
F# Cheat Sheet

 http://a6systems.com

1

F# Cheat Sheet
This sheet glances over some of the

common syntax of the F# language. It

is designed to be kept close for those

times when you need to jog your

memory on something like loops or

object expressions. Everything is

designed to be used with the #light

syntax directive. If you type any of

these lines directly into the interactive

command shell, be sure to follow them

up with two semicolons “;;”.

If you have any comments, corrections

or suggested additions please send

them to chance@a6systems.com.

1. Comments

There are a few different kinds of

comments in F#. Comment blocks,

which are placed between (* and *)

markers.

Line by line comments which follow //

until the end of a line and xml doc

comments which follow /// and allow

the programmer to place comments in

xml tags that can be used to generate

xml documents.

2. Strings

In F# Code the type string is equivalent

to System.String
let s = "This is a string"

let hello = "Hello"+" World"

Preserve all characters
let share = @"\\share"

Use escape characters
let shareln = "\\\\share\n"

3 Numbers

type is int16 = System.Int16
let int16num = 10s

type is int32 = System.Int32
let int32num = 10

type is int64 = System.Int64
let int64num = 10L

type is float32, single or System.Single
let float32num = 10.0f

type is float, double or System.Double
let floatnum = 10.0

convert to int64
let int64frm32 = int64 int32num

Other conversion functions:
float float32 int int16

4 Tuples

Construction
let x = (1,"Hello")

Deconstruction
let a,b = x

Reconstruction and value reuse
let y = (x,(a,b))

Reconstruction into a 3 tuple (triple)
let z = (x,y,a)

Partial deconstruction triple
let ((a',b'),y',a'') = z

5 Lists, Arrays, Seqs : Generation

Creates the list [0 ; 2 ; 4]
 let lsinit = List.init 3
 (fun i -> i * 2)

Creates same list as above
let lsgen = [0 ; 2 ; 4]

Creates the list [0;2;4;6;8]
let lsgen2 = [0 .. 2 .. 8]

mailto:chance@a6systems.com

F# Cheat Sheet

 http://a6systems.com

2

Can also do above one increment at a

time to get [0;1;2;3;4;5;6;7;8]
let lsgen2' = [0..8]

Creates a list [0.0; 0.5; 1.0; 1.5]
let lsgen3 =
 [for i in 0..3 -> 0.5 * float i]

Put other steps into a generator
let lsgen3' =
 [for i in 0..3 ->
 printf "Adding %d\n" i
 0.5 * float i]

Place -1 at the head of a list
let inserted = -1 :: lsgen2'

Concatenation
let concat = lsgen2 @ lsgen2'

Create an array [|0 ; 2 ; 4|]
let arinit = Array.init 3
 (fun i -> i * 2)

Create same array as above
let argen = [| 0 ; 2 ; 4|]

Create the array [|0;2;4;6;8|]
let argen2 = [|0 .. 2 .. 8|]

Same as above one increment at a time

to get [|0;1;2;3;4;5;6;7;8|]
let argen2' = [|0..8|]

Create an array [0.0; 0.5; 1.0; 1.5]
 let argen3 =
 [|for i in 0..3 -> 0.5 * float i|]

Put other computation steps into the

generator
let argen3' =
 [|for i in 0..3 ->
 printf "Adding %d\n" i
 0.5 * float i|]

Creating a seq -- remember these are

lazy
let s =
 seq { for i in 0 .. 10 do yield i }

Illustrate laziness – consume the seq

below and note the difference from the

generated array.
let s2 =
 seq { for i in 0 .. 10 do
 printf "Adding %d\n" i
 yield i }

6 Lists, Arrays, Seqs : Consuming

"left" fold starts from the left of the list,

the "right" fold does the opposite
List.fold_left
 (fun state a -> state + 1) 0
 [for i in 0 .. 9 -> true]

Reduce doesn’t require the starter

argument
List.reduce_left
 (fun accum a -> accum + a)
 [0..9]

Square all of the elements in a list
List.map (fun x -> x * x) [1..10]

Prints all the items of a list
 List.iter
 (fun x -> printf "%d" x) [1..10]

Same examples for arrays
Array.fold_left
 (fun state a -> state + 1) 0
 [| for i in 0 .. 9 -> true|]

Array.reduce_left
 (fun accum a -> accum + a)
 [|0..9|]

Squares all the elements in the array
Array.map
 (fun x -> x * x) [| 1 .. 10 |]

F# Cheat Sheet

 http://a6systems.com

3

Prints all the items of an array
Array.iter
 (fun x -> printf "%d" x)
 [|1..10|]

Access all elements of an array from 2

on
let arr = [|for i in 0..3 -> i|]
arr.[2..]

Access elements between 2 and 4

(inclusive)
let arr = [|for i in 0..3 -> i|]
arr.[2..4]

Access all elements of an array up to 4
let arr = [|for i in 0..3 -> i|]
arr.[..4]

Seq also has iter, fold, map and reduce
Seq.reduce
 (fun accum a -> accum + a)
 (seq { for i in 0 .. 9 do
 yield i })

 7 Arrays: Manipulating

Array elements can be updated
let arrayone = [|0..8|]
 arrayone.[0] <- 9

8 Composition Operators

the |> operator is very helpful for

chaining arguments and functions

together
let piped = [0..2] |> List.sum

the >> operator is very helpful for

composing functions
open System
let composedWriter =
 string >>
 Console.WriteLine

9 Functions as values

Create a function of 3 arguments
let add x y z = x + y + z

Currying example
let addWithFour= add 4

Apply remaining arguments
addWithFour 2 10

Take a function as an argument
let runFuncTenTimes f a =
 [for 0..9 -> f a]

Return a list of functions as arguments
let listOfPrintActions =
 [for 0 .. 10 ->
 printf “%s\n”]

Apply those functions iteratively
listOfPrintActions
|> List.iteri (fun i a -> a i)

Anonymous function (applied to 2)
(fun x -> x * x) 2

Anonymous function (applied to

tuple,which is deconstructed inside)
let arg = (3,2)
(fun (x,y) -> x * y) arg

10 Union Types

Discriminated Union
 type option<'a> =
 | Some of 'a
 | None

Augmented Discriminated Union
type BinTree<‟a> =
 | Node of
 BinTree<‟a> * „a *
 BinTree<‟a>
 | Leaf
 with member self.Depth() =
 match self with
 | Leaf -> 0
 | Node(l,_,r) -> 1 +
 l.Depth() +
 r.Depth()

F# Cheat Sheet

 http://a6systems.com

4

11 Types: Records

type Person = {name:string;age:int}

let paul = {name="Paul";age=35}

let paulstwin =
 {paul with name="jim"}

do printf "Name %s, Age %d"
 paul.name paul.age

Augmenting Records

type Person = {name:string;age:int}
 with member o.Tupilize() =
 (o.name,o.age)

12 Types: OOP

Classes

type BaseClass()=
 let mutable myIntValue=1
 member o.Number
 with get() = myIntValue
 and set v = myIntValue<-v
 abstract member
 InheritNum:unit->int
 default o.InheritNum() =
 o.Number + 1

Subclass
type MyClass() =
 inherit BaseClass()
 let someval = “SomeVal”
 let mutable myIntValue = 1
 member self.SomeMethod(x,y) =
 g x y
 static member StaticMethod(x,y)=
 f x y
 member override o.InheritNum() =
 base.InheritNum()+
 myIntValue

Interface
type MyAbsFoo =
 abstract Foo:unit->string

type MyFooClass() =
 let mutable myfoo =”Foo”
 member o.MyFoo
 with get () = myfoo
 and set v = myfoo<-v
 interface MyAbsFoo with
 member o.Foo() = myfoo
 end

Object Expressions
let foo =
 {new MyAbsFoo with
 member o.Foo()=”Bar”}

Augmenting Existing Objects (note:

augmented members only available

when augmenting module is opened)
open System.Xml
type XmlDocument() =
 member o.GetInnerXml() =
 self.InnerXml

Static Upcasting
let strAsObj =
 let str = “Hello”
 str :> obj

Dynamic Downcasting
let objSub (o:‟a when „a:>object) =
 o :?> SomeSubType

13 Pattern Matching

Basic
let f (x:option<int>) =
 match x with
 | None -> ()
 | Some(i) -> printf “%d” i

As a function definition
let f = function
 | None -> ()
 | Some(i) -> printf “%d” i

F# Cheat Sheet

 http://a6systems.com

5

With when operation
let f = function
 | None -> ()
 | Some(i) when i=0 -> ()
 | Some(i) when i>0 ->printf“%d”i

Common matches on a literal
let f x =
 match x with
 | 0 | 1 as y -> f y
 | i -> printf “%d” i

Wildcard
let f = function
 | 0 | 1 as y -> printf “Nothing”
 | _ -> printf “Something”

14 Exceptions
try
 obj.SomeOp()
with | ex ->
 printf “%s\n” ex.Message

With (exception) type test
try
 obj.SomeOp()
with
 | :? ArgumentException as ex ->
 printf “Bad Argument:\n”
 | exn -> printf “%s\n” exn.Message

Add block that runs whether exception

is thrown or not
try
 obj.SomeOp()
finally
 obj.Close()

Raise an exception in code

-Shorthand
let f x =
 if not x.Valid then
 invalid_arg “f:x is not valid”
 else x.Process()

-Full
let f x =
 if not x.SupportsProcess() then
 raise
 (InvalidOperationException
 (“x must support process”))
 else x.Process()

Create your own
exception InvalidProcess of string

try
 raise InvalidProcess(“Raising Exn”)
with
 | InvalidProcess(str) ->
 printf “%s\n” str

15 Loops
for i in 0..10 do
 printf “%d” i
done

Over an IEnumerable
for x in xs do
 printf “%s\n”(x.ToString())
done

While
let mutable mutVal = 0
while mutVal<10 do
 mutVal <- mutVal + 1
done

16 Async Computations

(Note: FSharp.PowerPack.dll should

be referenced in your project – as of the

CTP - to get the augmented async

methods available in existing IO

operations)

Basic computation that returns

Async<int> that will yield 1 when

executed

let basic = async { return 1 }

Composing expressions and applying to

arguments
let compound num =
 async {
 let! anum = basic
 return num + anum }

F# Cheat Sheet

 http://a6systems.com

6

Returning existing expressions
let composedReturn =
 async { return! compound 2}

Creating Primitives with existing

Begin/End Async Calls
let asyncCall args =
 Async.BuildPrimitive
 ((fun (callback,asyncState) ->
 myService.BeginMethod(args,
 callback,
 asyncState)),
 myService.EndMethod)

Make your own primitive from scratch
let asyncPrimitive args =
 Async.Primitive (fun (con,exn) ->
 let result = runSomething args
 if good result then con result
 else exn result)

Other primitives
Async.Parallel
Async.Primitive
Async.Catch

Making sure I/O threads don’t block
(Note the MethodAsync convention in

“Expert F#” seems to have changed to

AsyncMethod)

let asyncRead file (numBytes:int)=
 async {
 let inStr = File.OpenRead(file)
 let! data = inStr.AsyncRead numBytes
 return processData(data) }

Execution Methods (apply the async

computation as an argument to these)
Async.Run
Async.Spawn
Async.SpawnFuture
Async.SpawnThenPostBack

17 Active Patterns

Basic

let (|Xml|) doc = doc.InnerXml

let getXml = function
 | Xml(xml) -> xml

Multiple Patterns
let (|Xml|NoXml|) doc =
 if doc.InnerXml=”” then NoXml
 else Xml(doc.InnerXml)

let getXml = function
 | Xml(xml) -> Some(xml)
 | NoXml -> None

Partial Pattern
let (|Xml|_|) doc =
 if doc.InnerXml=”” then None
 else Some(doc.InnerXml)

let getXml = function
 | Xml(xml) -> Some(xml) //Xml Matched
 | _ -> None // Xml did not match

18 Compiler Directives and Interop

with other .NET Languages
Make indentation significant in parsing

(i.e. turn on light syntax)
#light

Reference a DLL from another .NET

library (interactive F# scripts only – in

compiled code use normal interface for

reference additions)
#r @“.\src\bin\mylib.dll”

Include a directory in the reference

search (also in interactive scripts only)
#I @“[dir path]”

For a C# class Foo in a dll with a

method ToString(), invoke just as you

would an F# class.
let foo = Foo()
let s = foo.ToString()

F# Cheat Sheet

 http://a6systems.com

7

To have code run only in when

working with the compiled version

#if COMPILED
…code
#endif

For example, when writing a windowed

application that you test in script, but

eventually compile to run

let window =
 Window(Title=”My Window”)
#if COMPILED
[<STAThread>]
do
 let app = Application in
 app.Run(window) |> ignore
#endif
… later in script (.fsx) file …
window.Show()

Version 1.01

You can always get the most recent

updates to this cheat sheet from
http://a6systems.com/fsharpcheatsheet.pdf

A6 Systems, LLC is an Austin, TX

based company that provides

consulting services and F# QuickStart

training.

http://a6systems.com/fsharpcheatsheet.pdf
http://a6systems.com/consulting.html
http://a6systems.com/fsharptraining.html

