NeT & CoT: Translating Relational Schemas to XML
Schemas using Semantic Constraints

Dongwon Lee Murali Mani

Frank Chiu Wesley W. Chu

UCLA / CSD

{dongwon ,mani,frankchiu,wwc}@cs.ucla.edu

Abstract

Two algorithms, called NeT and CoT, to
translate relational schemas to XML schemas
using various semantic constraints are pre-
sented. The XML schema representation
we use is a language-independent formalism
named XSchema, that is both precise and con-
cise. A given XSchema can be mapped to a
schema in any of the existing XML schema
language proposals. Our proposed algorithms
have the following characteristics: (1) NeT de-
rives a nested structure from a flat relational
model by repeatedly applying the nest oper-
ator on each table so that the resulting XML
schema becomes hierarchical, and (2) CoT
considers not only the structure of relational
schemas, but also semantic constraints such as
inclusion dependencies during the translation
- it takes as input a relational schema where
multiple tables are interconnected through in-
clusion dependencies and converts it into a
good XSchema. To validate our proposals, we
present experimental results using both real
schemas from the UCI repository and syn-
thetic schemas from TPC-H.

1 Introduction

XML [3] is rapidly becoming one of the most widely
adopted technologies for information exchange and
representation on the World Wide Web. With XML
emerging as the data format of the Internet era, there
is a substantial increase in the amount of data encoded
in XML. However, the majority of everyday data is still

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

stored and maintained in relational databases. There-
fore, we expect the needs to convert such relational
data into XML documents will grow substantially as
well. In this paper, we study the problems in this
conversion. Especially, we are interested in finding
XML schema! (e.g., DTD [3], RELAX-NG [5], XML-
Schema [22]) that best describes the existing relational
schema. Having an XML schema that precisely de-
scribes the semantics and structures of the original
relational data is important to further maintain the
converted XML documents in future.

At present, there exist several tools that enable the
composition of XML documents from relational data,
such as XML Extender from IBM?2, XML-DBMS3,
DB2XML [23], SilkRoute [8], and XPERANTO [4].
In these tools, the success of the conversion is closely
related with the quality of the target XML schema
onto which a given input relational schema is mapped.
However, the mapping from the relational schema
to the XML schema is specified by human experts.
Therefore, when large amount of relational schemas
and data need to be translated into XML documents,
a significant investment of human effort is required
to initially design target schemas. To make matters
worse, in the context of merging legacy relational data
to existing XML documents, devising a good XML
schema that does not violate existing structures and
constraints is a non-trivial task. Being able to auto-
matically infer a precise XML schema out of relational
schema would be very useful in such settings.

In this paper, therefore, we are interested in finding
a method that can infer the best XML schema from
the given relational schema automatically. We par-
ticularly focus on two aspects of the translation: (1)
Structural aspect: We want to find the most intu-
itive and precise XML schema structure from the given
relational schema. We especially try to use the hidden

!We differentiate two terms — XML schema(s) and XML-
Schema. The former refers to a general term for schema in
XML model while the latter refers to one particular kind of
XML schema language proposed by W3C [22].

2http://www-4.ibm.com/software/data/db2 /extenders/xmlext/

3http://www.rpbourret.com/xmldbms/index.htm

characteristics of data using nest operator, and (2) Se-
mantic aspect: During the translation, we want to
use semantic constraints that could be either acquired
from database directly or provided by human experts
explicitly.

We first present a straightforward relational to
XML translation algorithm, called Flat Translation
(FT). Since FT maps the flat relational model to the
flat XML model in a one-to-one manner, it does not
utilize the regular expression operators (e.g., “*”, “+”)
supported in the content models of XML. Then, we
present our first proposal called Nesting-based Transla-
tion (NeT), to remedy the problems found in FT. NeT
derives nested structures from a flat relational model
by the use of the nest operator so that the resulting
XML schema, is more intuitive and precise than oth-
erwise. Although NeT infers hidden characteristics of
data by nesting, it is only applicable to a single table at
atime. Therefore, it is unable to capture a correct “big
picture” of relational schema where many tables are in-
terconnected. To remedy this problem, we present the
second proposal called Constraints-based Translation
(CoT); CoT considers inclusion dependencies during
the translation. Such constraints can be acquired from
database through ODBC/JDBC interface or provided
by human experts who are familiar with the seman-
tics of the relational schema being translated. CoT is
capable of generating a more intuitive XML schema
than what NeT. Figure 1 illustrates the overview of
our approach.

Related Work: There have been different approaches
for the conversion from relational model to XML
model, such as XML Extender from IBM, XML-
DBMS, SilkRoute [8], XPERANTO [4], DB2XML [23]
and NeT [14]. All the above tools (except NeT) re-
quire the user to specify the mapping from the given
relational model to the XML model. In XML Exten-
der, the user specifies the mapping through a language
such as DAD or XML Extender Transform Language.
In XML-DBMS, a template-driven mapping language
is provided to specify the mappings. SilkRoute pro-
vides a declarative query language (RXL) for view-
ing relational data in XML. XPERANTO uses XML
query language for viewing relational data in XML.
Note that in SilkRoute and XPERANTO, the user has
to specify the query in the appropriate query language.
DB2XML uses an algorithm similar to FT (and hence
suffers from similar problems). NeT does not require
user-input for mapping the relational model to XML
model, however it does not use semantic constraints
specified in the relational model.

There also have been work in mapping from non-
relational models to XML model, and XML to rela-
tional and other models. In [20, 21], the authors
study the conversion from XML to relational models.
[15] studies the conversion from XML to ER model
and vice versa. Generation of an XML schema, from a

UML model is studied in [18]. Given a set of XML
documents, generating an XML schema, for them is
studied in [10].

Roadmap: In Section 2, we first present formalisms
to represent relational as well as XML schemas in
a language independent notation. In Section 3, we
propose NeT algorithm that uses the nest operator
developed in the nested relational model community.
In Section 4, we propose an improved CoT algorithm
that considers various semantic constraints during the
translation to generate a better XML schema, in ad-
dition to applying nest operations for each table. In
Section 5, we discuss some issues related to correct-
ness and goodness of the schema that NeT and CoT
generate. In Section 6, we report the results from our
experimentations. Finally, concluding remarks and fu-
ture directions are discussed in Section 7.

2 Input & Output Models

We first briefly define the input and output models for
the translation. In relational databases, schema, is typ-
ically created by SQL DDL (e.g., CREATE) statements.
Therefore, by examining such DDL statements, one
can find out the original schema information. Even if
such DDL statements are not available, one can still in-
fer the schema information - table and column names,
key and foreign key information, etc - by querying the
database through an ODBC/JDBC interface or by ex-
amining the database directly. In this paper, regard-
less of how one acquired the schema information, we
assume that the schema information is encoded in a
vector R defined below. R

Let us assume the existence of a set T' of table
names, a set C' of column names and a set b of atomic
base types defined in the standard SQL (e.g., integer,
char, string). When name collision occurs, a column
name ¢ € C is qualified by a table name ¢ € T using
the “[]” notation (e.g., t[c]).

Definition 1 (Relational Schema) A relational
schema is denoted by 4-tuple R = (T, C, P, A), where:

e T is a finite set of table names in f; C is a function
from a table namet € T to a set of column names

ceC,

e P is a function from a column name c to its col-
umn type definition: i.e., P(¢) = «, where « is
a 5-tuple (1,u,n,d, f), where T € /I;, u IS either
“v” (unique) or “~w” (not unique), n is either
“?” (nullable) or “~7” (not nullable), d is a finite
set of valid domain values of ¢ or € if not known,
and f is a default value of ¢ or € if not known, and

e A is a finite set of relational integrity constraints
that can be either retrieved from databases di-
rectly or provided by human experts. a

XSchema ::> - &
& V
RDB C—>| CoT ﬂ

XM ———— | Final
Schemas XML
ﬁ Schema
Schema
Desi gner

Figure 1: Overview of our approach. Two algorithms, NeT and CoT, can be used independently or jointly; (1)
XSchema — NeT — XML Schemas, (2) XSchema — CoT — XML Schemas, or (3) XSchema — NeT — CoT —

XML Schemas.

student:

T = {student,professor}
C(student) = {Sname, Advisor,Course}
C(professor) = {Pname, Age}
P(Sname) = (string,—w,7?,¢,¢)
P(Advisor) = (string,—w,—? €, “J.Smith")
P(Course) = (string,—w,—7?,¢,¢)
P(Pname) = (string,v,—7,€,¢€)
P(Age) = (integer,—w,? ¢, ¢€)
A = {{Sname, Advisor,Course} ey student,
Pname *%¥ professor, Advisor C Pname

| Sname | Advisor | Course |
John | Prof. Muntz | Database Systems
John | Prof. Muntz | Data Mining
John | Prof. Chu Database Systems
John | Prof. Chu Data Mining
John | Prof. Muntz | Queueing Theory
John | Prof. Zaniolo | Logic
professor:
| Pname | Age |
Prof. Muntz | 60
Prof. Chu 55

Prof. Zaniolo | _
Prof. Parker 49

Table 1: Example relational schema and data.

Example 1. Consider two tables student(Sname,
Advisor, Course) and professor(Pname, Age)
where keys are underlined, and Advisor is a foreign
key referencing Pname column. The column Age is an
integer type, while the rest of the columns are string
types. Also Age may be null. When student’s advisor
has not yet been decided, professor “J. Smith” will be
the initial advisor. Student can have many advisors
and take zero or more courses. The corresponding
relational schema and data fragment is given in Table
1. m|

Next, let us define the output model. Lately, there
have been about a dozen competing XML schema
language proposals. Although XML-Schema is being
shaped by W3C and will replace DTD soon, it is likely
that different applications will choose different XML
schema languages that best suit their particular pur-
poses. Therefore, instead of choosing one language
proposal, we formalize a core set of important features
into a new notion of XSchema and use it as our output
modeling language. The benefits of such formalization
is that it is both concise and precise. More impor-
tantly, it breaks the tie between the translation algo-
rithm that we are developing and the final schema, lan-
guage notations. Informally, XSchema borrows struc-
tural features from DTD and RELAX-NG, and data
types and constraint specification features from XML-
Schema. From a formal language and database per-
spective [17], XSchema is a local tree grammar ex-

tended with attribute, datatype and constraint speci-
fications.

Starting from the notations in [7], we define
XSchema below. We first assume the existence of a set
E of element names, a set A of attribute names and
a set 7 of atomic data types defined in [1] (e.g., ID,
IDREF, string, integer, date, etc). When needed, an
attribute name a € A is qualified by the element names
using /:che path expression notation ej.es - - - €,.a, where
e; € E;1<i<n).

Definition 2 (XSchema) An XSchema is denoted by
6-tuple X = (E, A, M, P,r,Y), where:

e FE is a finite set of element names in E; Ais a
function from an element name e € E to a set of
attribute names a € A,

e M is a function from an element name e € E to
its element type definition: i.e., M (e) = a, where
a IS a regular expression: a =€ | 7| a+ a |
a,a | @' | a* | at, where € denotes the empty
element, T € T “t” for the union, “” for the
concatenation, “a’” for zero or one occurrence,

“a*” for the Kleene star, and “a™” for “a,a*”,

e P is a function from an attribute name a to its
attribute type definition: i.e., P(a) = 3, where 8

is a 4-tuple (1,n,d, f), where T € 7, n is either
“?” (nullable) or “~?” (not nullable), d is a finite

set of valid domain values of a or € if not known,
and f is a default value of a or € if not known,
and

e r C F is a finite set of root elements; ¥. is a finite
set of integrity constraints for XML model a

Translation from XSchema to the actual XML schema
language notations is relatively straightforward and
not discussed further in this paper. It is worthwhile
to note, however, that depending on the chosen XML
schema, language, some of the features specifiable in
XSchema might not be translatable at the end. For
instance, any “non-trivial type” or composite key in-
formation would be lost if one decides to use DTD as
the final XML schema language.

3 Flat Translation and Nesting-based
Translation

XML model uses two basic building blocks to construct
XML documents — attribute and element. A few ba-
sic characteristics inherited from XML model include:
(1) the attributes of a node are not ordered, while the
child elements of a node are ordered, (2) both support
data types as specified in [1], and (3) elements can ex-
press multiple occurrences better than attributes. The
detailed capabilities of those, however, vary depending
on the chosen XML schema language. In translating R
to X, therefore, one can either use attribute or element
in X to represent the same entity in R (e.g, a column
with string type in R can be translated to either at-
tribute or element with string type in X).

To increase the flexibility of the algorithms, we as-
sume that there are two modes — attribute-oriented
and element-oriented. Depending on the mode, an
algorithm can selectively translate an entity in R to
either attribute or element if both can capture the en-
tity correctly. However, if the chosen XML schema
language requires attribute or element for an entity
(e.g., a key column in R needs to be translated to an
attribute with type ID in X), we assume that the al-
gorithm follows the limitations.

3.1 Flat Translation

The simplest translation method is to translate (1)
tables in R to elements in X and (2) columns in R
to attributes (in attribute-oriented mode) or elements
(in element-oriented mode) in X. These two modes are
analogous except that element-oriented mode adds ad-
ditional order semantics to the resulting schema. Since
X represents the “flat” relational tuples faithfully, this
method is called Flat Translation (FT). The general
procedure of the Flat Translation is omitted in the
interest of space and can be found in [14]. One exam-
ple is shown in Appendix (Example 8).

FT is a simple and effective translation algorithm,
but it has some problems. As the name implies, FT

translates the “flat” relational model to a “flat” XML
model in a one-to-one manner. The drawback of FT is
that it does not utilize several basic “non-flat” features
provided by XML for data modeling such as represent-
ing repeating sub-elements through regular expression
operators (e.g., “*”, “+”). We remedy this problem in
the NeT algorithm below.

3.2 Nesting-based Translation

To remedy the problems of FT, one needs to utilize
various element content models of XML. Towards this
goal, we propose to use the nest operator [12]. Our
idea is to find a “best” element content model that
uses a* or at using the nest operator. First, let us
define the nest operator. Informally, for a table ¢ with
a set of columns C, nesting on a non-empty column
X € C collects all tuples that agree on the remaining
columns C' — X into a set*. Formally,

Definition 3 (Nest) [12]. Let t be a n-ary table
with column set C, and X € C and X = C — X. For
each (n — 1)-tuple v € IIx(t), we define an n-tuple

~* as follows: v*[X] = v, and v*[X] = {k[X] | k¥ €

t Ak[X] =. Then, nestx(t) ={v* |y €x(t)}. O

After nestx(t), if column X has only a set with
“single” value {v} for all the tuples, then we say that
nesting failed and we treat {v} and v interchange-
ably (i.e., {v} = v). Thus when nesting failed, the
following is true: nestx(t) = t. Otherwise, if column
X has a set with “multiple” values {v1,...,v;} with
k > 2 for at least one tuple, then we say that nest-
ing succeeded. The general procedure for nesting is
given in Table 9 of Appendix.

Example 2. Consider a table R in Table 2. Here we
assume that the columns A, B, C are non-nullable. In
computing nest 4 (R) at (b), the first, third, and fourth
tuples of R agree on their values in columns (B, C) as
(a, 10), while their values of the column A are all dif-
ferent. Therefore, these different values are grouped
(i.e., nested) into a set {1,2,3}. The result is the first
tuple of the table nest4(R) — ({1,2,3}, a, 10). Simi-
larly, since the sixth and seventh tuples of R agree on
their values as (b, 20), they are grouped to a set {4,5}.
In computing nestg(R) at (c), there are no tuples in R
that agree on the values of the columns (4, C). There-
fore, nestg(R) = R. In computing nestc(R) at (d),
since the first two tuples of R — (1, a, 10) and (1, a, 20)
— agree on the values of the columns (A, B), they are
grouped to (1, a, {10,20}). Nested tables (e) through
(j) are constructed similarly. m|

Since the nest operator requires scanning of the en-
tire set of tuples in a given table, it can be quite ex-
pensive. In addition, as shown in Example 2, there are
various ways to nest the given table. Therefore, it is

4Here, we only consider single attribute nesting.

A B C A B C
F 1 a 10 - I a 10 A B __CF -
|1 a 20 {1A2 3]j 100 1 a 20 T a {10,20} {1A2 5 f 16(;
#3 | 2 a 10 7 2 a 10 2 a 10 7
1 a 20 1 a 20
#4 | 3 a 10 1 b 10 3 a 10 3 a 10 4 b 10
#5 | 4 b 10 4 b 10 4 b {10,20}
#6 |4 b 20 {45} b 20 4 b 20 5 b 20 {45} b 20
#7115 b 20 5 b 20
_ nestp(nesta(R))
(a) R (b) nesta(R) (c) nestg(R) = R (d) nestc(R) () _ nesto(nesta(R))
+
At B CF a5 AT B C At B CF
T a {10,20 y o { " } 1237 a 10 T a {10,20
{23} a 10 s 2 10 1 a 20 {23} a 10
4 b {10,20} 1 (1020) 4 b 10 4 b {10,20}
5 b 20 s b % {45} b 20 5 b 20
(f) nesta(nesto(R)) (g) nests (nesto(R)) (h) nestc(nestg(nesta(R))) @) nestg(nesta(nestc(R)))

= nestg(nestc(nesta(R)))

= nesta(nestp(nestc(R)))

Table 2: A relational table R and its various nested forms. Column names containing a set after nesting (i.e.,

nesting succeeded) are appended by “+” symbol.

important to find an efficient way (that uses the nest
operator minimum number of times) of obtaining an
acceptable element content model.

First, to find out the total number of ways to nest,
let us use the following two properties [12]:

P1: nesta(nestp(t)) # mnestg(nesta(t))
P2: nestx(nestAllL(t)) = nestAllL(t),
if X € L.

Here, nestAll(t) represents performing nesting on
the columns on L in the order as shown below:
nestAllL—ceq co,... en>(t) = neste, (neste, (. . . (neste, (t))))

P1 states that “commutativity” of nesting does not
hold in general and P2 states that nesting along the
same column repeatedly has the property of “idem-
potency”. Using the two properties, the number of
permutations to nest tables can be described as fol-
lows:

Remark 1 Using the falling factorial power notation
“x to the m falling” as ™ in [11], the total number
of different nestings T for a table with n columns is
given by: T =3",_ nk O

According to Remark 1, there are 15 meaningful
ways of nesting along the columns A, B, C' in Table 2.
Then, the next questions are (1) how to decrease T' by
avoiding unnecessary nesting, and (2) which nesting
should be chosen as the translation. To answer these
questions, let us first describe a few useful properties
of the nest operator as follows:

Lemma 1. Suppose we are nesting a table t, with
C(t) = {C:}, and with candidate keys K1, Ka, ... , Kp,
where K1, K, ... ,K, C Cy. Applying the nest oper-
ator on a column X ¢ Ky N Ko N ...N K, yields no
changes. n

Lemma 2. For any nested table nestx(t), X — X
holds. (]

Lemma 2 states that after applying the nest oper-
ator of column X, the remaining columns X become
a super key. Fischer et al. [9] have proved that func-
tional dependencies are preserved against nesting as
follows:

Lemma 3. [9] If X, Y, Z are columns of t, then: t :
XY = nestz(t): X =Y m

Now, we arrive at the following useful property:

Lemma 4. For a table t with n columns and m
columns that participate in all candidate keys (m <
n), the maximum number of nestings is 3, , m* m

Using Lemma, 4, one can avoid unnecessary nestings
illustrated as follows:

Example 3. Consider a table R in Table 2 again.
Suppose attributes A and C constitute a key for R.
Since nesting on the same column repeatedly is not
useful by property P2 there is no need to construct,
for instance, nest 4 (nest4(R)). Since nesting on a non-
key column is not useful by Lemma 1, nesting along
column B (e.g., nestg(R) at (c)) can be avoided. Fur-

thermore, the functional dependency (i.e., AC " R
= AC — AC = AC — B) persists after nesting on
either column A or C' by Lemma 3. Consequently, one
needs to construct only the following nested tables:
nesta(R) at (b), nestc(R) at (d), nestc(nesta(R))
at (e), nesta(nestc(R)) at (f). O

As we have shown, when candidate key information
is available, the number of nestings to be performed
can be reduced. However, when such information is
not known, the nest operator must be applied for all
possible combinations in Remark 1. After applying the

nest operator to the given table repeatedly, there can
be still several nested tables where nesting succeeded.
In general, the choice of the final schema should take
into consideration the semantics and usages of the un-
derlying data or application and this is where user in-
tervention is beneficial. By default, without further
input from users, NeT chooses as the final schema the
nested table where the most number of nestings suc-
ceeded - this is a schema which provides low “data
redundancy” - as given in Table 9 of Appendix.

Example 4. Using NeT with the element-oriented
mode, R; in Example 1 would be translated to X4
= (E,A,M,P,rX), where

E = {student,professor}
A(professor) = {Pname}
M (student) = (Sname, Advisor™, Course™)
M(professor) = (Age’)
P(Pname) = (ID,-7?¢,¢€)
r = {student,professor}

¥ = {{Sname, Advisor, Course}’zﬁystudent,

Pname "% professor, Advisor C Pname}

O

We expect that the NeT algorithm will be especially
useful in two scenarios, outlined below.

e The given relation is in 3NF (or BCNF) but not in
4NF. Non-fully normalized relations occur quite
commonly in legacy databases, and they exhibit
data redundancy. The NeT algorithm helps to
decrease the data redundancy in such cases.

As an example, consider the relation ctx (Course,
Teacher, Text), which gives the set of teachers
and the set of text books for each course. Assume
that the following multivalued dependencies hold,
Course —» Teacher, and Course—»Text. Suppose
the relation ctx is represented as such (i.e., ctx is
not in 4NF). The key for this relation is given by

{Course, Teacher, Text}k—e?ctx. When we do
nesting on ctx, we will get the following table
ctx’ (Course, Teachert, Textt). Thus NeT
helps in removing data redundancies arising from
multivalued dependencies.

e It is sometimes possible to represent the given
relation “more intuitively” as a nested table by
performing grouping on one or more of the at-
tributes. As an example, consider the relation
emp (empNum, branch) where the key is given by

empNum hey emp. This relation gives the employ-
ees and the branch where they work. When NeT
is applied on the above relation, we might get the
new nested relation as emp’ (empNum™, branch).
This relation has grouped the list of employees by
their branch.

Thus we observe that NeT is useful for decreas-
ing data redundancy and obtaining a “more intuitive”
schema, by (1) removing redundancies caused by mul-
tivalued dependencies and (2) performing grouping on
attributes. However NeT considers tables one by one,
and cannot obtain a big picture of the relational schema
where many tables are interconnected with each other
through various other dependencies such as inclusion
dependencies. To remedy this problem, we propose to
use other semantic constraints of relational schema.

4 Translation using Inclusion Depen-
dencies

In this section, we consider one kind of seman-
tic constraints called Inclusion Dependency (IND) in
database theory. Other kinds of semantic constraints
such as Functional Dependency (FD) or Multi-Valued
Dependency (MVD) are not considered in this sec-
tion for the following reasons: In general, most CASE
tools for relational database design generate schemas
at least in 3NF. If there existed any MVDs, for in-
stance, then the table would have been split up (i.e.,
normalized to 4NF) to avoid excessive data redun-
dancy. Even if it was not normalized to 4NF, if we
apply the NeT algorithm, most of the MVDs would
have been removed.

General forms of INDs are difficult to acquire
from the database automatically. However, we shall
consider the most pervasive form of INDs - for-
eign key constraints - which can be queried through
ODBC/JDBC interface. We study the translation of
inclusion dependencies incrementally in three steps. In
the first step, we consider the simplest case - one for-
eign key constraint defined between two tables. In
the second step, we consider the case when there exist
two foreign key constraints among three tables. In the
third step, we consider the general case of mapping
any given relational schema.

4.1 One Foreign Key between two Tables

Foreign key constraints are a special kind of INDs
where the attributes being referenced form the pri-
mary key of the referenced relation. For two distinct
tables s and ¢ with lists of columns X and Y, respec-
tively, suppose we have a foreign key constraint s[a]
C t[8], where @« C X and 8 C Y. Also suppose that
K, C X is the key for s. Then, rewriting this in R
notation, we have: T = {s,t},C(s) = {X},C(t) =

{(Y},A = {s[a] C[8],8"Y t, K, Y s}.

Different cardinality binary relationships between
s and t can be expressed in the relational model by
a combination of the following: (1) a is unique/not-
unique (2) a is nullable/non-nullable.

The translation of two tables s,t with a foreign
key constraint into XSchema, summarized in Table 3,
works as follows:

o If o is non-nullable (i.e., none of the columns of a
can take null values), then:

— If « is unique, then there is a 1 : 1 relation-
ship between s and ¢. This can be captured
as a sub-element M (t) = (Y, s7).

— If a is not-unique, then there is a 1 : n re-
lationship between s and ¢, and this is cap-
tured as a sub-element M (t) = (Y, s*).

If s is represented as a sub-element of ¢, then the
key for s will change from K, to (Ks; — «). The
key for ¢ will remain the same.

o If o is nullable, then the IND is represented as
such in XSchema. Here we do flat translation on
s, and copy the IND s[a] C t[§] to .

Let us study the case when « is nullable
more closely with the following example. Con-
sider the relation t(w;,ws,ws) with key (wi,ws).
Let t have the following tuples: {(1,1,1)}. Now
consider s(vi,v2,v3) with key (va,v3), and IND
S[v1,v2] C t[wy,ws]. Let s have the following tuples:
{(null, 1,1), (null, 1,2), (null, 2,1),(1,1,3)}. We can
observe that we cannot represent s as s(v3), and obtain
the values of (v1,v2) for an s tuple by representing this
s tuple as a child of a t tuple, or by having an IDREF
attribute for the s tuple that refers to a ¢ tuple. This
is because v is nullable.

In such a case, we represent the IND as such in
XSchema. In this paper, we are concerned mostly with
the usage of sub-elements and IDREF attribute for
translation, and therefore, we will focus on the case
when « is non-nullable, unless stated otherwise.

«a s:t XSchema

M(t) = (Y,s?),
M(s) = (X = a),

E:{(Ks—a)k—e;’s,,@]ﬂt}

v,

Y W) ,1)

M(t) = (Y), M(s) = (X),

b 0,1):(0,1) | =={sla] Ct[3],
’ K hey s, 3 hey t}
M(t) = (Y,s"),
@y m) | M) =X -a),
' Y={(K, —a) ¥ s34t}
M(t) = (Y), M(s) = (X),
201 (0,1):(0,n) | = {sla] S ¢[B],

Kski?s,,@k—e;’t}

Table 3: Different values taken by «, the corresponding
cardinality of the binary relationship between s and t,
and the corresponding translation to XSchema. v and
? denote “unique” and “nullable”, respectively.

Example 5. Consider two tables student and
professor of Example 1 again. There is a foreign key
Advisor C Pname and Advisor is not unique. Us-
ing the above rules, the schema will be mapped to the
following XML schema in DTD notation:

<!ELEMENT professor
<!ELEMENT student

(Pname,Age,student*)>
(Sname,Course) >

Note the usage of * attached to the sub-element
student. Note further that to identify a unique
student element for a given professor, one needs now
only Sname and Course pair (Advisor attribute was
removed from the original key attribute list). i

4.2 Two Foreign Key among three Tables

Now consider the case where two foreign key con-
straints exist among three tables s, t1, to with a list
of columns X, Y7, Y3, respectively, such that s[a] C
t1[61] and s[y] C t2[B=], where a,¥ C X and are non-
nullable, 8; C Y7 and B, C Y. If one applies the
mapping rules for the case of a foreign key between two
tables in Section 4.2 one at a time, then one will have
a combination of the following depending on whether
a and «y are unique or not: (1) M(t1) = (Y1,s?) or
M(t1) = (Y1,8%), (2) M(t2) = (Ya,s?) or M(t2) =
(Ya, 5").

The above translation has redundancy, and it ex-
hibits the phenomenon known in database theory as
“update anomaly” for s. That is, when one wants to
update data for s, he/she needs to update s in two dif-
ferent places — fragment of s data under both #; and
ta. On the contrary, the original relational schema
is “better” because one needs to update tuples of s
in a single place. The same problem occurs for the
case of “delete” as well. To avoid these anomalies, one
of the two foreign key constraints should be captured
either using INDs or using IDREF attributes. For ex-
ample, let us assume that the first foreign key con-
straint s[a] C ¢1[81] is represented as M (t1) = (Y1, s*),
M(s) = (X — a). Then the second foreign key con-
straint s[y] C t2[32] can be represented using IDREF
attribute as follows:

A(ts) = {IDty}, P(ID_ts) = (ID,~7,€,¢)
A(s) = {Refts}, P(Ref-ts) = (IDREF,~?,¢,¢)
M) = (Yz), M(s)=X-a-7)

Let us denote the old and new keys for s as K, and
K!, respectively. Then, K| is determined as follows:
(1) if anK, = ¢, then K| = K, and (2) if aN K, # ¢,
then K! = (K; —a) U Ref ta

Example 6. In addition to two tables student and
professor of Example 5, consider a third ta-
ble class(Cname, Room) with a second foreign key
student[Course] C class[Cname]. Then, using the
above rules, the schema will be mapped to the fol-
lowing XML schema in DTD notation:

<!ELEMENT professor
<!ELEMENT student
<!ELEMENT class
<VATTLIST student
<VATTLIST class

(Pname, Age,student*)>
(Sname) >

(Cname ,Room) >
Ref_class IDREF>
ID_class ID>

Note the addition of two new attributes - Ref_class
of type IDREF and ID_class of type ID. The new

key for student is given by {Sname, Ref class hey
student}, which cannot be represented in DTD. O

Note that between two foreign keys, deciding which
one is represented as sub-element and which one is rep-
resented as IDREF attribute can best be done based
on further semantics.

4.3 A General Relational Schema

Now let us consider the most general case with set
of tables {ti, ..., t,} and INDs t;[a;] C t;[8;], where
1,7 < n. We consider only those INDs that are for-

eign key constraints (i.e., §; hey t;), and where o; is
non-nullable. The relationships among tables can be
captured by a graph representation, termed as IND-
Graph.

Definition 4 (IND-Graph) An IND-Graph G =
(V,E) consists of a node set V and a directed edge
set E, such that for each table t;, there exists a node
in V, and for each distinct IND t; C t;, t; — t; exists
in G. |

Note the edge direction is reversed from the IND
direction for convenience. Given a set of INDs, such
IND-Graph can be easily constructed. Once IND-
Graph is constructed, one needs to decide the start-
ing point to apply translation rules. For that purpose,
we use the notion of top nodes similar to the one
in [20, 13], where an element is a top node if it cannot
be represented as a sub-element of any other element.
Such top nodes can be identified as follows:

1. An element s is a top node, if there exists no other
element ¢, t # s, where there is a IND of the form
s[a] C t[8], and a is non-nullable.

2. Consider a set of elements S = s1,82,...,8; that
form a cyclic set of INDs and none of the elements
in S is a top node by 1. Suppose there exists no
element ¢ ¢ S, such that there is a IND of the
form s;[a] C t[], and « is non-nullable. In this
case, choose any one of the elements in S as a top
node.

Let T' denote the set of top nodes. After identify-
ing the top nodes, we traverse GG, using say Breadth-
First Search (BFS), until we traverse all the nodes
and edges, and represent the INDs as sub-elements
or IDREF attributes. The algorithm for Constraint-
based Translation (CoT) is given in Table 4.

Example 7. Consider a schema and its associated
INDs in Table 5. The IND-Graph is shown in Figure 2.
Two top nodes are identified (1) course: There is no
node t, where there is an IND of the form course[a]

student (Sid, Name, Advisor)
emp(Eid, Name, ProjName)
prof (Eid, Name, Teach)
course(Cid, Title, Room)
dept (Dno, Mgr)

proj(Pname, Pmgr)

student (Advisor) C prof (Eid)
emp (ProjName) C proj(Pname)
prof (Teach) C course(Cid)
prof (Eid, Name) C emp(Eid, Name)
dept (Mgr) C emp(Eid)

proj (Pmgr) C emp(Eid)

Table 5: An example schema with associated INDs.

course

Figure 2: The IND-Graph representation of the
schema of Table 5 (top nodes denoted by rectangular
nodes).

C t[8], and (2) emp: There is a cyclic set of INDs
between emp and proj, and there exists no node ¢
such that there is an IND of the form emp[a] C ¢[f]
or proj[a] C t[3]. Therefore of emp and proj we de-
cided to choose emp arbitrarily. Table 6 shows one
of the possible orders in which the different INDs are
visited, the choice made to represent the IND (either
sub-element or IDREF attribute), and the resulting
changes in XSchema. O

It is worthwhile to point out that there are several
places in CoT where human experts can determine bet-
ter mapping based on the semantics and usages of the
underlying data or application.

e The CoT algorithm identifies a minimal set of top-
nodes, breaking any ties (when there are cyclic
INDs) arbitrarily. A better mapping might have
more top-nodes than this minimal set, or might
choose to break a tie in a particular manner.

e Given a set of foreign-key constraints on one table,
CoT chooses one foreign-key constraint to be rep-
resented as a sub-element, and represents the re-
maining using IDREF attributes. Human experts
might be able to provide better input as to which
constraint should be represented as sub-element,
and which as IDREF attributes.

Examples so far have shown the conversion flow of X
— CoT — DTD. We can also have the conversion flow
X — NeT — CoT — DTD as shown in Example 10 in
Appendix. However this imposes a restriction; when

CoT: R=(T,C,P,A) = X = (E, A, M, P,1,%)

C(v) = Cy.

i. If « is unique, then M (v) = (Cy, w?).

ii. If & is not-unique, then M(v) = (Cy,w").
iii. M(w) = (Cw —).
iv. =5 U w.

Section 4.2.

1. Construct IND-Graph G = (V, E) from the given INDs; Identify T, the set of top nodes. Define S = T to keep track
of top-nodes and nodes that are represented as sub-elements.
2. For each top-node t € T', do BFS. Suppose we reach a node w from v (i.e., IND: w[a] C v[3]); Let C(w) = Cy, and

(a) fw ¢ S (i.e., w is not yet a sub-element of some other node), translate the IND as in Section 4.1.

(b) If w € S (i.e., w is already a sub-element of some other node), translate the IND as IDREF attribute as in

i. A(v) = {ID_v}, A(w) = {Refv}, M(v) = (Cy), M(w) = (C —a), & = Kl “F w.
3. Copy the remaining integrity constraints in A to X. Also set r =T..

Table 4: CoT algorithm.

No. IND

sub-element
vs. IDREF

Representation in XSchema

. M (course) = (Cid, Title,Room, prof™),
1 prof (Teach) C course(Cid) sub-element M (prof) — (Eid, Name)
. . M (prof) = (Eid, Name, student™),
2 student (Advisor) C prof (Eid) sub-element M (student) — (Sid, Name)
. M (emp) = (Eid, Name, ProjName,dept™),
3 dept (Mgr) C emp(Eid) sub-element M(dept) = (Dno)
. . M (emp) = (Eid, Name, ProjName,dept®, proj*)
4 proj(Pmgr) C emp(Eid) sub-element M(proj) = (Pname)
. . M (emp) = (Eid, Name, dept™,proj™)
5 emp (ProjName) C proj(Pname) IDREF A(proj) = {ID_proj}, A(emp) = {Ref_proj}
M (prof) = (student”™),
6 prof (Eid, Name) C emp(Eid, Name) IDREF A(emp) = {ID_emp}, A(prof) = {Ref _emp}

3 = {Ref_emp hey prof}

Table 6: The order where INDs are chosen by the CoT algorithm, and how the translation is done.

NeT followed by CoT are applied, nesting can be done
only on attributes that do not participate in any IND.

5 Discussion

All three algorithms — FT, NeT, and CoT — are “cor-
rect” in the sense that they all have preserved the orig-
inal information of relational schema. For instance,
using the notion of information capacity [16], a theo-
retical analysis for the correctness of our translation
procedures is possible; we can actually show that NeT
and CoT algorithms are equivalence preserving trans-
formations. However, we defer this detailed analysis
to a later version.

With respect to the “goodness” of XML schema
that the proposed algorithms generate, it is not obvi-
ous to bluntly state whether or not they are good, since
there has not been any unanimous normalization the-
ory for XML model yet. Some early work for nested re-
lational model (e.g., [19]) is related, but more recently
a few proposals have been made for normal forms of
XML model (e.g., [6, 24]). To a greater or lesser ex-

tent, the crux of such normal forms is an attempt to
reduce data redundancy so that various anomalies can
be avoided. Although the output schema from NeT
or CoT does not exactly fit into normal forms defined
by [6, 24], they share similar properties. For instance,
identifying multivalued attributes and making them
repeating sub-elements in NeT is essentially a neces-
sary step towards “object class normal form” in [24].
The use of reference attributes in CoT for handling
multiple foreign key constraints defined on one table
(Section 4.2) can be explained similarly. Therefore,
we would like to point out that although it is early
to formally prove the goodness of our proposals, it is
evident that our proposals lead to less redundant yet
correct XML schema.

of attributes # Of. successful i;f(ega:::le)lsell} Nested Table # of
Test Set / # of tuples nesting / # qf 4# original data Slze'/ Original ne.sted time (sec.)
s attempted nesting values Size (KB) attributes
Balloonsi 5/ 16 42 / 64 22/ 80 0.152 / 0.455 3 1.08
Balloons2 5/ 16 42 / 64 22 / 80 0.150 / 0.455 3 1.07
Balloons3 5 /16 40 / 64 42 / 80 0.260 / 0.455 3 1.14
Balloons4 5/ 16 42 / 64 22/ 80 0.149 / 0.455 3 1.07
Hayes 6/ 132 1/6 522 / 792 1.219 / 1.758 1 1.01
Bupa 7/ 345 0/7 2387 / 2387 7.234 / 7.234 0 4.40
Balance 5 /625 56 / 65 1120 / 3125 2.259 / 6.265 4 21.48
TA Eval 6 /110 253 / 326 534 / 660 1.281 / 1.559 5 24.83
Car 7 /1728 1870 / 1957 779 / 12096 3.157 / 51.867 6 469.47
Flare 13 / 365 11651 / 13345 2834 / 4745 5.715 / 9.533 4 6693.41

Table 7: Summary of NeT experimentations.

6 Experimental Results
6.1 NeT Results

We implemented the NeT algorithm described in
Table 9°. We used two additional optimization
rules in our implementation: (1) if nestx(t) = t,
then nestx (nestAlly,(t)) = nestAll(t) for any list
of columns, L, and (2) if nestx(nestAllp(t)) =
nestAllr(t) for any column X and all possible list
of columns L of length I, then nestx (nestAllpy(t)) =
nestAllys(t) for any column X and all possible list of
columns M of length m, where m > [.

Our preliminary results comparing the goodness of
the XSchema obtained from NeT, and FT with that
obtained from DB2XML v 1.3 [23] is given in Ap-
pendix A.3. We further applied our NeT algorithm
on several test sets drawn from UCI KDD® / ML
repositories, which contain a multitude of single-table
relational schemas and data. Sample results are shown
in Table 7. Two metrics are used as follows:

of successful nesting
of total nesting

NestRatio

ValueRatio =

of data values D in the nested table

of original data values

where D is the number of individual data values
present in the table. For example, D for the row
({1,2,3},a,10) of a nested table is 5.

Note that NestRatio denotes the efficiency of our
optimization rules, while ValueRatio implies whether
it was useful to perform nesting.

In our experimentation, we observed that most of
the attempted nestings are successful, and hence our
optimization rules are quite efficient. In Table 7, we see
that nesting was useful for all the data sets except for
the Bupa data set. Also nesting was especially useful
for the Car data set, where the size of the nested table

5 Available at http://www.cs.ucla.edu/~mani/xml
Shttp://kdd.ics.uci.edu/
"http://www.ics.uci.edu/~mlearn/MLRepository.html

G o7 {agio]

Figure 3: The IND-Graph representation of the TPC-
H schema.

is only 6% of the original data set. Time required for
nesting is an important parameter, and it depends on
the number of attempted nestings, and the number of
tuples. The number of attempted nestings depend on
the number of attributes, and increase drastically as
the number of attributes increases. This is observed
for the Flare data set, where we have to do nesting
on 13 attributes. The NeT algorithm could nest only
up to 4 attributes for feasibility reasons, it is actually
possible to nest more for this data set.

6.2 CoT Results

For testing CoT, we need some well-designed relational
schema where tables are interconnected via inclusion
dependencies. For this purpose, we use the TPC-H
schema v 1.3.0%, which is an ad-hoc, decision support
benchmark and has 8 tables and 8 inclusion dependen-
cies. The IND-Graph for the TPC-H schema, is shown
in Figure 3.

CoT identifies two top-nodes - part and region.
Suppose we start the scan of the top-nodes from
region, we get the XSchema shown in Appendix A.4.
Six of the eight inclusion dependencies are mapped
using sub-element, and the remaining two are mapped
using IDREF attributes. We believe that the XSchema
produced by CoT is “more intuitive” than the rela-
tional schema we started with.

8http://www.tpc.org/tpch/spec/h130.pdf

250000

FT —a
CoT ——

200000

150000

100000

50000

of data values in XML document

0 0.5 1 1.5 2 2.5
size of TPC-H raw data (MB)

Figure 4: Comparison of XML documents generated
by FT and CoT algorithms for TPC-H data.

Figure 4 plots the number of data values in the XML
document generated by FT and CoT depending on the
size of the original data. Because FT is a flat transla-
tion, the number of data values in the XML document
generated by FT is the same as the number of data
values in the original data. However, CoT is able to
decrease the number of data values in the generated
XML document by more than 12%.

7 Conclusion

We have presented two relational-to-XML conversion
algorithms - NeT and CoT. The naive translation al-
gorithm FT translates the “flat” relational model to
“flat” XML model in a one-to-one manner. Thus FT
does not use the non-flat features of the XML model,
possible through regular expression operators such as
“¥” and “4”. To remedy this problem, we first pre-
sented NeT, which uses the nest operator to generate
a more precise and intuitive XML Schema from rela-
tional inputs. When poorly designed or legacy rela-
tional schema needs to be converted to XML format,
NeT can suggest a fairly intuitive XML schema. How-
ever NeT is only applicable to a single table at a time,
and cannot obtain a big picture of a relational schema
where many tables are interconnected with each other.
Our next algorithm CoT addresses this problem - CoT
uses semantic constraints (especially inclusion depen-
dencies) specified in the relational model to come up
with a more intuitive XML Schema for the entire re-
lational schema.

Thus our approaches have the following properties:
(1) automatically infer a “good” XML Schema from
a given relational schema, (2) remove redundancies
that might be present in poorly designed or legacy
relational schema (3) maintain semantic constraints
during translation. With a rapid adoption of XML
standards among industries and majority of data still
stored in relational databases, the need to correctly
and effectively convert relational data into XML for-

mat is imminent. We believe our proposed methods
are good additions to such a practical problem.

Our work in this paper concentrates on obtaining
a “good” and “correct” XML schema. However there
are still several other issues to be studied. Implemen-
tation issues (e.g., I/O cost, tagging strategy, nesting
strategy) are very important. Early investigation on
these issues is done in [2]. Since our work in this pa-
per proposes algorithms which can result in a fairly
complex target XML schema as an output, studying
an efficient implementation of our NeT and CoT algo-
rithms is an important direction. Another direction of
future research is studying the normalization theory of
XML schema. By formally defining what is a “good”
XML schema, one can devise better relational-to-XML
conversion algorithms that result in normalized XML
schema. Also our NeT algorithm performed only sin-
gle attribute nesting. Multiple attribute nesting is an-
other interesting research direction.

References

[1] P. V. Biron and A. Malhotra (Eds).
“XML Schema Part 2: Datatypes”.
W3C Recommendation, May 2001.

http://www.w3.org/TR/xmlschema-2/.

[2] R. Bourret. “Data Transfer Strategies: Trans-
ferring Data between XML Documents and
Relational Databases”. Web page, 2000.
http: //www.rpbourret.com/xml/DataTransfer.htm.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen
(Eds). “Extensible Markup Language (XML)
1.0 (2nd Edition)”. W3C Recommendation,
Oct. 2000. http://www.w3.0rg/TR/2000/REC-
xml-20001006.

[4] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shan-
mugasundaram, E. Shekita, and S. Subra-
manian. “XPERANTO: Publishing Object-
Relational Data as XML”. In Int’l Workshop on
the Web and Databases (WebDB), Dallas, TX,

May 2000.

[5] J. Clark and M. Murata (Eds). “RE-
LAX NG Specification”. OASIS
Committee Specification, Dec. 2001.
http://www.oasis-open.org/committees/relax-
ng/spec-20011203.html.

[6] D. W. Embley and W. Y. Mok. “Developing

XML Documents with Guranteed “Good” Prop-
erties”. In Int’l Conf. on Conceptual Modeling
(ER), Yokohama, Japan, Nov. 2001.

[7] W. Fan and J. Siméon. “Integrity Constraints for
XML”. In ACM PODS, Dallas, TX, May 2000.

[8] M. F. Fernandez, W.-C. Tan, and D. Suciu.
“SilkRoute: Trading between Relations and
XML”. In Int’l World Wide Web Conf. (WWW),
Amsterdam, Netherlands, May 2000.

[9] P. C. Fischer, L. V. Saxton, S. J. Thomas, and
D. V. Gucht. “Interactions between Dependencies
and Nested Relational Structures”. J. Computer
and System Sciences (JCSS), 31(3):343-354, Dec.
1985.

[10] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Se-
shadri, and K. Shim. “XTRACT: A System
for Extracting Document Type Descriptors from
XML Documents”. In ACM SIGMOD, Dallas,
TX, May 2000.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik.
“Concrete Mathematics: A Foundation for Com-
puter Science”. Addison-Wesley Pub., 1994.

[12] G. Jaeschke and H.-J. Schek. “Remarks on the
Algebra of Non First Normal Form Relations”.
In ACM PODS, Los Angeles, CA, Mar. 1982.

[13] D. Lee and W. W. Chu. “Constraints-preserving
Transformation from XML Document Type Def-
inition to Relational Schema”. In Int’l Conf. on
Conceptual Modeling (ER), pages 323-338, Salt
Lake City, UT, Oct. 2000.

[14] D. Lee, M. Mani, F. Chiu, and W. W.
Chu. “Nesting-based Relational-to-XML Schema
Translation”. In Int’l Workshop on the Web and
Databases (WebDB), Santa Barbara, CA, May
2001.

[15] M. Mani, D. Lee, and R. R. Muntz. “Semantic
Data Modeling using XML Schemas”. In Int’l
Conf. on Conceptual Modeling (ER), Yokohama,
Japan, Nov. 2001.

[16] R. J. Miller, Y. E. Ioannidis, and R. Ramakrish-
nan. “Schema Equivalence in Heterogeneous Sys-
tems: Bridging Theory and Practice (Extended
Abstract)”. In EDBT, Cambridge, UK, Mar.
1994.

[17] M. Murata, D. Lee, and M. Mani. “Taxonomy of
XML Schema Languages using Formal Language
Theory”. In Extereme Markup Languages, Mon-
treal, Canada, Aug. 2001.

[18] C. Nentwich, W. Emmerich, A. Finkel-
stein, and A. Zisman. “BOX: Brows-
ing Objects in XML”. Software Practice
and Ezperience, 30(15):1661-1676, 2000.

http://www.cs.ucl.ac.uk/staff/c.nentwich/Box/.

[19] Z. M. Ozsoyoglu and L. Y. Yuan. “A New Nor-
mal Form for Nested Relations”. ACM Trans. on

Database Systems (TODS), 12(1):111-136, Mar.
1987.

[20] J. Shanmugasundaram, K. Tufte, G. He,
C. Zhang, D. DeWitt, and J. Naughton. “Rela-
tional Databases for Querying XML Documents:
Limitations and Opportunities”. In VLDB, Edin-
burgh, Scotland, Sep. 1999.

[21] T. Shimura, M. Yoshikawa, and S. Uemura.
“Storage and Retrieval of XML Documents us-
ing Object-Relational Databases”. In Int’l Conf.
on Database and FEzpert Systems Applications
(DEXA), pages 206-217, Florence, Italy, Aug.
1999.

[22] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn (Eds). “XML Schema Part 1:
Structures”. W3C Recommendation, May 2001.
http://www.w3.org/TR/xmlschema-1/.

[23] V. Turau. “Making Legacy Data Ac-
cessible for XML Applications”. Web
page, 1999. http://www.informatik.fh-

wiesbaden.de/~turau/veroeff.html.

[24] X. Wu, T. W. Ling, M. L. Lee, and G. Dobbie.
“Designing Semistructured Database Using ORA-
SS Model”. Unpublished Manuscript, 2001.

A Appendix
A.1 Proofs

ProoF. (Remark 1) The number of the first nest-
ing along n columns is the same as the number of
1-element sequences: n. The number of the second
nesting along n columns is again the same as the num-
ber of 2-elements sequences by P2: n(n — 1). Con-
tinuing this, the number of the last nesting along n
columns is again the same as the number of n-elements
sequences: n+n(n—1)+---+nn-1)...(2)(1) =
nt+nZ4+--4nt = YU nk (q.e.d)

Proor. (Lemma 1) Consider a table ¢ with column
set C, and candidate keys, K1, Ks,... ,K, C C. Con-
sider a column X € C, such that X is not an attribute
of at least one of the candidate keys, say X ¢ K;. Now
X D K;, and hence X is unique. Thus, no two tuples
can agree on X. Therefore, by the definition of the
nest operator, nesting on X will fail. (q.e.d)

Proor. (Lemma 4) Let C denote the set of columns
of t, let the candidate keys be K1, K,... ,K,, C C.
Let K = K1NKyN...N K,, where |[K| = m. The
first column to be nested, say X is chosen such that
X € K by Lemma 1, in one of the m ways. Now
after the first nesting, by Lemma 2, we have a new
candidate key X. The next column to be nested is
chosen from K N X, where |K N X| = m — 1. Thus
we have m — 1 ways of choosing the second column

for nesting. Continuing this, we have total number of
nesting ism+m(m—1)+...+m(m—1)...(2)(1) =
Z’;ﬂnzl mi‘ (q‘e'd)

A.2 More Conversion Examples

Example 8. R; in Example 1 would be translated to
Xs = (E,A, M, P,r,X) via FT, where

E = {student,professor}
A(student) = {Sname, Advisor, Course}
A(professor) = {Pname, Age}
M(student) = €
M(professor) = €
P(Sname) = (string,?,¢,€)
P(Advisor) = (IDREF,? ¢, “J.Smith")
P(Course) = (string,?,€,€)
P(Pname) = (ID,~7¢,¢€)
P(Age) = (integer,?,¢,¢€)
r = {student,professor}

¥ = {{Sname, Advisor, Course}ki;"student,

k .
Pname % professor, Advisor C Pname} O

Example 9. X7 of Example 7 can be further rewrit-
ten in element-oriented mode to DTD notations as fol-
lows:

<!ELEMENT course (Cid, Title, Room, prof#*)>
<!ELEMENT prof (Name, student#)>
<!'ATTLIST prof Eid IDREF>

<!ELEMENT student (Sid, Name)>

<!ELEMENT emp (Name, ProjName, deptx,

proj*)>
<!ATTLIST emp Eid ID, ProjName IDREF>
<!ELEMENT dept (Dno)>
<!ELEMENT proj EMPTY>
<!ATTLIST proj Pname ID>

Example 10. Consider R; in Example 1. Let us first
apply NeT and then CoT on this. When we apply
NeT, we perform nesting only on the column Course
of student, and obtain a content model for student
as M (student) = (Sname, Advisor, Course™). Now
applying CoT on the above schema, we get the output
XSchema as X1g = (E, A, M, P,r,Y), where

E = {student,professor}
A(professor) = {Pname}
M(student) = (Sname,Course™)
M(professor) = (Age’,student”)
P(Pname) = (ID,-7¢,¢€)
r = {student,professor}
¥ = {{Sname,Course} ey student,

Pname "% professor} m|

A.3 NeT Experimentation

We compare the results of FT and NeT with that of
DB2XML v 1.3 [23]. Consider the Orders table (con-
taining 830 tuples) found in MS Access NorthWind
sample database.

Orders (CustomerID,EmployeeID,ShipVia,
ShipAddress,ShipCity,ShipCountry,ShipPostalCode)

Table 8 shows the DTDs generated by DB2XML, FT in
attribute-oriented mode, NeT in both element-oriented
and attribute-oriented modes, respectively. In (a),
DB2XML always uses element to represent columns
of a table. To represent whether the column is nul-
lable or not, DB2XML adds a special attribute ISNULL
to every element: i.e., “ISNULL = true” means the
column is nullable. In (b), FT in attribute-oriented
mode uses #IMPLIED or REQUIRED to represent whether
the column is nullable or not. Observe that both
DB2XML and FT share the same problem of translat-
ing “flat” relational schema to “flat” XML schema. In
(c) and (d), NeT finds two columns EmployeeID and
ShipVia can be nested. Intuitively, the new schema
infers that for each CustomerID, multiple non-zero
EmployeeID and multiple ShipVia can exist. Also NeT
finds that CustomerID is a mandatory column. To en-
sure this property, (¢) adds no suffix such as ? or *
to CustomerID sub-element and (d) uses #REQUIRED
construct explicitly. We observe that the DTDs found
by NeT are more succinct and more intuitive than the
ones found by DB2XML.

A.4 CoT Experimentation

CoT converted the TPC-H schema into the following
XSchema Xy, = (E, A, M, P,r,X). We show the defi-
nitions only for attributes of types ID and IDREF.

E = {part,partsupp,lineitem, orders,
customer, supplier, nation, region}
A(part) = {PartKey, Name, M fgr,
Brand, Type, Size, Container,
Retail Price, Comment}
M(part) = €
P(PartKey) = (ID,—7,¢¢€)
A(region) = {RegionKey, Name, Comment}
M(region) = {nation™}
P(RegionKey) = (ID,-7¢,¢)
A(nation) = {NationKey, Name, Comment}
M (nation) = {supplier”,customer*}
P(NationKey) = (ID,—7?¢,¢)
A(supplier) = {SuppKey, Name, Address, Phone,
AcctBal, Comment}
M (supplier) = {partsupp™}
P(SuppKey) = (ID,—?,¢¢€)

<!ELEMENT Orders (CustomerID,EmployeeID,ShipVia,ShipAddress,

ShipCity, ShipCountry, ShipPostalCode)>
<!ELEMENT CustomerID (#PCDATA)> <!ELEMENT Orders (EMPTY)>
<!ATTLIST CustomerID ISNULL (true|false) #IMPLIED> <!ATTLIST Orders
<!ELEMENT EmployeeID (#PCDATA)> CustomerID CDATA #IMPLIED
<!ATTLIST EmployeeID ISNULL (true|false) #IMPLIED> EmployeeID CDATA #IMPLIED
<!ELEMENT ShipVia (#PCDATA)> ShipVia CDATA #IMPLIED
<!ATTLIST ShipVia ISNULL (true|false) #IMPLIED> ShipAddress CDATA #IMPLIED
. ShipCity CDATA #IMPLIED
<!ELEMENT ShipCountry (#PCDATA)> ShipCountry CDATA #IMPLIED
<!ATTLIST ShipCountry ISNULL (true|false) #IMPLIED> ShipPostalCode CDATA #IMPLIED>
<!ELEMENT ShipPostalCode (#PCDATA)>
<!ATTLIST ShipPostalCode ISNULL (true|false) #IMPLIED>

(a) DB2XML (b) FT in attribute-oriented mode
<!ELEMENT Orders (CustomerID,EmployeeID+,ShipVia*,ShipAddress?, <!ELEMENT Orders (EmployeeID+,ShipVia*)>
ShipCity?,ShipCountry?,ShipPostalCode?)> <!ATTLIST Orders
<!ELEMENT CustomerID (#PCDATA) > CustomerID CDATA #REQUIRED
<!ELEMENT EmployeeID (#PCDATA)> ShipAddress CDATA #IMPLIED
<!ELEMENT ShipVia (#PCDATA) > ShipCity CDATA #IMPLIED
<!ELEMENT ShipAddress (#PCDATA)> ShipCountry CDATA #IMPLIED
<!ELEMENT ShipCity (#PCDATA) > ShipPostalCode CDATA #IMPLIED>
<!ELEMENT ShipCountry (#PCDATA) > <!ELEMENT EmployeeID (#PCDATA)>
<!ELEMENT ShipPostalCode (#PCDATA)> <!ELEMENT ShipVia (#PCDATA) >
(c) NeT in element-oriented mode (d) NeT in attribute-oriented mode

Table 8: DTDs generated by different algorithms.

NeT: R=(T,C,P,A) = X = (E,A,M,P,r, %)
1. Each table ¢; in R is translated to an element e; in X: E = J,{ei}.

2. For each table t; in R, apply the nest operator repeatedly until no nesting succeeds. Choose the best nested table
based on the selected criteria. Denote this table as t;(ci,...,Ck_1,Ck,--- ,Cn), Where nesting succeeded on the
columns {ci,...,cx—1}. If k = 1 (i.e., no nesting succeeded), follow the flat translation. Otherwise, do the following:

(a) For each column ¢; (1 < i <k — 1), where P(¢;) = (1,u,n,d, f), if n =7, then the content model is M(e;) =
(...,¢,...), otherwise M(e;) = (... ,cf,...).
(b) For each column ¢; (k < j < n), where P(c;) = (7,u,n,d, f), do flat translation

e (element-oriented mode) if n =?, the content model is M(e;) = (... ,c,...
(v yCyees)-

e (attribute-oriented mode) if c; is translated to a;, then A(ei) = Uy,{a;} and P(a;) = (7, n, d, f).

), otherwise M(e;) =

3. All elements e; in X become roots: r = |J;{e:}.
4. Copy A in Rinto ¥ in X.

Table 9: NeT algorithm.

A(partsupp) = {Ref_part, AvailQty, SupplyCost, P(CustKey) = (ID,~7¢¢)
Comment} A(orders) = {OrderKey,OrderStatus,
M (partsupp) = {lineitem”} Total Price, Order Date, Order Priority,
P(Ref-part) = (IDREF,-?¢,¢) Clerk, ShipPriority, Comment}
A(lineitem) = {Ref_orders,LineNumber, Quantity, M(orders) = e
ExtendedPrice, Discount, Taz, P(OrderKey) = (ID,—-?¢,¢)
ReturnFlag, LineStatus, ShipDate, r = {part,region}

CommitDate, Receipt Date, ShipInstruct

key key .
3> = {PartKey — part,SuppKey — supplier
ShipMode, Comment} , ’

{Ref part, SuppKey} hey partsupp,

M (lineitem) = €
P(Ref.orders) = (IDREF,—?,¢,¢) {Ref_orders, LineNumber} hey lineitem,
A(customer) = {CustKey, Name, Address, Phone, OrderKey key orders, CustKey key customer,

AcctBal, MktSegment, Comment}

\ NationKey hey nation, RegionKey hey region}
M (customer) = {orders™}

