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>
<xsd:element name="Phone" type="xsd:integer"/>
<xsd:element name="Address" type="AddressType"
minOccurs="1" maxOccurs="5"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AddressType">
<xsd:sequence>
<xsd:element name="Street" type="xsd:string"/>
<xsd:element name="City" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

18 CHAPTER 3. EXISTING SCHEMA LANGUAGES

to the instance document. Sun’s Multi-Schema XML Validator[28] generates
the following error:

Error at line:11, column:12
element "Email" was found where no element may occur

Although the XML Schema specification contains the notion of “lax valida-
tion” and allows the use of “anyType” to accept any well-formed XML to
appear within an element, this kind of open-content model is not suited for
the requirements of the sample scenario. The problem is that the schema
still has to be define where unknown content should be allowed and in the
scenario this cannot be known in advance!. A typical usage of the anyType
type is allowing well-formed HTML to appear as the content of a particular
element. See the example for RELAX NG (which offers the same concept of a
declaration matching all elements) to see how this could be used to simulate
an open-content model, and what the limitations are.

3.4 RELAX NG

RELAX NG [11] is the result of merging RELAX][33] and TREX[10], which
in turn was influenced largely by XDuce[24].

The key features of RELAX NG are “that it is simple, easy to learn, uses
XML syntax, does not change the information set of an XML document,
supports XML namespaces, treats attributes uniformly with elements so far
as possible, has unrestricted support for unordered content, has unrestricted
support for mixed content, has a solid theoretical basis, and can partner with
a separate datatyping language (such as W3C XML Schema Datatypes)” [44].

Shortcomings

Table 3.3 shows a possible RELAX NG schema for step 1 of the sample
scenario.

IXML-Data-Reduced features some of the properties required for the scenario, in par-
ticular the true open-content model and an extends mechanism allowing the import of
existing schemas while guaranteeing the subsumption property. Unfortunately these fea-
tures did not make it into XML Schema and XML-Data-Reduced was not further devel-
oped since its submission as a draft document in July 1998, as Microsoft promised to stop
promoting XML-Data-Reduced in favor of a common XML Schema standard.

3.4. RELAX NG

Table 3.3: RELAX NG schema for scenario, step 1

19

<?xml version="1.0"7>
<!-- scenario_stepl.rng
RELAX NG schema for the scenario, step 1-->

<element name="pimData"
xmlns="http://relaxng.org/ns/structure/1.0">

<zero0OrMore>
<element name='"contact'>
<element name="Name">
<text/>
</element>
<element name="Phone'>
<text/>
</element>
<element name="Address">
<element name="Street">
<text/>
</element>
<element name="City">
<text/>
</element>
</element>
</element>
</zero0rMore>
</element>

20 CHAPTER 3. EXISTING SCHEMA LANGUAGES

Similarly to XML Schema, the RELAX NG schema can be modified to simu-
late an open-content model. This can be done by defining a type anyElement
which validates against any well-formed XML and by allowing the content
model to contain an arbitrary number of elements of this type interleaved
with the required elements. Table 3.4 shows such a schema. As the required
elements need to be validated against their declaration and should not match
the anyElement declaration, the schema has to mention their names explic-
itly as an exception to the anyElement declaration. This illustrates the main
shortcoming of RELAX NG and XML Schema: The open-content model has
to be simulated with additional constructs. This results in unnecessary com-
plex schemas and makes the approach not a very natural solution for the
requirements of the scenario.

3.5 Schematron

Schematron [27] was proposed in September 1999 and is based on XPath[12]
expressions to define assertions that must be met by instance documents. Its
approach differs from other schema languages as it is not based on grammars
but on finding tree patterns in the parsed document. This allows many kinds
of structures to be represented which are difficult or impossible to represent
in grammar-based schema languages.

Schematron inherits the full expressiveness of XPath, at the same time be-
ing easy to implement on top of existing XPath implementations. As one of
the few non-grammar approaches it can naturally model open-content models
and express many integrity constraints that are impossible to specify in XML
Schema. For example, the grammar approach is not sufficient to express any
constraints between information items in different branches of the attribute-
value tree which forms the primary view of an XML document. Schematron
has a notion of “usage patterns” which can be individually turned on or off.
These usage patterns are conceptually very close to the interface approach.
However, Schematron does not feature a type hierarchy or inheritance mech-
anisms.

Shortcomings

The assertions shown in table 3.5 could be used for step 1 of the scenario.

It is easy to extend the instance document without altering this schema.
At the same time another schema can be defined and applied to the same

3.5. SCHEMATRON 21

Table 3.4: RELAX NG schema with simulated open-content model

<?xml version="1.0"7?7>
<!-- RELAX NG schema for the scenario, step 1-->
modified version to simulate an open-content model -->

<grammar xmlns="http://relaxng.org/ns/structure/1.0">
<start>
<ref name="pimData'/>
</start>

<define name="anyElement">
<element>
<anyName>
<except>
<name>Name</name>
<name>Phone</name>
</except>
</anyName>
<zerolOrMore>
<choice>
<attribute>
<anyName/>
</attribute>
<text/>
<ref name="anyElement"/>
</choice>
</zero0rMore>
</element>
</define>

<define name="pimData'>
<element name="pimData'">
<zeroOrMore>
<element name='"contact'>
<interleave>

<element name="Name">
<text/>

</element>

<element name="Phone'">
<text/>

</element>

<zerolOrMore>
<ref name="anyElement"/>

</zero0rMore>

</interleave>
</element>
</zero0rMore>
</element>
</define>
</grammar>

22 CHAPTER 3. EXISTING SCHEMA LANGUAGES

Table 3.5: Schematron schema for scenario, step 1

<?xml version="1.0"7>
<schema xmlns="http://www.ascc.net/xml/schematron">
<pattern name="assertions for scenario, step 1">
<rule context="/pimData/contact">
<assert test="Name"> Name missing </assert>
<assert test="Address/Street'"> Street missing </assert>
<assert test="Address/City"> City missing </assert>
<assert test="Phone"> Phone missing </assert>
</rule>
</pattern>
</schema>

instance document, e.g., modeling the requirements for step 2 of the sample
scenario as shown in table 3.6.

Table 3.6: Schematron schema for scenario, step 2

<?xml version="1.0"7>
<schema xmlns="http://www.ascc.net/xml/schematron">
<pattern name="test for step 2">
<rule context="/pimData/contact">
<assert test="Name"> Name missing </assert>
<assert test="Email"> Email missing </assert>
<assert test="Nickname"> no Nickname (optional) </assert>
<assert test="QCategory"> Category missing </assert>
</rule>
</pattern>
</schema>

While Schematron is the first of the investigated schema languages to nat-
urally express the open-content model approach and different Schematron
schemas can be applied to the same instance document, the following de-
sired properties are not supported:

1. There should be an extension mechanisms for existing schemas, which
guarantees backward compatibility of the dataset. This is important
because extending a schema will be a very common step.

2. For applications that want to use the data described by the schema, a
type system is not only useful but essential.

3.6. ASSERTION GRAMMARS 23

3.6 Assertion Grammars

Assertion grammars [16], developed in 1999, feature a concept of tree patterns
comparable to that in Schematron, but without XPath expressions as a means
to specify a validation context .

Development of Assertion grammars stopped after the first release in 1999.
As the expressive power can be mapped to Schematron constructs and the
language has limited popularity, it is not investigated in detail.

3.7 Examplotron

Examplotron [45] started from the observation that instance documents are
usually much easier to understand than the schemas which are describing
them. Instead of giving examples of instance documents to help human read-
ers to understand the schema, Examplotron allows the definition of patterns
by example instance documents.

As not all constraints can be expressed in an example itself, additional con-
structs are provided which give hints for schema generation and validation,
e.g. to express occurrence constraints. The sample implementation of Ex-
amplotron generates XSLT[17] styles from the example which can be used to
validate similar documents. These XSLT styles rely on XPath for asserting
that the structure of a document is equal to the structure of the example and
also satisfies the additional assertions that were given with the example.

Shortcomings

Table 3.7 shows an Examplotron schema, based on the instance document
from table 2.1.

This schema is very similar to the instance document and therefore easy
to create and understand. However, it cannot express restrictions on the
textual content of elements and attributes, and has to mix example data
with additional tags to guarantee certain properties.

As Examplotron is also based on XPath, the expressive power is similar
to Schematron assertions. As Schematron, Examplotron does not have the
notion of a type, and therefore provides no inheritance mechanisms.

24 CHAPTER 3. EXISTING SCHEMA LANGUAGES

Table 3.7: Examplotron schema for scenario, step 1

<?xml version="1.0"7>
<!-- Examplotron schema for the scenario, step 1 -->

<pimData xmlns:eg="http://examplotron.org/0/">

<contact eg:occurs="*">
<Name>Peter Jones</Name>
<Phone>0172555666</Phone>
<Address eg:occurs="+">
<Street>Private Drive 4</Street>
<City>London</City>
</Address>
</contact>

</pimData>

3.8 Document Structure Description (DSD)

Document Structure Description [30] was co-developed by AT&T Labs and
BRICS in November 1999 with the goals of context-dependent description of
elements and attributes, flexible default insertion mechanisms and expressive
power close to XSLT[17].

The possibility to define conditional constraints , e.g., depending on the con-
tent of parent attributes or elements, is one of the features that distinguishes
DSD from other languages. Due to the constraint-based approach the ex-
pressiveness of the content models is remarkable, in some aspects higher than
that of XML Schema. For example, a DSD schema allows to express that
an attribute may only be present if another attribute is present, a very com-
mon constraint which surprisingly cannot be expressed with XML Schema.
DSD also offers a powerful mechanism for default values and default content,
which was inspired by Cascading Style Sheets (CSS,[4]) which are popular
with HTML, but generally suited for other XML applications, too. DSD
schemas can include and redefine existing schemas, but do not support an
explicit inheritance mechanism. DSD does not feature a set of predefined
datatypes but relies on regular expressions to flexibly specify the admissible
format of strings.

3.8. DOCUMENT STRUCTURE DESCRIPTION (DSD) 25

Shortcomings

Table 3.8 shows a possible DSD schema, for step 1 of the sample scenario.

Though DSD schemas offer a constraint-based approach, they do not provide
an open-content model by default, but offer an AnyElement construct which
“consumes” elements of any type. As in XML Schema and RELAX NG,
additional efforts are therefore necessary to simulate an open-content model.

Content models in DSD are very flexible, and by offering redefinition mech-
anisms too flexible for our purpose: To ensure backward compatibility of
a dataset the extension mechanisms for existing types must be restricted to
those that are not breaking compatibility with existing datasets. The include
and redefine mechanisms in DSD allow the modification of types in a way
that breaks compatibility.

In general, regular expressions are more flexible than predefined datatypes.
This would allow a more precise modeling of a phone number, e.g., allowing
other characters such as “/” or “-” to appear, too. However, applications
sharing common data in an XML document still need a set of predefined
datatypes, because this set offers a basic and standardized vocabulary and
syntax for the most common datatypes. This common syntax and vocabulary
is important for sharing data with different applications.

26 CHAPTER 3. EXISTING SCHEMA LANGUAGES

Table 3.8: DSD schema for scenario, step 1

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>
<!-- scenario_stepl.dsd
DSD schema for scenario, step 1 -->

<DSD IDRef="pimDataElem" DSDVersion="1.0">

<ElementDef ID="pimDataElem" Name="pimData'>
<ZeroOrMore>
<Element IDRef="contactElem"/>
</ZeroOrMore>
</ElementDef>

<ElementDef ID="contactElem" Name="contact">
<Element Name="Name">
<Content><StringType/></Content>
</Element>
<Element Name="Phone">
<Content><StringType IDRef="PhoneNumber"/></Content>
</Element>
<0OneOrMore>
<Element IDRef="AddressElem"/>
</0One0rMore>
</ElementDef>

<ElementDef ID="AddressElem" Name="Address">
<Element Name="Street">
<Content><StringType/></Content>
</Element>
<Element Name="City">
<Content><StringType/></Content>
</Element>
</ElementDef>

<!-- regular expression for phone numbers:
one or more digits -->
<StringTypeDef ID="PhoneNumber">
<0OneOrMore>
<CharRange Start="0" End="9"/>
</0One0rMore>
</StringTypeDef>

</DSD>

Chapter 4

Requirements

This chapter lists the requirements that served as the design constraints
for the XInterface schema language. Most of the requirements are gener-
alized from the specific requirements illustrated in the sample scenario. A
subsection for each requirement explains its motivation, and sometimes an
additional subsection summarizes the consequences that implementing this
requirement will necessarily have.

The chapter starts by introducing some definitions that are helpful in de-
scribing the requirements more precisely. Although most of the definitions
are mainly used in the next chapter to model an XML document and XIn-
terfaces, introducing the terms here enables us to express the requirements
more concise.

4.1 Terminology and definitions for modeling
an XML document

This document uses the model and terminology defined in the XML Informa-
tion Set (XML Infoset) specification [13], which provides an abstract, syntax-
free representation of the content of an XML document. As the XInterface
approach does not take all information contained in the Infoset specification
into account, the following model makes a few assumptions that lead to a
simplified model of an XML document. This simplified model serves as the
basis for describing XInterfaces and their requirements.

The simplified model ignores comment, processing instruction, document

27

28 CHAPTER 4. REQUIREMENTS

type declaration and notation items! and assumes that all entity references
have been expanded. Furthermore, it assumes that all namespace prefixes
have been resolved to the corresponding namespace names by the namespace
declarations in scope. The model therefore only considers local names and
namespace names, and ignores namespace prefixes, namespace declarations
and in-scope namespaces.

Definition 1 The fully qualified name of an attribute or element is the
combination of its local name and its namespace name. If no namespace
name 1s available, it consists only of the local name.

The following definition has the purpose of distinguishing the XML docu-
ment that will be validated with respect to a given schema from other XML
documents (e.g., documents containing the definitions of schemas to apply).

Definition 2 The term tnstance document will be used to refer to a well-
formed XML document that is subject to validation.

As XlInterfaces not necessarily define the structure of a whole XML document
but will be applied to selected parts of an XML document, the following
definition captures the central concept of a fragment of an XML document
that can be validated against an XInterface type.

Definition 3 An element item represents the information contained in a
well-formed fragment of an XML document delimited by an element opening
tag and its corresponding closing tag.

In other words, an element item contains the fully qualified name of the
enclosing element, all its attributes and all nested elements and the infor-
mation contained therein. Note that an element item does not contain in-
formation about the context in which it occurs, such as information about
parent elements. This restricts expressiveness of XInterface types to context-
independent validation mechanisms.

The XML Infoset specification treats all textual (i.e., non-markup) content
of an element as an ordered list of children of character items. The follow-
ing definition enables us to conveniently refer to the textual content of an
element.

!For convenience, from now on the term “notation item” and the corresponding short-
hands for the other information items are used instead of the correct terms from the XML
Infoset specification: “notation information item” and so on.

4.1. TERMINOLOGY AND DEFINITIONS 29

Definition 4 The character content of an element item consists of all
character items contained in its children list chunked together.

The following instance document illustrates the definitions made so far:

Example instance document
<?xml version="1.0"7>
<document>
<Address xmlns:IA="http://www.example.org/sample.xid">
<IA:Street>Private Drive 4</IA:Street>
<IA:City>London</IA:City>
</Address>
</document>

It contains four element items (with local names document, Address, Street,
City). The element item with local name Street has the fully qualified name
http://www.example.org/sample.xid:Street and its character content is
“Private Drive 4.

Element items often represent real-world concepts. In the given instance
document, the element item with local name Address represents the concept
of a postal address.

Definition 5 An XInterface type definition determines a set of element
items by stating requirements on them.

At present, possible requirements are

e occurrence of an element with minimum multiplicity,
e occurrence of an attribute,

e occurrence of textual data of a certain type (either as attribute value
or as character content of an element)

To validate fragments of an instance document, a schema language must
select which parts of the instance document should be validated.

Definition 6 A context expression selects a set of element items in a
given instance document.

In the following it is useful to distinguish elements that contain other elements
from those containing only character content (or nothing).

30 CHAPTER 4. REQUIREMENTS

Definition 7 A flat element is an element item that does mot contain
nested element items.

Definition 8 A compound element is an element item that is not a flat
element.

A flat element may have character content, and in contrast to XML Schema’s
definition of simpleType a flat element may have attributes.

4.2 Open-content model

Instance documents may contain elements and attributes not specified by the
XlInterface type.

Rationale

An Xlnterface type specifies requirements for an element item, enabling the
use of the specified data in an application. It has no information about
other applications processing this element item and therefore about which
additional information might be added. As a consequence it does not restrict
the additional information in any way more than necessary.

Consequences

Restricting the cardinality of an element to an upper bound violates this
requirement, as it would prevent other applications from adding more than
the upper number of elements. Instead, the maximum cardinality used in
our approach is interpreted as the mazimum number of elements that will be
processed by that application. A document containing more of these elements
will still be valid, though a warning can be issued.

4.3 Support for multiple interfaces

The schema language should provide a way of declaring that a document
implements multiple interfaces. The validation process must ensure that the
requirements of all interfaces are met.

4.4. SUPPORT FOR INHERITANCE MECHANISM 31

Rationale

The main purpose of the open-content model is to allow one instance docu-
ment to implement multiple interfaces, offering each application its own view
on the instance document.

4.4 Support for inheritance mechanism

Xlnterface types should be extensible, for example with an inheritance mech-
anism. Additionally, if the requirements of an extended interface are met,
this should automatically guarantee that the requirements of the base inter-
face are met, too. We call the property that a derived type can be used in
all contexts where the base type is expected the subsumption property.

Rationale

Extending existing schemas promotes schema and data reuse, in particular
when data evolves with the underlying concepts. For that case, the subsump-
tion property guarantees backward compatibility of the dataset, enabling old
applications to still work with the extended data. This is necessary as it
cannot be assumed that all applications switch to the new data format at
the same time.

4.5 Support for resolving name conflicts

The schema language should offer mechanisms to deal with name conflicts
(e.g., by using XML Namespaces).

Rationale

The schema language cannot rely on local names of elements to be unique
for different applications. If two applications use the same name to represent
a semantic concept, one of the following two cases applies:

1. Both applications refer to the same semantic concept and therefore the
data in the instance document is intended for sharing. The applications
might still have different requirements for the element item in question,

32 CHAPTER 4. REQUIREMENTS

and as a consequence, the conjunction of the requirements has to be
fulfilled for an element item at that context.

2. The requirements refer to a different semantic concept, but unfortu-
nately have chosen the same name to represent it. In this case the in-
stance document must distinguish between the two different elements.

4.6 Emnable easy use of instance documents in
applications

It should be possible to transform a given XlInterface type to a class frame-
work that automates the process of parsing the instance document and allows
easy programmatic access to the contained data that is described by the XIn-
terface type.

Rationale

A schema does not only guarantee the format of a document (with the help
of a validating parser), but contains enough information to automate the
process of manually parsing an XML document (e.g., on DOM][23] or SAX[35]
level) and extracting the necessary information.

An example of this approach using XML Schema is illustrated by Dashofy
[14]. Interestingly, the scenario described by Dashofy also indicates problems
caused by the lack of multiple inheritance in XML Schema and therefore
overcoming these shortcomings was a starting point for this thesis. A similar
tool that generates Java classes is also available for the RELAX Core schema
language[2].

4.7 Support for typing of textual content

The schema language should provide a set of predefined simple datatypes for
textual content of elements or attributes.

4.8. SIMPLICITY 33

Rationale

Applications relying on XInterface types may not only require a specific struc-
ture of a document’s markup, but also constrain the textual content of el-
ements or attributes. For instance, a mobile phone enforces that a phone
number consists of digits only.

Also, for generating a class framework as illustrated in the previous require-
ment, textual content must have type information to enable the mapping to
constructs in the target language. For example, a flat element containing a
number might be mapped to a Java member variable of type int.

4.8 Simplicity

The schema language should be as simple as possible.

Rationale

Feedback and criticism on XML Schema [36, 38] have shown that its com-
plexity is a reason not to adopt it. For the requirements of the scenario it
does not seem necessary to introduce complex constructs into the language.
Moreover, for guaranteeing the subsumption property some constructs can-
not be allowed (such as redefinition mechanisms that allow changing the type
of an element or attribute) which would enhance the expressiveness of the
language.

4.9 Use XML syntax

The XInterfaces schema language should use XML syntax rather than intro-
ducing another syntax.

Rationale

Using XML syntax for schema specifications enables easy processing and
transforming of schemas, as there is a broad range of tools and standards
available for processing XML files. It also reduces the learning curve, as
most schema authors are familiar with the XML syntax.

34 CHAPTER 4. REQUIREMENTS

4.10 No ordering on elements

A sequence of different elements should be treated as an unordered set, sim-
ulating a named record type. Elements with the same name need to be
processed in the same order as they appear in the instance document.

Rationale

The interface approach promotes a data-centric use of XML, where the mean-
ing of an element is in most cases independent of its position within a parent
element.

Strictly demand ordering on elements leads to problems when merging mul-
tiple interfaces: If one XlInterface type requires element a to appear before
element b, and another requires a to appear before element ¢, the relative
order of b and c is unspecified. A third XInterface type using b and ¢ could
decide for either of the two options. This could finally result in conflicting
requirements concerning the order of elements.

The order of elements with the same name should be maintained because it
may carry a semantics such as preference, priority or age. For example, an
email client offers to process more than one email address, but considers the
first email address found as the default one.

Consequences

As the meaning of elements in mixed content models depends on the order
of text and elements, mixed content will not be supported.

4.11 Favor convenience of use instead of pro-
cessing performance

The expressiveness and usability of the schema language should not be re-
stricted because of processing performance considerations, such as requiring
validation with a linear time algorithm.

4.12. ENOUGH INFORMATION FOR KEEPING VALIDITY 35

Rationale

We prioritize usability and interoperability higher than processing perfor-
mance. In many cases performance should not be a problem anyway, such
as for the sample scenario: A contacts database with potentially a few hun-
dred contacts should not demand a lot of processing time, even if non-linear
validation algorithms are required.

4.12 Enough information for keeping validity

The instance document and the interface type definitions should contain
enough information to enable changes to the dataset without losing validity
of any of the required interfaces.

Rationale

If data is shared among different applications, each application might want
to modify, add, or delete element items. However, the application itself can
only take care of implementing the interfaces it knows about. Therefore, the
instance document and the XInterface type definitions must provide sufficient
information to the application to check all required interfaces. If validity of
a required interface is lost because of the changes, a mechanism should be
provided to automatically “repair” the dataset and restore validity.

36

CHAPTER 4. REQUIREMENTS

Chapter 5

The XInterface schema
language

This chapter introduces the XInterface schema language in detail. The first
section introduces the basic features with a simple example. The following
sections describe the syntax and semantics in detail and present the im-
plementation of the validator and the class framework generator that was
developed as part of this work.

5.1 Introduction

The XlInterface language has the following constituting parts, which are de-
scribed in detail in the next sections.

5.1.1 XlInterface type definition

Each application using a shared instance document will define one or more
XlInterface types. These types should be defined in separate files, similar to
the definition of a complex type in XML Schema.

The XInterface schema language is a simple schema language that provides
the necessary constructs to define structure and typing requirements for el-
ement items. The language further provides means for extending existing
XlInterface types, allowing an explicit hierarchy of XInterface types. Syntac-
tically, the language looks like a simplified version of XML Schema, which

37

38 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

should reduce the learning curve for people familiar with XML Schema. Se-
mantically, it is similar to Schematron.

The following is a very simple XInterface type definition, requiring an ele-
ment item that implements this XInterface type to have exactly one Name
element with character content of type string, and at least one child ele-
ment named Address. Each Address element in turn is required to have
exactly one Street and one City element. The Category attribute on the
Address element is optional, but if it is present, its value has to have the
type integer. All elements and attributes have to be in the namespace
http://www.xid.org/Example.xid’.

Simple XInterface type definition
<?xml version="1.0"?7>
<schema>

<interfaceType name="SimpleContact"
defaultNS="http://www.xid.org/Example.xid">
<element name="Name" type="string"/>
<element name="Address'" maxOccurs="5">
<attribute name="Category" type="integer" minOccurs="0">

<element name="Street" type="string"/>
<element name="City" type="string"/>
</element>
</interfaceType>
</schema>

5.1.2 Implements statement

The XML document that is shared among different applications needs to be
enriched with information specifying which XInterface types are to be imple-
mented for which element items and where the XInterface type definitions
can be found.

Given that the above XlInterface type definition was saved in a file “exam-
ple.xid”, the following implements statement would require all child elements
of the root element pimData with the local name contact to implement the
SimpleContact interface.

'In this and some of the following examples a hypothetic URL “http://www.xid.org” is
used as a placeholder for a location where standardized XInterface type definitions could
be stored and retrieved from.

5.1. INTRODUCTION 39

Simple Implements statement

<?xml version="1.0"7>
<pimData>

<implements minOccurs="0" maxOccurs="unbounded" application="Example">
<context>/pimData/contact</context>
<interface name="SimpleContact" location='"example.xid"/>
</implements>

<contact xmlns="http://www.xid.org/Example.xid">
<Name>Peter Jones</Name>
<Address>
<Street>Private Drive 4</Street>
<City>London</City>
</Address>
</contact>

</pimData>

5.1.3 Validating instance documents

Applications using XlInterfaces should validate instance documents before
further processing the contained information.

Figure 5.1 illustrates the validation process.

_ ,P| XInterface typeBI
implements _ — =

instance
document

Dl XInterface type

~
~
bl XInterface type Iﬁ

XInterface
validator

invalid

valid

error messages

Figure 5.1: Validating an instance document

An Xlnterface validator takes as input an instance document and verifies
that all required XInterfaces are implemented. To verify this it needs to re-

40 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

trieve and parse all XInterface types referenced in the instance document. If
not all requirements are met, it should provide information on missing ele-
ments or attributes or on textual content that is incorrectly typed. Note that
the validation process does mot change the information set of the instance
document. Other schema languages create normalized documents when they
validate it, e.g., by inserting default values.

5.2 Syntax

The following two subsections explain the syntax of XInterface type defini-
tions and implements statements. This syntax can be expressed also by the
means of a schema language. Appendix A gives an XML Schema schema
for XInterface type definitions, and an XlInterface type definition for both
XlInterface type definitions and implements statements.

5.2.1 Xlnterface type definition

An Xlnterface type defines a content model, but does not specify which
element items should be validated against that content model. Therefore
an XlInterface type can be checked only in connection with an implements
statement that selects the element items to check.

The following example shows an XML document containing two XInterface
type definitions, the first one importing the second one.

Sample XInterface types

<?xml version="1.0"7>
<schema>
<interfaceType name="MobileContactl"
defaultNS="http://www.xid.org/IsoContact.xid">
<element name="Name" type='"string"/>
<element name="Phone" type="integer" minOccurs="0" maxOccurs="3"/>
<element name="Address" maxOccurs="5">
<import name="IsoAddress"/>
</element>
</interfaceType>

<interfaceType mname="IsoAddress"
defaultNS="www.xid.org/IsoAddress.xid">
<element name="Street" type="string"/>
<element name="City" type="string"/>
</interfaceType>
</schema>

5.2. SYNTAX 41

Table 5.1: Syntax for an interfaceType element

Attributes

name a string, required

This string uniquely identifies the interface type
within the containing file.

defaultNS a string, optional, defaults to the empty string
This string enables to specify a default namespace
for the interface type. All element and attribute
declarations that do not specify a namespace in-
herit the value given here.

Child elements
content declaration | zero or more elements declaring the content model
The possible content declarations are listed in the
next subsections.

A well-formed XML document can contain one or more XInterface type def-
initions. The XML document should have a schema element as its root
element. XlInterface types are defined as children of the root element. De-
pending on the situation, it may make sense to define exactly one XInterface
type per XML document, or to put multiple definitions in one document. It is
even allowed to place XInterface type definitions directly in an instance doc-
ument. However, this does not promote the reuse of existing types and there-
fore is not recommended. Table 5.1 gives the syntax for an interfaceType
element.

Content declarations

The content model defined by an XInterface type is an open-content model,
i.e., it allows arbitrary additions to the instance document without causing
validation errors, as long as the typing requirements of those elements that
are specified are met.

The order of declarations in the content model is not significant. The required
elements may appear in any order in the instance document, it is not possible
to enforce a particular order. Each content declaration will be translated to
an assertion that needs to be checked for the element item in question. These
assertions do not allow to specify default values for elements or attributes
that are not present in the instance document. Therefore XInterfaces do not
change the information set of an instance document.

42 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

XlInterface types do not support mixed-content models. This is a consequence
of neglecting the order of elements, as in mixed-content models this order
is essential for the meaning of elements. However, for most data-centric
applications of XML this order is not essential for the meaning of elements
and can be neglected.

The following content declarations are possible:

Flat element declaration

An example for a flat element declaration is the Phone element declaration
of the MobileContactl type:

<element name="Phone" type="integer" minOccurs="0" maxOccurs="3"/>

A flat element can carry a type definition, may carry attributes, but is not
allowed to contain nested elements. Table 5.2 gives the syntax for a flat
element declaration.

A flat element declaration requires that the current element item has at least
minOccurs child elements with local name name and namespace name ns.
Each of these child elements is required to have character content of type
type and carry the correctly typed attributes specified in the attribute dec-
larations. If ns is empty, all elements with local name name will be validated.

Compound element declaration

An example of a compound element declaration is the Address element dec-
laration of the MobileContactl type:

<element name="Address" maxOccurs="5">
<import name="IsoAddress" location="IsoAddress.xid"/>
</element>

A compound element can contain subelements, but is not allowed to carry a
type declaration. Table 5.3 gives the syntax for a compound element decla-
ration.

A compound element declaration requires that the current element item has
at least minOccurs child elements with local name name and namespace name
ns. For each of these child elements, the child element’s content is checked
against the nested content declarations. If ns is empty, all elements with
local name name will be validated.

5.2. SYNTAX

43

Table 5.2: Syntax for an element element (flat element declaration)

Attributes

name

a string, required

This string defines the local name of an element
in the instance document to match this require-
ment.

ns

a string, optional, defaults to the defaultNS
given in the interfaceType element

This string defines the namespace of an element
in the instance document to match this require-
ment. If it is not given or empty, the value de-
clared in defaultNS of the interfaceType ele-
ment is taken.

type

a string, optional, defaults to the empty string
This string identifies the type of the character
content of the element in the instance document.
The empty string represents the universal type,
i.e., any type is accepted for the character con-
tent.

See the next section for type systems and type
identifiers that can be used.

initial

a string, optional, defaults to the empty string
This string specifies an initial value that can be
assigned to a newly created element. The ini-
tial value can be used to “repair” element items
if they are created and not implementing all re-
quired interfaces. An XInterface type might use
a dummy value such as “unknown” to mark el-
ement content that has not been specified yet.
The initial value just ensures conformance to the
interface type.

minQOccurs

a non-negative integer, optional, defaulting to 1
The semantics is the same as defined for the
implements statement.

maxQOccurs

a mnon-negative integer or “unbounded”, op-
tional, defaulting to 1

The semantics is the same as defined for the
implements statement.

Child elements

attribute declaration

zero or more attribute declarations

44 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Table 5.3: Syntax for an element element (compound element declaration)

Attributes

name as defined above
ns as defined above
minQOccurs as defined above
maxQOccurs as defined above

Child elements
nested content declaration | zero or more content declarations

The content declarations nested inside
this declaration will apply to the content
of the enclosing declaration.

Table 5.4: Syntax for an import element

Attributes

name a string, required
This name identifies the interface type to import.

location | a string, optional, defaults to the empty string

If not empty, this string gives the location from where the XIn-
terface type definition can be retrieved. It can be a relative
path or an absolute URL

If empty, the file that also contains the importing XInterface’s
type definition is searched for the XInterface type definition to
import.

Import declaration

For example, consider the import declaration of the MobileContactl type:

<import name="IsoAddress" location="IsoAddress.xid"/>

An import declaration cannot have nested content nor carry a type declara-
tion. Table 5.4 gives the syntax for an import declaration.

An import declaration adds to the content model of the current element item
the content declarations of the imported XInterface type.

Definition 9 If an import declaration occurs at the top level of an XInterface
type definition, the importing type is called derived from the imported type.

An Xlnterface type can be derived from multiple existing types.

5.2. SYNTAX 45

Attribute declaration

For example, consider the following attribute declaration (which will be later
used in the EmailContact type):

<attribute name="Category" type="string"/>

Table 5.5 gives the syntax for an attribute declaration.

An attribute declaration requires that the current element item carries an
attribute (unless minOccurs equals 0) with local name name and namespace
name ns. The attribute value is required to be of type type. The attribute
declaration must not have nested elements or attributes. If ns is empty, all
attributes with local name name will be validated.

5.2.2 Implements statement

The instance document that contains the interfaced data needs to be enriched
with the information which interfaces are to be implemented for which ele-
ments. This information is given with the implements element, as shown in
the following example:

Sample implements statement

<implements
minOccurs = "O"
maxOccurs = "unbounded"
application = "MobilePhonel"
comment = "ensures a format usable for a phonebook">
<context>/pimData/contact</context>
<interface

name="MobileContactl"
location="MobileContactl.xid">
</interface>
</implements>

The implements statement specifies which XInterface types will be checked
and where the corresponding XlInterface type definitions can be retrieved.
It also allows to add information about the application that enforces this
restriction on the instance document. As XlInterface types will always be
checked against element items, one also needs to select which element items
of the instance document will be validated. A widely used specification to
address parts of an XML document is XPath [12], a recommendation from

46

CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Table 5.5: Syntax for an attribute element

Attributes

name

a string, required
This string defines the name an attribute in the instance
document needs to have to match this requirement.

ns

a string, optional, defaults to the defaultNS given in the
interfaceType element

This string defines the namespace of an element in the in-
stance document to match this requirement. If it is not
given or empty, the value declared in defaultNS of the
interfaceType element is taken.

type

a string, optional, defaults to the empty string

This string defines the type of the attribute content in the
instance document. The empty string stands for the univer-
sal type, i.e., any type is accepted for the attribute content.
See the next section for type systems and type identifiers
that can be used.

initial

a string, optional, defaults to the empty string

This string specifies an initial value that can be assigned to
a newly created attribute. The initial value can be used to
“repair” element items if they are created and not imple-
menting all required interfaces. An XlInterface type might
use a dummy value such as “unknown” to mark element
content that has not been specified yet. The initial value
just ensures conformance to the interface type.

minQOccurs

0 or 1, optional, defaulting to 1
By setting this value to 0, the attribute is declared optional,
otherwise it is mandatory.

maxQOccurs

fized to 1, optional, defaulting to 1
This value is fixed to 1, as in XML there is only a single
attribute of the same name allowed per element.

5.3. SEMANTICS - INFORMALLY 47

the W3C. By restricting the allowed XPath expressions to those that evaluate
to a node-set containing only element nodes, this standard is well suited to
define the set of selected element items in the context expression?.

Table 5.6 gives the syntax for an implements statement.

For each implements statement, all element items selected by one of the con-
text expressions are validated against the specified XInterface type. The
occurrence constraints apply to the number of elements items that are se-
lected by the context expressions. If there are not at least minOccurs element
items selected, the instance document is not valid.

5.3 Semantics - informally

5.3.1 Dealing with name conflicts

The XlInterface language is specifically designed to enable data sharing be-
tween applications that possibly do not know about each other. This design
constraint and the feature to allow multiple inheritance of interface types
inevitably leads to the problem of name conflicts, a problem that is well-
known in programming languages that allow multiple inheritance (whether
on interface or implementation level), and is also inherent to a meta-markup
language such as XML.

To address the problem of name conflicts in XML, the W3C introduced XML
Namespaces [7] in 1999, a concept to uniquely describe markup constructs
with globally unique names, whose scope extends beyond the document con-
taining them. This concept has proven itself successful and is widely adopted
by the XML community. Today, the majority of the available XML tools can
handle namespaces, and many XML-related specifications support it (e.g.,
XML Schema, XPath, XPointer, XLink).

XML Namespaces can be also utilized to deal with name conflicts in XInter-
faces. Any element in the instance document may carry a namespace prefix
which will be resolved to a namespace name via the corresponding namespace
declaration that is in scope. In case of a name conflict, this allows elements
with the same local name to be distinguished depending on their namespace.

2To avoid undesired side-effects of supporting the full XPath functionality, it might be
useful to further restrict the set of allowed XPath expressions to a natural subset defined
in XSLT[17, section 5.2] to select a node-set in an XML document. This subset basically
restricts the navigation steps to the child, attribute and descendant-or-self axis.

48 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Table 5.6: Syntax for an implements element

Attributes

minQOccurs | a non-negative integer, optional, defaults to 1

Specifies the minimum number of occurrences that have to
be found in all given contexts.

maxQOccurs | a non-negative integer or “unbounded”, optional, defaults
to 1

Specifies the maximum number of occurrences of that el-
ement that will be processed by the application imple-
menting this interface. In contrast to XML Schema this
statement does not really restrict the instance document,
which can contain more nodes matching the context than
in max0Occurs specified. This statement rather has infor-
mative character for applications and might be used by the
class framework generator. Applications implementing this
interface will very likely only access the first maxOccurs
occurrences (unless maxOccurs set to “unbounded”)and ig-
nore all further occurrences matching the context. Note
that type validation is not restricted to the first maxOccurs
occurrences.

application | a string, optional, defaults to the empty string
A description of the application that imposes this interface
on the instance document

comment a string, optional, defaults to the empty string
A comment which might explain why this application en-
forces this interface.

Child elements

context one or more elements with character content, required
One or more context elements, each specifying an XPath
expressions as its character content. Any element item that
is selected by one of these XPath expressions must conform
to the specified XInterface type.

interface an element with a mandatory name and optional location
attribute, required

Specifies an XInterface type to implement by name and gives
the location where the XInterface type definition can be
retrieved. location can be a relative path or an absolute
URI. If it is not specified, the instance document contain-
ing the implements statement is searched for the XInter-
face type definition. This allows to define XInterface types
within an instance document.

5.3. SEMANTICS - INFORMALLY 49

The attribute and element declarations in the XInterface type definition al-
low the specification of a namespace, too. Elements and attributes in the
instance document will only be validated, if both local name and namespace
name are matching. On the other hand, XInterfaces offer validation based
on local name only by setting the ns attribute of a declaration to the empty
string.

In case of a name conflict, this allows elements with the same local name
to be distinguished depending on their namespace and validation with the
appropriate interface type.

There is another important implication for applications that share data: As
the declarations of both interface types need to specify the same combina-
tion of local name and namespace some kind of standardization mechanism
is required to provide standardized fully-qualified names for elements and
attributes.

One possible scenario is an organization reviewing proposals for pairs of fully-
qualified names and associated semantics and publishing the accepted ones,
each one documented with semantic information explaining the underlying
concept. For the sample scenario we might assume an organization publishing
the following list as a reference list of concepts related to addresses (the
semantic information would need to be more precise and detailed in reality):

Local name | Namespace http://www.xid.org/ | Type Semantics

Name IsoContact.xid string full name of a person

Phone IsoContact.xid integer phone number, includ-
ing country and area
code

Address IsoContact.xid compound | postal address as spec-
ified in the IsoAddress
namespace

Street IsoAddress.xid string street part of a postal
address

City IsoAddress.xid string city part of a postal ad-
dress

With such a list available, applications can choose to share elements with
other applications by using the standardized fully-qualified names of the
concepts to model, or to introduce new concepts by using their own unique
namespaces. A combination of both is probably a common scenario. For
example, an application is using elements from the standardized namespace
http://www.xid.org/IsoContact.xid to model a business contact and po-
tentially share them with other applications, but adding a nearestSales-
Office element to it, which is qualified by a non-standardized application-

50 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

specific namespace.

While this approach is simple and clean, it depends heavily on the stan-
dardization efforts. Data sharing is only realistic if there are standardized
namespaces available.

5.3.2 Merging assertions

When an XlInterface type definition uses the import statement to include
the content declarations of an existing type, it may happen that two content
declarations have the same local name and the same namespace. These two
content declarations will be merged into one assertion.

Merging two content declarations is possible, if

e both content declarations are compound element declarations
= The nested declarations of both will be collected and if necessary
merged recursively.

e both content declarations are flat element declarations or attribute dec-
larations and have the same type
= The resulting content declaration will be a flat element or attribute
declaration of this type.

e both content declarations are flat element declarations or attribute dec-
larations and one of the types is derived from the other
= The resulting declaration will be a flat element or attribute decla-
ration, typed with the more restrictive type of both.

In all three cases, the new occurrence constraints will be computed as follows
(the indexed variables refer to the values of the two assertions that will be
merged):

minOccurs = maz(minOccurs;, minOccurss)
maxOccurs = mazx(minOccurs, min(maxOccursy, mazOccurss))

If merging is not possible, parsing of the XInterface type fails.

5.3.3 Typing of textual content

Type declarations in the XInterface language restrict the textual content of
elements and attributes. A type definition can be applied to all attributes

5.3. SEMANTICS - INFORMALLY 51

and to all flat elements. For an instance document to be valid, the attribute
value or character content of the element must satisfy the restrictions of the
specified type.

The XInterface language can use any type system that allows the validation
of a string against a given type. Additionally, a type hierarchy is useful that
defines a derivation tree of types, enabling to check whether a type is derived
from another.

Such a type system can be found in part 2 of the XML Schema specification
[3]. It consists of 45 built-in simple types organized in a hierarchy®. As this
type system is explicitly designed to be used in conjunction with other schema
languages, standardized via the W3C, and a basic tool support already exists,
there are strong reasons to use it. For the remainder of this work we will
therefore assume that this type system will be applied.

5.3.4 Access methods

Because different applications are allowed to place different constraints on the
interfaced data, modifications made by one application might cause problems
threatening the validity of another application’s view on the data. A typical
situation might be the creation of a new element item by one applicaton
where additional constraints specified by another application apply to this
element but are not met. This problem is related to the problem of View
Updates in database theory.

To ensure validity of the dataset after modifications we define the following
access methods that an application modifying interfaced data must adhere
to. Obviously, an application that only reads shared data is not required to
follow any rules.

For simplicity the following scenario is assumed: The application reads the
instance document from a file into memory, representing it there as a DOM
tree. Modifications take place on this DOM representation. The application
finally wants to serialize the DOM representation back to a file.

3As complex types go beyond placing requirements on just the text content of an ele-
ment but may contain mark-up structure themselves, they cannot be used here. However,
it would be an interesting starting point for a tight integration of XML Schema into XIn-
terfaces (or vice versa) to allow any XML Schema types to be used within XInterface
type definitions, and invoke an XML Schema validator for the corresponding document
fragment.

52 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Reading

For an application that modifies data we require that the validity of all in-
terfaces must have been checked when reading, guaranteeing a valid state
of the instance document before any modifications take place. As this sim-
ply means to invoke an XlInterface validator when reading data this is the
recommended procedure anyway.

Writing

Applications should always modify one element item corresponding to one
XlInterface type at a time.

Let E be the element item that an application wants to modify/create/delete,
T, ...T; the XInterface types that the application itself requires to be imple-
mented for element item E.

1. The application modifies/creates/deletes the element node in the DOM
tree that corresponds to the element item F.

2. The application calls the validator to check whether this element node
implements XInterface types 77 ... T; (does not apply when deleting an
element node).

3. The application calls the validator for all implements statements for
which a member of the selected set of element items might contain the
element item FE.

If validation errors occur, we cant distinguish two cases and react appropri-
ately:

1. minOccurs not satisfied

(a) attribute
= insert the required attribute with the specified initial value

(b) flat element
= insert the required element with the specified initial value as
character content

(c) compound element
= insert the required element with empty content

5.4. SEMANTICS - FORMALLY 93

2. typing mismatch

(a) require user to interactively modify value (e.g., with a type-specific
input dialog), or

(b) replace the invalid value with initial value

In both cases, the process needs to be repeated until the document is valid.

5.4 Semantics - formally

For evaluating the expressiveness of schema languages it is useful to model the
possible classes of documents formally. A very interesting approach based
on regular tree grammars can be found in Murata, Lee and Mani[37]. It
classifies DTD, XML Schema, DSD, XDuce, RELAX and TREX into
four classes (Regular Tree Grammars, Local Tree Grammars, Single-Type
Tree Grammars and Restrained-Competition Tree Grammars) which differ in
their expressiveness. Investigating XInterfaces within that formal framework
still needs to be done, but might be difficult because the content model of
Xlnterfaces is not grammar-based.

Intuitively, both instance documents and XInterface types can be modeled as
a tree* with ordered children®. Determining whether a document implements
an interface consists of verifying whether the instance document “contains”
the tree as defined by the XlInterface type as a “subtree”, taking the re-
quired cardinalities into account. Figure 5.2 depicts this matching process
graphically.

In the following we try to formalize the intuitive notion of “containing as a
subtree”, not taking a grammar-based approach but using abstract datatypes
to model the class of documents defined by an XInterface type.

The notation roughly follows the standard notation used in type theory, for
example by Cardelli[9]. In particular, if A and B are sets, we use

4Strictly speaking an XInterface type itself defines just a collection of trees, as the root
element is missing. The root element is added whenever an implements statement makes
use of an XInterface type. An interface type is always validated in conjunction with an
implements statement, so we can simply assume this root element to be already present
here.

5Although our model neglects the order of differently named elements, the children of
an element are modeled as an ordered sequence as defined in the XML specification.

54

CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

|DOM model of the instance documentbl

(pimData)

tree model of the interface type N

contact:0:*

(todoList)
C calendar) C contacts) i

[nested]

(contact)

contact

contact
Pt s \\.

Name:1:1 Phone:1:1 Address:1:3
[string] [integer] [nested]

/Name // Phone/ /Nickname/ Address
/Street:l:l/ /City:l:l/

[string] [string]

[[[

AXx B

A+ B

5.4.1

Figure 5.2: Tree model of an XInterface type

to denote the Cartesian product, which is a set of all pairs
with first component an element of A and second component
an element of B

to denote the disjoint union of sets. An element of A + B is
either an element of A tagged with a left token (called inl),
or an element of B tagged with a right token (called inr)

to denote the set of total functions mapping elements of B to
elements of A

to denote an ordered, possibly empty sequence of elements of
A.

Abstract data type for an element item

XlInterface types are always validated against a set of element items selected
by the context expression. Thus, validating an element item F against an
XlInterface type T yields “valid” if the element item implements the interface
type, and yields “not valid” plus some error information otherwise.

Having the definitions from section 4.1 in mind, an element item can be
summarized as having a name, a set of attributes and an ordered sequence
of child element items or character content. Thus, the content of an element

5.4. SEMANTICS - FORMALLY 35

item can be modeled as

Contents = AttrMap x (Text + ElemMap)

where

AttrMap represents the set of attributes, each having a name and a
value,

Text represents the character content and basically can be de-
scribed as a Unicode string (corresponding to PCDATA as
defined in the XML specification),

ElemMap represents the sequence of child element items.

If Attr Name represents the set of allowed attribute names, we can model the
set of attributes as an element of all possible mappings from attribute names
to attribute values (this allows convenient merging of multiple interfaces):

AttrMap = U AttrV aluetrs

AttrsC Attr Name

with the semantics of

for m € Attr Map
dom(m) is the set of attribute names for which attribute values are present

for n € dom(m)
m(n) = value if the attribute with name n has the value value.

Similarly, if ElemName represents the set of allowed element names, we can
represent the sequence of child element items as a relation mapping element
names to a sequence of content models as follows

)ElemN ame

ElemMap = (seq Contents

with the semantics of

for m € ElemMap
m(n) = {ci1,...,c;) if element n is exactly ¢ times present, with the content
models ¢y, ..., c; appearing in this order.

Hence m(n) = () if there exists no element with name n.

56 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

To exemplify the notation consider the following element item from the sam-
ple scenario:

Example element item
=""private">

<contact Category
<Name>Lucy Walsh</Name>
<Phone>0179445566</Phone>
<Address>
<Street>Parkstr. 7</Street>
<City>Munich</City>
</Address>
</contact>

This element item could be modeled as follows:

¢ = ({(Category — ”private”)},
inr[(Name — (&, inl(” LucyWalsh”))), (Phone — (&, inl(?0179445566"))),
(Address — (&, inr[(Street — (&, inl(” Parkstr.7"))), (City — (&, inl(” Munich”))))]])

5.4.2 Interpretation of an XInterface type definition

Now that arbitrary content models can be represented with an abstract
datatype, we need to specify how an XInterface type definition restricts this
set to contain only the interface-valid content models.

We define an interpretation v that maps an XInterface type definition to a
set of contents C, where each element in C is interface-valid to the XInterface

type.
Y[] : XInterface type definition — {c € Contents|c is interface-valid }

An Xlnterface type definition consists of a number of assertions ai,...,ay,.
As these assertions are independent of each other, the resulting set of valid
contents is simply the intersection of all valid sets specified by each single
assertion.

Pl(ar,---)= [¥lai]

1<i<n

This approach elegantly captures the semantics of importing an existing XIn-
terface type: The set of valid content models of the existing type is intersected
with the set of valid content models defined by the additional assertions. As

5.5. IMPLEMENTATION 57

a side effect, this also proves the subsumption property, i.e., that any element
items valid to a derived interface type are valid to the base type.

Attribute declaration

erpr = <attribute name=n type=t>

Ylexpr] = {(am, te)|lam € Attr Map,am(n) € [t],te € Text + ElemMap}

Compound element declaration

expr = <element name=n minOccurs=m> children </element>
Ylexpr] = {(am, em)|am € Attr Map,em € ElemMap,
em(n) = {c1,...,cx), k > min,c; € Y[children]}

Flat element declaration

(as children, only attribute declarations are allowed)

expr = <element name=n minOccurs=m type=t> children </element>
Ylexpr] = {(am, em)|am € Attr Map,em € ElemMap,

em(n) = {(c1,...,cx), k > min,

¢; € {(am, tat)|tet € Text,tat € [t], (am, tat) € Y[children|}}

Import declaration
An import declaration is substituted by all declarations of the specified XIn-

terface type. Thus, the interpretation can be applied to the inserted decla-
rations.

5.5 Implementation

As a part of this thesis an implementation of an XInterface validator and a
class framework generator were developed.

58 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

5.5.1 XlInterface Validator

In general, the validation process of an XInterface validator can be outlined
as follows:

for all valid implements statements in the instance document do
retrieve the XInterface type from the given location and parse it
build the set of assertions corresponding to that type
evaluate all context expressions
for all element items selected by the context expressions do
for all assertions of the XInterface type do
check the selected element item against the assertion
end for
end for
count the number of selected element items
check whether the required cardinality is fulfilled
end for

For each assertion that fails, the validator should provide enough information
that an application might be able to “repair” the instance document. This
information should consist of:

e an expression identifying the element item which caused the error within
the document (e.g., an XPath expression)

e information about the assertion that failed

The implementation we provide is realized in Java, using the Xerces XML
Parser and Xalan XPath processor, both from the Apache Project [40]. It
processes both instance document and type definitions on DOM level and
therefore might not be the most efficient implementation. For datatype val-
idation it uses Sun’s XML datatype library (xsdlib) [29]. Obviously, restric-
tions of the Xalan implementation and Sun’s datatype library apply to the
validator, too.

The validator implements the XInterface language as presented in this thesis
and follows the validation process outlined above. To illustrate the imple-
mentation we invoke the validator on a sample instance document which
contains two errors (see the comments in the input document):

java XInterfaceValidator document.xml

If the file document.xml contains the instance document shown in table 5.7,
the validator produces the output shown in table 5.8. As expected, two error

5.5. IMPLEMENTATION 99

Table 5.7: Sample input document containing errors

<?xml version="1.0"7>
<!-- scenario_error.xml - sample instance document containing errors -->

<pimData xmlns:IA="http://www.xid.org/IsoAddress.xid"
xmlns:0C="http://www.xid.org/Organizer.xid"
xmlns:IC="http://www.xid.org/IsoContact.xid">

<implements minOccurs="0" maxOccurs="unbounded">
<context>/pimData/contact</context>
<interface name="MobileContactl" location="MobileContactl.xid"/>
</implements>

<contact>
<IC:Name>Peter Jones</IC:Name>
<IC:Phone>555666-x</IC:Phone>

<!-- typing error: Phone does not contain an integer -->
<0C:Phone>0171/11223344-x</0C :Phone>
<!-- this Phone is no error: different namespace -->

<IC:Address>
<IA:Street>Private Drive 4</IA:Street>
<!-- minOccurs not satisfied: missing <City> element -->
</IC:Address>
<0C:Email>peter. jonesQweb.de</0C:Email>
</contact>

</pimData>

messages are given together with the the path of the element items and the
assertions that caused them.

Limitations

1. This implementation of the validator cannot handle recursive types, due
to the strict evaluation of import declarations. However, this should
not be hard to modify in an advanced implementation.

Specifying a recursive type in the XInterface language is possible in gen-
eral by using a recursive import statement: Obviously, the surrounding
element’s minOccurs needs to be set to 0 to allow finite instance doc-
uments to be valid.

60 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Table 5.8: Sample output of XInterface validator

user:/home/user > java XInterfaceValidator scenario.xml -d 3
XInterfaceValidator, version 0.2
Instance document (scenario_error.xml) successfully parsed
parsing implements statements...
XInterfaceType, name: MobileContactl
[/ Name:1:1, ns: http://www.xid.org/IsoContact.xid, type: string]
[/ Phone:0:5, ns: http://www.xid.org/IsoContact.xid, type: integer]
[/ Address:1:5, ns: http://www.xid.org/IsoContact.xid, extendsList: IsoAddress]
[/Address/ Street:1:1, ns: http://www.xid.org/IsoAddress.xid, type: string]
[/Address/ City:1:1, ns: http://www.xid.org/IsoAddress.xid, type: string]

implements statement for MobileContactl (MobileContactl) .. valid!
node qualified with different namespace, skipping
list of errors:
* implements statement for MobileContactl enforcing type: MobileContactl
ERROR 1:[element <Phone>: typing mismatch, expected: integer, found content:"0172/555666",
path: /pimData/contact/IC:Phone[0], assertion:
[/ Phone:0:5, ns: http://www.xid.org/IsoContact.xid, type: integer]]
ERROR 2:[element <City>: minOccurs not satisfied (found: 0),
path: /pimData/contact/IC:Address[0], assertion:
[/Address/ City:1:1, ns: http://www.xid.org/IsoAddress.xid, type: string]]

5.5.2 Class framework generator

Accessing and modifying XML documents can be done in many ways, the
DOM][23] and SAX][35] models are probably the most popular ones. These
standards offer very flexible approaches for parsing and modifying docu-
ments. However, for accessing typed data (whether typed with the help of
DTD, XML Schema, or XInterfaces) the step of manually parsing an XML
document and extracting the necessary information does not seem necessary,
because the type information provides enough information to automate this
process.

The XInterface language was designed with the goal of providing enough in-
formation to automatically generate a class framework for this purpose. As
Java promotes the concept of interfaces, provides excellent XML support, and
allows reflection on types it was chosen for mapping the XML concepts to an
object-oriented programming language. As the XInterface validator already
provided parts of the required functionality, the class framework generator
functionality was integrated into the validator. The validator also provides
the functionality of reading the content of element items into the correspond-
ing classes. As the validator is not coupled with any of the generated classes,
it uses the reflection feature of Java to create the corresponding objects and
to access the set methods of these objects.

5.5. IMPLEMENTATION 61

The following steps will be typical for developing an application that uses
XlInterfaces together with the class framework:

1. Design the XInterface type.

2. Call the validator to parse the XInterface type and instruct it to gen-
erate Java sources for it. The generated source code consists of one
or more interfaces specifying access methods, and one or more classes
representing the interfaced data contained in a matching element item.

3. Include the source codes in the Java application and use the gener-
ated interface methods to easily access the interfaced data within your
application.

4. Call the validator from within your application to parse an XML docu-
ment into a list of objects, each one an instance of one of the generated
classes and corresponding to one valid occurrence of the specified XIn-
terface type in the instance document.

5. The application can access the information via the access methods de-
fined in the interfaces and change it.

6. Call the validator again for writing a list of objects back to an XML
document (not implemented in this version of the class framework gen-
erator).

The class framework generator maps XlInterface types to Java classes and
interfaces using the following rules:

1. Attributes and flat elements that do not carry attributes are treated
as simple constructs and will be mapped to a member in the cur-
rent class. Depending on the maxOccurs value this member has either
directly the Java type that corresponds to the specified XML Schema
type (maxOccurs set to 1), or has the type Vector and will contain
objects of the corresponding Java type (maxOccurs greater than 1).

2. Compound elements and flat elements that carry attributes are treated
as complex constructs and will be mapped to a new class. Addi-
tionally, a member that contains one or more references to instances of
that class will be added to the current class. Following the distinction
from the previous case, the type of this member will either be a refer-
ence to the created class (maxOccurs set to 1) or a Vector of references
(maxOccurs greater than 1).

62

CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

3. For all members of a class the corresponding interface contains a get,

set and count method. The get and set methods take an optional
index argument to access specific members in case there are more than
one value contained. If not given, they always access the first (and
possibly only) found occurrence of the corresponding element item.
The count method returns the number of occurrences of that element.
In case of attributes and elements with maxOccurs set to 1, this method
always returns 1.

. For an XlInterface type that imports other XInterface types, the cor-

responding class will be declared as implementing the Java interfaces
that correspond to the imported XInterface types. The created Java
interface will be declared as extending these interfaces. These declara-
tions map the type hierarchy of XInterface types to the corresponding
interface hierarchy in Java. As a consequence, programs using the
class framework can make use of the subsumption property: Every-
where where the Java interface generated from an XlInterface type A

is expected, an interface generated from an XlInterface type B can be
used, if B is derived from A.

. Each XML Schema type used for typing textual content will be mapped

to a Java type. At present, of all XML Schema built-in simple types
only the string and integer type are supported and mapped to the
Java types String and Integer, respectively.

To understand the mapping from XlInterface types to Java classes and in-
terfaces its probably best to look at some XInterface types and their corre-
sponding Java sources. Appendix B shows the generated source codes for
some of the XInterface types used in the sample scenario. In section 6.3 a
simple application using these generated sources is shown.

Limitations

The class framework generator primarily serves as a proof-of-concept and
therefore has a number of limitations in its current version:

e The class framework only supports two XML Schema types (string

and integer). There should be a mapping to Java types defined for
all XML Schema types.

5.5. IMPLEMENTATION 63

e For readability of the generated sources namespace support is not in-
tegrated. This means that the framework only takes the local names
of elements and attributes into account. Name conflicts that are other-
wise resolved with the help of namespaces will lead to classes with the
same name.

e All generated classes are top-level classes. For a more elaborate con-
cept, the use of Java packages could be useful, or alternatively nested
classes to hold nested elements®.

e The class framework does not support saving class content back to an
XML document. Ideally, changes to element items are only done via the
methods of the generated interfaces, and the class framework is called
to incorporate these changes into the instance document. This would
also require the implementation of the access methods from section
5.3.4, and adding methods for creating and deleting element items.

6This is not as trivial as it may appear, as the same type occurring on different levels of
nesting will be mapped to different Java types, preventing an application from uniformly
treating these types.

64 CHAPTER 5. THE XINTERFACE SCHEMA LANGUAGE

Chapter 6

Implementation of the scenario

We revisit the scenario from chapter 2 and show the implementation with the
help of XInterfaces. First, the instance document containing the “database”
is given, then all the XInterface type definitions which define the “views” for
the different applications using this database are given. Finally, a sample
application illustrates how the class framework allows convenient access to
the data in the instance document.

For readability, the scenario (and thus, the implementation) is kept very
simple. Obviously, a realistic scenario would include much more information
and structure in order to be useful. Nevertheless, this scenario makes use of
most of the features of the XInterface language.

6.1 Instance document

Table 6.1 shows an instance document that implements the scenario intro-
duced in chapter 2. It contains the implements statements for the various
applications using this data, and two contact elements representing a very
small “contacts database”.

6.2 XlInterface type definitions

Each of the following XlInterface type definitions define a view on the in-
stance document ensuring that the application can make use of the data.
For the namespace declarations, we assume that all namespaces beginning

65

66 CHAPTER 6. IMPLEMENTATION OF THE SCENARIO

Table 6.1: Instance document for scenario, step 4

<?xml version="1.0"7>
<!-- scenario.xml - instance document for the scenario, step 4 -->

<pimData xmlns:MC2="http://www.xid.org/MobileContact2.xid"
xmlns:EC="http://www.xid.org/EmailContact.xid"
xmlns:IA="http://www.xid.org/IsoAddress.xid"
xmlns:IC="http://www.xid.org/IsoContact.xid">

<implements minOccurs="0" maxOccurs="unbounded" application="MobileContacti">
<context>/pimData/contact</context>
<interface name="MobileContactl" location="MobileContactl.xid"/>
</implements>

<implements minOccurs="0" maxOccurs="unbounded" application="MobileContact2">
<context>/pimData/contact</context>
<interface name="MobileContact2" location="MobileContact2.xid"/>
</implements>
<implements minOccurs="0" maxOccurs="unbounded" application="EmailContact">
<context>/pimData/contact</context>
<interface name="EmailContact" location="EmailContact.xid"/>
</implements>

<contact EC:Category="business" MC2:Category="1">
<IC:Name>Peter Jones</IC:Name>
<IC:Phone>0172555666</1C:Phone>
<IC:Address>
<IA:Street>Private Drive 4</IA:Street>
<IA:City>London</IA:City>
<MC2:Zip>7500</MC2:Zip>
</IC:Address>
<IC:Address>
<IA:Street>Bahnstr. 8</IA:Street>
<IA:City>Freiburg</IA:City>
<MC2:Zip>79100</MC2:Zip>
</IC:Address>
<EC:Nickname>PJ</EC:Nickname>
<EC:Email>peter.jones@web.de</EC:Email>
</contact>

<contact EC:Category="private" MC2:Category="5">
<IC:Name>Lucy Walsh</IC:Name>
<IC:Phone>0179445566</IC:Phone>
<IC:Address>
<IA:Street>Parkstr. 7</IA:Street>
<IA:City>Munich</IA:City>
<MC2:Zip>80123</MC2:Zip>
</IC:Address>
<EC:Email>lucy.walsh@web.de</EC:Email>
<MC2:Homepage>www.lucy-walsh.de</MC2:Homepage>
</contact>

</pimData>

6.3. USING THE CLASS FRAMEWORK 67

Table 6.2: XInterface type definition for EmailContact

<?xml version="1.0"7>
<!-- EmailContact.xid - interface definition for email client -->

<schema>
<interfaceType name="EmailContact"
defaultNS="http://www.xid.org/EmailContact.xid">

<element name="Name" type="string" initial="unknown"
ns="http://www.xid.org/IsoContact.xid"/>

<element name="Nickname" type="string"
initial="unknown" minOccurs="0"/>

<element mname="Email" type="string"
initial="unknown" maxOccurs="5"/>

="string" initial="unknown"/>

<attribute name="Category" type=
</interfaceType>
</schema>

with http://www.xid.org have been standardized and their semantics rep-
resent the concepts you would expect from the given names.

Table 6.2 shows an XInterface type that could serve as a simple interface for
an email client.

Table 6.3 shows the MobileContact1 type definition. This interface makes use
of the import statement to import an existing Address type (given in table
6.4) into its own content model. Up to five Phone and Address elements are
expected to be processed by an application using this XInterface type.

The MobileContact2 interface, given in table 6.5, extends the MobileContact1
interface with a Homepage element. It also extends the compound Address
element already present in MobileContactl with a Zip element.

6.3 Using the class framework

The following sample application illustrates the use of the class framework.
The application makes use of the data that is specified by the MobileContact1
and MobileContact2 types of the sample scenario. The validator is invoked
with the following calls to generate the necessary sources:

java XInterfaceValidator MobileContact2.xid -g MobileContact2
java XInterfaceValidator MobileContactl.xid -g MobileContactl

68 CHAPTER 6. IMPLEMENTATION OF THE SCENARIO

Table 6.3: XInterface type definition for MobileContact1

<?7xml version="1.0"7>
<!-- MobileContactl.xid - interface definition for mobile phone -->

<schema>
<interfaceType name="MobileContactl"
defaultNS="http://www.xid.org/IsoContact.xid">
<element name="Name" type="string" initial="unknown"/>
<element name="Phone" type="integer" initial="0" maxOccurs="5"/>
<element name= "Address" maxOccurs="5">
<import name="IsoAddress" location="IsoAddress.xid"/>
</element>
</interfaceType>
</schema>

Table 6.4: XInterface type definition for IsoAddress

<?xml version="1.0"7>
<!-- IsoAddress.xid - standardized representation of a postal address -->

<schema>
<interfaceType name="IsoAddress"
defaultNS="http://www.xid.org/IsoAddress.xid">
<element name="Street" type="string" initial="unknown"/>
<element name="City" type="string" initial="unknown"/>
</interfaceType>
</schema>

6.3. USING THE CLASS FRAMEWORK 69

Table 6.5: XInterface type definition for MobileContact2

<?xml version="1.0"?>
<!-- MobileContact2.xid - interface definition for new mobile phone -->

<schema>
<interfaceType name="MobileContact2"
defaultNS="http://www.xid.org/MobileContact2.xid">
<import name="MobileContactl" location="MobileContactl.xid"/>
<attribute name="Category" type="integer" initial="0"/>
<element name="Homepage" type="string"
minOccurs="0" initial="unknown"/>
<element name="Address'" maxOccurs="5"
ns="http://www.xid.org/IsoContact.xid" >
<element name="Zip" type="integer" initial="0"/>
</element>
</interfaceType>
</schema>

java XInterfaceValidator IsoAddress.xid -g IsoAddress

The generated sources are included in the sample application. The applica-
tion itself defines a print method to access and print out the Name, Phone
and Address elements of a Java object that implements the IMobileContact1
interface.

In the first step, the XlInterface validator is called to parse the instance
document and read the element items, that implement the MobileContactl
interface, into a vector of CMobileContactl objects. As CMobileContactl
objects implement the IMobileContactl interface, the application can call
the print method for all entries of the vector.

In the second step, the application illustrates the subsumption property of
derived XInterface types in Java: It reads the element items, that implement
the MobileContact2 interface, into a vector of CMobileContact2 objects. As
the XlInterface type MobileContact2 is derived from MobileContactl, the
created objects can be treated exactly as the CMobileContactl objects, i.e.,
the same method for printing the content can be called. Additionally, the
methods specific to CMobileContact2 can be called to access the extended
data.

Table 6.6 gives the source code for the sample application. Applied to the
instance document from table 6.1, it produces the output shown in table 6.7.

70 CHAPTER 6. IMPLEMENTATION OF THE SCENARIO

Table 6.6: Sample application using the class framework

import java.util.Vector;

/%% This sample class illustrates the use of the class framework generator.
* It uses the source codes generated for the XInterface types MobileContactl
* and MobileContact2 to conveniently access the data contained in
* element items implementing this interface. */

public class SampleApplication

{

public static void main (String[] args) throws Exception
{
// 1. create an instance document and parse the xml file
InstanceDocument doc=new InstanceDocument();
if (!doc.parse("scenario.xml"))
return;

// 2. collect all implements statements and build the associated types
if (!doc.collectImplements())
return;

// 3. validate the MobileContactl type

// and read all occurrences into a list of CMobileContactl instances

Vector contactList=new Vector();

if (!doc.validateOneImplements("MobileContactl", contactList))
return;

// 4. iterate through the list of CMobileContactl objects

// a) access the data with the methods of the IMobileContactl interface

for (int j=0 ; j<contactList.size(); j++)
printMC1((IMobileContactl)contactList.get(j));

// 5. validate the MobileContact2 type (which is derived from MobileContactl)
// and read all occurrences into a list of CMobileContact2 instances
Vector newContactList=new Vector();
if (!doc.validateOneImplements("MobileContact2", newContactList))
return;

// 6. iterate through the list of CMobileContact2 objects

// a) treat the object as instance of IMobileContactl

// (subsumption: CMobileContact2 implements IMobileContactl)

// b) access the extended data with the methods of the IMobileContact2 interface

for (int j=0 ; j<newContactList.size(); j++) {
IMobileContact2 mc2=((IMobileContact2)newContactList.get(j));
printMC1(mc2); // a)
System.out.println("Homepage: "+mc2.getHomepage()); // b)

}

}

/** Takes an IMobileContactl object and prints out some of the data,
* using the get/set methods defined in the interface */
public static void printMC1(IMobileContactl mc1l)

{
System.out.println("\nContact\n------- \nName: "+mcl.getName());
for(int i=0; i<mcl.countPhone(); i++)
System.out.println("Phone ("+i+"):"+mcl.getPhone(i));
for(int a=0; a<mcl.countAddress(); a++) {
IAddress addr=mcl.getAddress(a);
System.out.println("Address("+a+"):");
System.out.println(" Street: "+addr.getStreet());
System.out.println(" City: "+addr.getCity());
}
}

6.3. USING THE CLASS FRAMEWORK

Table 6.7: Output of sample application applied to instance document

71

Instance document (scenario.xml) successfully parsed

Contact
Name: Peter Jones
Phone (0) : 172555666
Address(0):
Street: Private Drive 4
City: London
Address(1):
Street: Bahnstr. 8
City: Freiburg

Contact
Name: Lucy Walsh
Phone (0) : 179445566
Address(0):
Street: Parkstr. 7
City: Munich

testing subsumption property...

Contact
Name: Peter Jones
Phone (0) : 172555666
Address(0):
Street: Private Drive 4
City: London
Address(1):
Street: Bahnstr. 8
City: Freiburg
Homepage: null

Contact
Name: Lucy Walsh
Phone (0) : 179445566
Address(0):

Street: Parkstr. 7

City: Munich
Homepage: www.lucy-walsh.de

72

CHAPTER 6. IMPLEMENTATION OF THE SCENARIO

Chapter 7

Conclusion

7.1 Summary

We have presented XlInterfaces as a simple new schema language for XML.
Although this language has far less powerful content models than most avail-
able schema language and lacks many of the sophisticated features of XML
Schema, the taken approach still appears powerful and appealing to us. Sur-
prisingly, the approach to define multiple views on a single XML document
with the help of a schema language has not been covered by many researchers
yet, and to our knowledge, none of the popular existing schema languages
provide sufficient support to consequently follow this approach.

The true open-content model and the property that extended interfaces guar-
antee backward compatibility of the dataset are two characteristics that allow
a level of interoperability and data evolution that is difficult or impossible
to achieve with other existing schema languages. At the same time, the sim-
plicity of the XInterface language makes it much more user friendly than the
highly complex XML Schema.

The limited expressiveness of XInterfaces’ content models certainly limits
their area of application. Complex documents for one specific purpose will,
without doubt, find in XML Schema a better and more powerful way to
define their structure. Document-centric XML documents which rely on
mixed content are also unsuited to XInterfaces. But for describing specific
properties of XML documents it is easy to imagine XlInterfaces coexisting
with existing schema languages, and becoming a basic approach for data
sharing.

The Xlnterface language restricts the content models to simple nesting of

73

74 CHAPTER 7. CONCLUSION

elements and guarantees the subsumption property for extended interfaces.
These two properties lend themselves to enable the mapping of XInterface
types to an object-oriented, Java-based class framework. This class frame-
work illustrates the amount of work that can be automated in a typical
application using data described by XInterfaces, both reducing development
time and guaranteeing that standard access mechanisms are used. Due to
the fact that the type hierarchy of XInterfaces is mapped to a hierarchy of
interfaces and classes in Java that keeps the subsumption property, deriving
XlInterfaces from existing ones does not only promote data reuse, but also
enables code reuse. This makes applications much more stable in case of
data evolution.

A lot of work needs to be done to assess XInterfaces when applied in real-
ity. The same amount of work could potentially be spent on extending the
XInterface language as presented in this thesis. The next section lists some
possible issues for extending expressiveness or functionality of XInterfaces.
Nevertheless, we believe that the taken approach is already valuable and us-
able and conclude with a vision: Section 7.3 outlines the use of XInterfaces
for structuring meta-information of files, a scenario where the features of
XlInterfaces ideally meet the requirements.

7.2 Further work

Extend the expressiveness

At present, the XInterface language provides only support for very simple
content models of element items. We propose the following improvements,
but require that the current properties of XInterfaces (true open-content
model, subsumption property for extended interfaces) are not lost. Therefore
a careful investigation is necessary for each of the following items ensuring
they can be incorporated seamlessly into the existing approach.

1. Support for a choice model, comparable to the choice pattern supported
in RELAX NG.

2. Support for integrity checks with the help of IDRef attributes.
3. Support for linking mechanisms.

4. Full support for XML Schema’s type system, including facets and sup-
port for user-defined types.

7.2. FURTHER WORK 75

5. Support for mixed content models.
Mixed content of elements could be supported by introducing pseudo-
elements that contain the character content of elements. DSD also use
such an approach to model the content of an element as a sequence of
elements.

Other uses of XInterfaces

Apart from extending the XInterface language itself, we could also think of
other usage patterns for XInterfaces.

1. Integration into XML Schema, e.g., enable the use of both XInterface
types and XML Schema types in the same schema and same instance
document.

2. Transform (e.g., with XSLT) an instance document with the help of a
XlInterface type definition to an instance document only containing the
elements and attributes specified in the XInterface type.

3. Similarly, the XInterface type definition could be mapped to another
schema language (e.g., XML Schema) and applied to the document
generated in the previous step.

4. Validate a DOM or SAX-compliant program wrt. an XInterface type,
i.e., ensure that all DOM- or SAX-operations only operate on elements
and attributes specified in the type definition and do not violate typing
requirements.

Extend the class framework

The class framework generator was developed as a proof of concept and
therefore currently has only limited functionality. Possible improvements
are:

1. Support for namespaces and therefore for dealing with name conflicts.

2. Support for writing class content back to XML documents.
In the same way the class framework reads information from the DOM
representation into the generated classes, the process of writing back
the modified content of the class to the DOM representation could be
automated.

76 CHAPTER 7. CONCLUSION

3. Integrate the required access mechanisms into the class framework,
enabling an application to transparently access and modify data from
an instance document without being concerned with other applications
using this instance document.

7.3 A vision: XlInterfaces for structuring meta-
information about files

XlInterfaces can define and guarantee certain properties of XML files. There-
fore they can describe a format for meta-information about files perfectly, as
outlined in this section.

A typical scenario in the internet-based world at present is the following:

A file is sent across a network via email attachment. The person receiving
the email tries to “open” the attachment (whatever that means), but the
email client or file browser signals an error, because it does not recognize the
file type. What is lacking is either the information of the correct file type or,
if the correct file type is known, an application that can handle (e.g., view,
play, edit) files of that type.

A file typically has actions associated with it. A text file may be viewed
or edited, an audio file may be played. Unfortunately, in the sophisticated
computer world of today, determining the actions associated with a file in
many cases still seems to depend on a three-letter suffix, such as ".exe".
Apparently, file management could profit from meta-information giving in-
formation about the content (and possibly about the associated actions) of
a file.

To improve the situation described exactly above, the Multipurpose Internet
Mail Extensions (MIME)[21] standard was introduced in 1992. It offers a
categorization of data attached to an email according to media type and
subtype information which is given in a content type header. Additionally,
attributes can be attached to this header (in a attribute=value format) to
further describe the contained data. One intention of the media type/subtype
structure was the possibility of dealing with files of unknown subtype still
in a meaningful way, given that the media type is known. For example, a
text file with unknown subtype, but known media type “text”, can still be
viewed in a normal text viewer, possibly still conveying the information it is
intended to carry.

While this mechanism is established for email attachments, the same meta-

7.3. A VISION 7

information could be useful for dealing with any files (in particular multi-
media files), not only those sent via email. Also, the MIME standard was
invented with a strong focus on compatibility with existing email standards,
and the attribute-value notation has limited expressiveness. Because of the
role that XML already plays in the Internet world, an XML header seems
to be a perfect fit for a successor which is not focused on email attachments
but equally suited for any files. In order to become useful for file manage-
ment, however, certain formats of such an “XML meta-info file” need to be
standardized and adhered to. To achieve this, XInterfaces appear to be a
very natural and elegant approach. Corresponding to the media types of a
MIME header, generic XInterface types could specify a set of file types and
the minimum information they have to carry as meta-info. Derived XInter-
face types could further specialize these generic types, requiring more specific
information about the file.

An Xlnterface type “viewable” could determine that the file can be viewed
on a graphics display. A subtype “viewableText” could require information
about the text format of the file, enabling a file browser to call the appropriate
application for viewing this particular text format. Another XInterface type
“audible” could mark files that can be listened to via a speaker. If a text
document is enriched with audio information, the meta-info file could simply
implement both the “viewableText” and “audible” interface, allowing the
user to combine both associated actions or choose the appropriate one (e.g.,
if a disabled person relies on audio information). Another XInterface type
might be “textualDescription”, which requires a textual description and/or
a list of keywords describing the contents. This could provide a standard
way of annotating image or audio files, and allow a textual search to be
performed on all files whose meta-info file implements this interface. Very
simple or even empty XInterface types could serve as a tagging mechanism,
allowing one file to be in as many categories as desired.

To become successful, the standardization of these XInterface types would
play a crucial role. However, this is also valid for the standardization of
MIME-types today, which is the responsibility of the Internet Assigned Num-
bers Authority (IANA) [25].

Although only roughly investigated and outlined, it is believed that an ap-
proach combining XML meta-info files and standardized XlInterface types
has great potential for improving file management. Such an approach al-
lows files to define associated actions very flexibly or with minimal effort. It
also allows as many, possibly complex-structured, properties to be attached
to a file as desired, and still enables a reasonable treatment of unknown or

78 CHAPTER 7. CONCLUSION

unspecified file types as far as this is possible with the information given.
Furthermore, we think that none of the popular schema languages offer the
necessary constructs to implement the outlined concept of meta-information
for files in such a natural and simple way.

Appendix A

Schemas for XInterfaces

Section 5.2 described the syntax of XInterface type definitions and imple-
ments statements with the help of tables listing the required attributes and
elements and their meaning. We can as well describe the syntax with the
help of a schema language. Table A.1 shows an XML Schema schema which
defines the allowed syntax for XInterface type definitions. Table A.2 shows
an XInterface type definition for the same purpose!. Both schemas do not
distinguish between flat and compound elements, and therefore incorrectly

accept typed elements with nested content.

Xlnterface type definitions serve a specific purpose and XML Schema there-
fore seems well suited for modeling their structure (possibly better than XIn-
terfaces themselves, if an open-content model within type definitions is not
desired). For modeling the structure of implements statements, however,
XInterfaces are a much better fit, because they allow modeling only selected
parts of an instance document. Table A.3 shows an XInterface type defining
the format of an implements elements of an instance document. To validate
the format of all implements statements in an instance document, one simply
needs to add an additional implements statement, given in table A.4. This
implements statement could be added to all instance documents that will be
validated against XInterface types.

!Note that this is a recursive type definition, which at present is not supported by the
provided implementation of the validator.

79

80 APPENDIX A. SCHEMAS FOR XINTERFACES

Table A.1: XML Schema schema for XInterface type definitions

<?xml version="1.0"7>
<!-- XML Schema schema for XInterface type definitions —->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<t--
<schema> must be root element of a XInterface type definition file

each <interfaceType> child element defines one XInterface type
-=>

<xsd:element name="schema'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="interfaceType" type="xitd"
minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<t--
an <interfaceType> element has one mandatory and one optional attribute
and an arbitrary number of content declarations

-—>

<xsd:complexType name="xitd">
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="defaultNS" type="xsd:string" minOccurs="0"/>
<xsd:sequence>

<xsd:element ref="declaration" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<t--

base element for substitution group defining a content declaration
-->
<xsd:element name="declaration" abstract="true"/>

<xsd:element name="attribute" type="attributeType"
substitutionGroup="declaration"/>

<xsd:element name="element" type="elementType"
substitutionGroup="declaration"/>

<xsd:element name="import" type="importType"
substitutionGroup="declaration"/>

<!-- continued on next page... —-—>

81

<!-- ...continued from previous page -->

<!-- attribute declaration -->

<xsd:complexType
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute

name="attributeType">

name="name" type="xsd:string"/>

name="ns" type="xsd:string" minOccurs="0"/>
name="type" type="xsd:string" minOccurs="0"/>
name="initial" type="xsd:string" minOccurs="0"/>
name="minOccurs" type="xsd:integer" minOccurs="0"/>
name="max0Occurs" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

<!-- element declaration
we do not distinguish between flat and compound elements
(<choice> not allowed for attributes)
=> schema incorrectly allows typed element with nested content

-—>
<xsd:complexType
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:attribute
<xsd:sequence>
<xsd:element

name="elementType">
name="name" type="xsd:string"/>

name="ns" type="xsd:string" minOccurs="0"/>
name="type" type="xsd:string" minOccurs="0"/>
name="initial" type="xsd:string" minOccurs="0"/>
name="minOccurs" type="xsd:integer" minOccurs="0"/>
name="max0Occurs" type="xsd:string" minOccurs="0"/>

ref="declaration" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<!-- import declaration -->

<xsd:complexType
<xsd:attribute
<xsd:attribute

name="importType">
name="name" type="xsd:string"/>
name="location" type="xsd:string" minOccurs="0"/>

</xsd:complexType>

</xsd:schema>

82 APPENDIX A. SCHEMAS FOR XINTERFACES

Table A.2: XlInterface type definition for XInterface type definitions

<?xml version="1.0"7>

<t--
xitd.xid - XInterface type definition for
"XInterface type definitions"

-->

<schema>

<implements minOccurs="1" max0Occurs="unbounded" application="xitd">
<context>/schema/interfaceType</context>
<interface name="xitd"/>

</implements>

<interfaceType name="xitd" defaultNS="">
<attribute name='"name" type="string" initial=""/>
<attribute name="defaultNS" type="string" initial=""/>
<import name="ContentDeclaration'"/>

</interfaceType>

<interfaceType name="ContentDeclaration" defaultNS="">

<element name="attribute" ns="" minOccurs="0" maxOccurs="unbounded">
<attribute name='"name" type="string"/>
<attribute name="ns" type="string" minOccurs="0"/>
<attribute name="type" type="string" minOccurs="0"/>
<attribute name="initial" type="string" minOccurs="0"/>
<attribute name="minOccurs" type="integer" minOccurs="0"/>
<attribute name="maxOccurs" type="string" minOccurs="0"/>

</element>

<element name="element" minOccurs="0" maxOccurs="unbounded">
<attribute name='"name" type="string"/>
<attribute name='"ns" type="string" minOccurs="0"/>
<attribute name="type" type="string" minOccurs="0"/>
<attribute name="initial" type="string" minOccurs="0"/>
<attribute name="minOccurs" type="integer" minOccurs="0"/>
<import name="ContentDeclaration"/>

</element>

<element name="import" minOccurs="0" maxOccurs="unbounded">
<attribute name='"name" type="string"/>
<attribute name="location" type="string" minOccurs="0"/>
</element>
</interfaceType>

</schema>

83

Table A.3: XlInterface type for implements statement

<?xml version="1.0"?7>
<!-- implementsStatement.xid -->

<schema>
<interfaceType name="implementsStatement" defaultNS="'">

<attribute name="minOccurs" type="integer" minQOccurs="0"/>
<attribute name="maxOccurs" type="string" minOccurs="0"/>
<attribute name="application" type="string" minOccurs="0"/>
<attribute name="comment" type="string" minOccurs="0"/>
<element name='"context" type="string" maxOccurs="unbounded"/>
<element name="interface">

<attribute name='"name" type="string"/>
<attribute name="location" type="string" minOccurs="0"/>
</element>
</interfaceType>
</schema>

Table A.4: Implements statement needed for validating implements state-
ments

<implements minOccurs="0" maxOccurs="unbounded"
application="implementsChecker">
<context>/*/implements</context>
<interface name="implementsStatement" location="implements.xid"/>
</implements>

84

APPENDIX A. SCHEMAS FOR XINTERFACES

Appendix B

Source codes generated by the
class framework generator

The following tables show the source codes that are generated by the class
framework generator for the MobileContactl XInterface type. To generate
these sources the XInterface validator is invoked with the following calls:

java XInterfaceValidator MobileContactl.xid -g MobileContactl
java XInterfaceValidator IsoAddress.xid -g IsoAddress

The first call creates a CMobileContactl class and a corresponding IMobile-
Contact interface. It automatically creates a CAddress class and IAddress
interface for the nested content of the Address element. As MobileContactl
imports the IsoAddress type within the Address element, the CAddress class
implements the IIsoAddress interface and the IAddress interface extends it.
Therefore the second call is necessary to create the CIsoAddress class and
the IIsoAddress interface (although in this case the IAddress interface does
not extend the functionality of the IIsoAddress interface, as there are no
additional declarations within the Address element).

85

86 APPENDIX B. GENERATED SOURCE CODES

Table B.1: Interface source code generated for MobileContactl

// IMobileContactl.java (interface)
// automatically generated class framework
// generated Wed Jun 05 21:53:53 MEST 2002 by XInterfaceValidator
//
public interface IMobileContactl
{
public String getName(int index);
public String getName();
public void setName(int index, String theObj);
public void setName(String theObj);
public int countName() ;

public Integer getPhone(int index);

public Integer getPhone();

public void setPhone(int index, Integer the0bj);
public void setPhone(Integer thelbj);

public int countPhone();

public CAddress getAddress(int index);

public CAddress getAddress();

public void setAddress(int index, CAddress the(bj);
public void setAddress(CAddress the(Obj);

public int countAddress();

Table B.2: Class source code generated for MobileContactl

87

// CMobileContactl.java

// automatically generated class framework

// generated Wed Jun 05 18:49:26 MEST 2002 by XInterfaceValidator
import java.util.Vector;

public class CMobileContactl implements IMobileContactl
{
private String Name;
public String getName(int index) {
return Name;
}
public void setName(int index, String theObj) {
Name=theObj;
}
public int countName() { return 1; }
public String getName() { return getName(0); 1}
public void setName(String theObj) { setName(0, theObj); }

private Vector Phone;
public Integer getPhone(int index) {
return (Integer)Phone.get(index);
T
public void setPhone(int index, Integer the(bj) {
if (index<0) {
Phone.add (the0bj) ;
}
else {
Phone.add(index, the(bj);
}
¥
public int countPhone() { return Phone.size(); 1}
public Integer getPhone() { return getPhone(0); }
public void setPhone(Integer theObj) { setPhone(0, theObj); 1}

private Vector Address;
public CAddress getAddress(int index) {
return (CAddress)Address.get(index);
}
public void setAddress(int index, CAddress theObj) {
if (index<0) {
Address.add (theObj);
}
else {
Address.add(index, theObj);
}
}
public int countAddress() { return Address.size(); }
public CAddress getAddress() { return getAddress(0); 1}
public void setAddress(CAddress theObj) { setAddress(0, theObj); }

public CMobileContactl()
{
Phone=new Vector();
Address=new Vector();
¥
}

38

APPENDIX B. GENERATED SOURCE CODES

Table B.3: Interface source code generated for Address

//

{
public
public
public
public
public

public
public
public
public
public

// IAddress.java
// automatically generated class framework
// generated Wed Jun 05 21:53:53 MEST 2002 by XInterfaceValidator

public interface IAddress extends IIsoAddress

String getStreet(int index);

String getStreet();

void setStreet(int index, String thelbj);
void setStreet(String thelbj);

int countStreet();

String getCity(int index);

String getCity();

void setCity(int index, String the0bj);
void setCity(String thelbj);

int countCity();

Table B.4: Class source code generated for Address

89

// CAddress. java
// automatically generated class framework
// generated Wed Jun 05 21:53:53 MEST 2002 by XInterfaceValidator
//
public class CAddress implements IAddress, IIsoAddress
{
private String Street;
public String getStreet(int index) {
return Street;
}
public void setStreet(int index, String thelObj) {
Street=thelbj;
}
public int countStreet() { return 1; 1}
public String getStreet() { return getStreet(0); 1}
public void setStreet(String thelObj) { setStreet(0, thelbj);

private String City;
public String getCity(int index) {
return City;
}
public void setCity(int index, String theObj) {
City=thelObj;
}
public int countCity() { return 1; }
public String getCity() { return getCity(0); 1%
public void setCity(String theObj) { setCity(0, theObj); }

// constructor
public CAddress() {3}

}

90

APPENDIX B. GENERATED SOURCE CODES

Index

Abstract Datatype, 53
Access Methods, 51
Assertion, 41, 56
Assertion Grammars, 23
Attribute Declaration, 57

Backward Compatibility, 10

Cardinality, 8
Cartesian Product, 54
Cascading Style Sheets, 24
Character Content, 29
Class

in OO languages, 4

of XML Documents, 13, 53
Class Framework, 32, 60, 67, 75, 85
Complex Construct, 61
Compound Element, 30
Compound Element Declaration, 57
Computer Revolution, 2
Content Model, 55, 56
Context Expression, 29
CSS, 24

Data Evolution, 4, 9

Data Sharing, 4, 9, 49

Datatype Library, 58

DCD, 16

DDML, 16

Disjoint Union, 54

Document Structure, 8

Document Structure Description, 24
Document Type Declaration, 15
Document Type Definition, 3, 15

Document Types, 3
DOM Representation, 51
DSD, 24, 53

DTD, 15, 53

E-Commerce, 2

Element Item, 28
Examplotron, 23
Expressiveness, 53, 74
Extensible Markup Language, 1

File Management, 76

File Type, 76

Flat Element, 30

Flat Element Declaration, 42, 57

General Markup Language, 1
GML, 1

HTML, 2, 24
Hypertext Markup Language, 2

Implementation

of the Scenario, 65

of XInterface Validator, 57
Implements Statement, 38
Import Declaration, 44, 57
Inheritance Mechanisms, 31
Instance Document, 28
Interface

in OO languages, 4
Internet, 2
Interpretation

of an XInterface Type, 56

Java, 4, 33, 58, 60

91

92 INDEX

Mapping Tree Patterns, 20
of XInterfaces to Java source, 61 TREX, 18, 53
of XML Schema Types to Java Type Hierarchy, 51

types, 62 Type System, 51
Merging Assertions, 50 Typing, 9, 32, 50
Meta-Information about Files, 76
MIME, 76 Validation, 39
Multiple Inheritance, 47 of Datatypes, 58

in XML Schema, 32 Process, 39, 58

Multiple-Interface Validation Context, 23

OO language, 4 W3C. 2

Multipurpose Internet Mail Extensions,Worlc’l Wide Web Consortium. 2
76 ’
. XDuce, 18, 53
Name Conflicts, 47 XlInterface Type Definition, 29, 37, 65
Open-content Model, 30, 41 XInterface Validator, 58
Ordered Sequence, 54 XML, 1
Working Group, 2

Processing Performance, 34 XML Document

Accessing an, 60

Regular Expressions, 24
Fragment of an, 28

Regular Tree Grammars, 53

RELAX, 18, 53 parsing an, 32
RELAX NG, 18 XML Infoset, 27
XML Namespaces, 31, 47

Scenario, 7, 65 XML Schema, 3, 16, 20, 53
Schema Languages, 3, 13 Feedback and Criticism on, 33
Schematron, 20 XML Schema Working Group, 16
Semi-structured Data, 2 XML-Data, 16
SGML, 1 XML-Data-Reduced, 16
Simple Construct, 61 XPath, 20, 23
Single-Inheritance XSchema, 16

OO language, 4 XSLT, 23, 24
Software agents, 2
SOX, 16
Standardized Generalized Markup Lan-

guage, 1

Subsumption Property, 31, 33
Syntax

of Implements Statement, 45, 79
of XInterface Type Definition, 40,
79

Bibliography

[1] Liora Alschuler. XML Schemas: Last word on last call. Internet Doc-
ument, July 2000. http://www.xml.com/pub/a/2000/07/05/specs/
lastword.html.

[2] Tomoharu Asami. Relazer - A Java class generator. Internet Docu-
ment, August 2000. http://www.asahi-net.or.jp/ ~dp8t-asm/java/
tools/Relaxer/.

[3] Paul V. Biron and Ashok Malhotra (Eds.). XML Schema Part
2: Datatypes. W3C, May 2001. http://www.w3.org/TR/2001/
REC-xmlschema-2-20010502/.

[4] Bert Bos, Hakon Wium Lie, Chris Lilley, and Ian Jacobs (Eds.). Cas-
cading Style Sheets, Level 2. W3C, May 1998. http://www.w3.org/TR/
REC-CSS2/.

[5] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St. Laurent
(Eds.). Document Definition Markup Language. W3C, January 1999.
http://www.w3.org/TR/NOTE-ddml.

[6] Tim Bray, Charles Frankston, and Ashok Malhotra (Eds.). Document
Content Description for XML. W3C, July 1998. http://www.w3.org/
TR/NOTE-dcd.

[7] Tim Bray, Dave Hollander, and Andrew Layman (Eds.). Namespaces in
XML. W3C, January 1999. http://www.w3.org/TR/REC-xml-names/.

[8] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler (Eds.).
XML specification 1.0, second edition. W3C, October 2000. http://
www.w3.org/TR/2000/REC-xm1-20001006.

[9] Luca Cardelli. Handbook of Computer Science and Engineering, chapter
103. CRC Press, 1997.

93

94 BIBLIOGRAPHY

[10] James Clark. Tree Regular Expressions for XML. Internet Document,
January 2001. http://www.thaiopensource.com/trex/.

[11] James Clark and Murata Makoto (Eds.). RELAX NG specifica-
tion. Internet Document, December 2001. http://oasis-open.org/
committees/relax-ng/spec.html.

[12] James Clark and Steve DeRose (Eds.). XPath 1.0 specification. W3C,
November 2001. http://www.w3.org/TR/xpath.

[13] John Cowan and Richard Tobin (Eds.). XML Information
Set. W3C, October 2001. http://www.w3.org/TR/2001/
REC-xml-infoset-20011024.

[14] Eric M. Dashofy. Issues in Generating Data Bindings for an XML
Schema-Based Language. Internet Document, 2001. http://wwwl.ics.
uci.edu/"edashofy/papers/xse2001.pdf.

[15] Andrew Davidson, Matthew Fuchs, Mette Hedin, Mudita Jain, Jari
Koistinen, Chris Lloyd, Murray Maloney, and Kelly Schwarzhof (Eds.).
Schema for Object-Oriented XML. W3C, July 1999. http://www.w3.
org/TR/NOTE-SOX.

[16] Dave Raggett (Ed.). Assertion grammars. Internet Document, May
1999. http://www.w3.org/People/Raggett/dtdgen/Docs/.

[17] James Clark (Ed.). XSL Transformations (XSLT). W3C, November
1999. http://www.w3.org/TR/xslt.

[18] Jon Bosak (Ed.). XML Working Group Activity Statement. W3C, June
1997. http://wuw.w3.org/XML/Activity-19970610.

[19] International Organization for Standardization. International Standard
IS0 8879 Information Processing - Text and Office Systems - Standard-
ized Generalized Markup Language (SGML), First Edition - 1986-10-15.
October 1986. UDC 681.3.06 Ref. No. ISO 8879-1986(E).

[20] Charles Frankston and Henry S. Thompson (Eds.). XML-Data-Reduced.
W3C, July 1998. http://www.ltg.ed.ac.uk/ ht/XMLData-Reduced.
htm.

[21] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. The Internet
Engineering Task Force, November 1996. http://www.ietf.org/rfc/
rfc2045.txt.

BIBLIOGRAPHY 95

[22] Object Management Group. UML - Unified Modeling Language. http:
//www.omg.org/uml/.

[23] Philippe Le Hégarel. DOM - Document Object Model. W3C. http:
//www.w3.org/DOM/.

[24] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML process-
ing language. In Lecture Notes in Computer Science, volume 1997, May
2000.

[25] Internet Assigned Numbers Authority (IANA). http://www.iana.org.

[26] Rick Jelliffe. Family Tree of XML Schema Languages. Internet Docu-
ment, 1999. http://www.ascc.net/xml/en/utf-8/family.pdf.

[27] Rick Jelliffe. Schematron. Internet Document, July 2001. http://www.
ascc.net/xml/resource/schematron/schematron.html.

[28] Kohsuke Kawaguchi. SUN Multi-Schema XML Validator. Juli 2001.
http://www.sun.com/software/xml/developers/multischema/.

[29] Kohsuke Kawaguchi. Sun XML Datatypes Library. November 2001.
http://www.sun.com/software/xml/developers/xsdlib2/.

[30] Nils Klarlund, Anders Mgller, and Michael I. Schwartzbach. Document
Structure Description. Internet Document, November 1999. http://
www.brics.dk/DSD/dsddoc.html.

[31] Andrew Layman, Edward Jung, Eve Maler, Henry S. Thompson, Jean
Paoli, John Tigue, Norbert H. Mikula, and Steve De Rose (Eds.).
XML-Data. W3C, January 1998. http://www.w3.org/TR/1998/
NOTE-XML-data/.

[32] Dongwon Lee and Wesley W. Chu. Comparison of siz schema lan-
guages. Internet Document, June 2000. http://www.cobase.cs.ucla.
edu/tech-docs/dongwon/ucla-200008.html.

[33] Murata Makoto. RELAX. Internet Document, October 2000. http:
//www.xml.gr.jp/relax/.

[34] William Matthews. Ballmer sees XML revolution. Internet Docu-
ment, April 2002. http://www.fcw.com/fcw/articles/2002/0415/
web-xml-04-17-02.asp.

96 BIBLIOGRAPHY

[35] David Megginson. SAX - Simple API for XML. Internet Document.
http://www.saxproject.org/.

[36] Anders Mgller and Michael I. Schwartzbach. XML Schema Shortcom-
ings. Internet Document, 2001. http://www.brics.dk/“amoeller/
XML/schemas/xmlschema-problems.html.

[37] Makoto Murata, Dongwon Lee, and Murali Mani. Tazonomy of XML
Schema Languages using Formal Language Theory. Internet Document,
2000. http://www.cs.ucla.edu/ "dongwon/paper/mura0106.pdf.

[38] Jonathan Robie. W3C XML Schema Questionaire. Internet Document,
July 2000. http://www.ibiblio.org/xql/tally.html.

[39] C. M. Sperberg-McQueen and Henry S. Thompson. XML Schema home-
page. Internet Document, May 2001. http://www.w3.org/XML/Schema.

[40] The Apache XML Project. http://xml.apache.org.

[41] Henry S. Thompson. Comment on single inheritance model. In-
ternet Document, June 2000. http://www.xml.com/pub/a/2000/06/
xmleurope/schemas.html.

[42] Henry S. Thompson. Email communication. November 2001.

[43] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn (Eds.). XML Schema Part 1: Structures. W3C, May 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/.

[44] Eric van der Vlist. Comparing XML Schema languages. Internet
Document, December 2001. http://www.xml.com/pub/a/2001/12/12/
schemacompare.html.

[45] Eriv van der Vlist. FEzamplotron. Internet Document, March 2001.
http://examplotron.org/.

All URLs were functional on 1.6.2002.

