
Measuring the Haskell Gap

Leaf Petersen Todd A. Anderson Hai Liu Neal Glew
Intel Labs

leaf.petersen@gmail.com, {todd.a.anderson,hai.liu}@intel.com, aglew@acm.org

Abstract
Papers on functional language implementations frequently set the
goal of achieving performance “comparable to C”, and sometimes
report results comparing benchmark results to concrete C imple-
mentations of the same problem. A key pair of questions for such
comparisons is: what C program to compare to, and what C com-
piler to compare with? In a 2012 paper, Satish et al [9] compare
naive serial C implementations of a range of throughput-oriented
benchmarks to best-optimized implementations parallelized on a
six-core machine and demonstrate an average 23× (up to 53×)
speedup. Even accounting for thread parallel speedup, these re-
sults demonstrate a substantial performance gap between naive and
tuned C code. In this current paper, we choose a subset of the
benchmarks studied by Satish et al to port to Haskell. We mea-
sure performance of these Haskell benchmarks compiled with the
standard Glasgow Haskell Compiler and with our experimental In-
tel Labs Haskell Research Compiler and report results as compared
to our best reconstructions of the algorithms used by Satish et al.
Results are reported as measured both on an Intel Xeon E5-4650
32-core machine, and on an Intel Xeon Phi co-processor. We hope
that this study provides valuable data on the concrete performance
of Haskell relative to C.

1. Introduction
It is often claimed that high-level languages provide greater pro-
grammer productivity at the expense of some performance; func-
tional languages have been touted as providing reasonable parallel-
scalability without huge programmer effort at the loss of some se-
quential performance. Assessing these claims in general is difficult;
instead, in this paper we provide a careful study of six benchmarks
in Haskell reporting the sequential, parallel, and SIMD-vector per-
formance in comparison to C.

We use C, as is often done in the literature, to represent what
is possible with low-level high-performance languages. But this
choice immediately raises the question “What C?”. In particular,
how much programmer optimization is to be applied to the C pro-
gram? And what compiler should the C code be compiled with?
These concerns may seem minor, but they are not. In a 2012 pa-
per [9] (henceforth “the ninja-gap paper”), Satish et al study a range
of throughput oriented benchmarks and demonstrate dramatic per-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IFL ’13, August 28–30, 2013, Nijmegen, The Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ???. . . $15.00.
http://dx.doi.org/10.1145/???

formance differences between naive implementations and the best-
known hand-tuned implementations (an average of 23× speedup
and up to 53×). Moreover, they show that performance comparable
to the best-in-class implementations can generally be achieved us-
ing relatively-straightforward language-level optimizations applied
to the naive versions, combined with appropriate use of a good C
compiler. These results suggest that the question “What C” is in
fact critical to any such comparison.

We attempt to provide a very careful analysis of the relative
performance of C and Haskell on six of these benchmarks, using
both the standard Glasgow Haskell Compiler (GHC) and our ex-
perimental whole-program optimizing Haskell compiler, the Intel
Labs Haskell Research Compiler (HRC). We do not claim that this
analysis is the definitive study, nor that this analysis is the only
way to do such a study. It is possible that better C programmers
could improve on our reconstructions of the C benchmarks, and it
is possible that better Haskell programmers could improve on our
versions of the Haskell benchmarks. We have had to make choices
as to how far outside of the space of idiomatic Haskell programs to
go, and to what extent to use unsafe, non-standard, or experimental
constructs (such as strictness annotations, explicit strictness (seq),
unboxed vectors, and unsafe array subscripting). And of course, our
resources for exploring these spaces are finite. Our goal then is not
to be definitive, but to be transparent.

We believe that our results provide insights into Haskell perfor-
mance. We show that Haskell can sometimes achieve performance
comparable to best-in-class C, that Haskell can often achieve good
parallel scalability with little programmer effort, and that Haskell
can benefit from SIMD vectorization on some benchmarks. How-
ever, we also observe that Haskell performs badly on some bench-
marks, and that good scalability is not enough to make up for poor
sequential performance. We call the difference between the best
performing (peak performance at any number of threads) C im-
plementation and the best performing Haskell implementation, the
“Haskell Gap.” On a 32 core machine, we observe a Haskell Gap for
the GHC compiler on our selected benchmarks of between 1.72×
and 82.9× slower. We show that compiling with HRC reduces the
Haskell Gap to between 0.95× and 2.67×. We also give measure-
ments on a pre-production Intel Xeon Phi board, demonstrating a
measured Haskell Gap with HRC compiled code of between 0.76×
and 3.7×. To the best of our knowledge, these are the first perfor-
mance results for Haskell on the Xeon Phi processor.

1.1 Methodology: C
We are grateful to the authors of the ninja-gap paper for graciously
providing us with access to archived versions of their C implemen-
tations, and for answering our questions in our attempts to repro-
duce their results. It is important to make clear that this cannot
be considered a full reproduction of their work. Architectures and
compilers have changed significantly since the original code was
written. New issues (such as, very notably, non-uniform memory-
access) arise on the larger and newer machines which we are target-



ing. These are issues which the original code was not designed to
address, and which we lack the time to fully address ourselves. As
we will discuss further in Section 2, in places compiler technology
has substantially narrowed the gap between naive and optimized
algorithms. We have also, for various reasons including the need to
run on Microsoft Windows, needed to modify some of their orig-
inal C code. Any mistakes, anomalies or inconsistencies with the
original work are most likely due to us.

1.2 Methodology: Floating Point
Floating-point semantics are a notoriously difficult issue. Floating-
point arithmetic is generally not associative, and many identities
which hold over the real numbers do hold for floating-point num-
bers in the sense that they may change the precision of the result.
Whether this matters is very application dependent. For certain nu-
meric applications in which numeric stability is a critical property
of algorithms, predictable rounding semantics may be critical. On
the other hand, in many graphics applications performance is criti-
cal and details of rounding is more or less irrelevant. For our mea-
surements, we have chosen to give the compilers maximal freedom
to optimize floating-point operations (the methodology used in the
original ninja-gap paper). Other choices are reasonable. We discuss
this further in Section 2.

1.3 Methodology: Haskell
Porting of the Haskell benchmarks was done by three of the au-
thors, one of whom is a very experienced Haskell programmer, one
of whom is very experienced with functional languages but less so
with Haskell, and one of whom is a relative novice to functional
programming. In all cases, mutual assistance in writing and tuning
the benchmarks was provided. A broad goal of the porting effort
was to remain more or less in the space of reasonably idiomatic
Haskell. It is likely possible to achieve better performance on some
of these benchmarks by essentially writing the C code in Haskell
using IORefs and unsafe malloc-ed byte arrays. We do not feel this
style of programming is an interesting use of Haskell, and it does
not reflect well on the goal of high-level programming in general.
Where exactly the boundaries of idiomatic programming begin and
end are entirely a matter of judgment. For example, we do make ex-
tensive use of strictness annotations and other non-standard GHC
extensions to Haskell. We discuss particular choices in this regard
in the discussion of each benchmark in Section 2.

In tuning the benchmarks, we profited significantly from being
our own compiler developers. In particular, we were able to study
the generated code of both GHC and our own compiler to better
understand weaknesses in the generated code. These weaknesses
could often be addressed by small changes in the source code.
This technique would be much less accessible to other Haskell
developers. We also made extensive use of the Intel VTuneTM tool
to understand and tune performance.

In an ideal world, we would have kept our compiler fixed over
the course of this study. However, since our larger goal is the
development of the compiler itself, this work necessarily was used
to drive compiler development in the sense that weaknesses in the
compiler revealed by the benchmarks were sometimes addressed
in the compiler. The changes in the compiler were not done in an
ad hoc manner simply to address one particular benchmark, but
rather were generally beneficial optimizations. Nonetheless, this is
a weak point from the standpoint of viewing this as a scientific
performance study.

Our focus as a compiler development team is on our own com-
piler. We made reasonable efforts to select good optimization flags
for GHC and to provide fair measurements. In some cases we have
expended considerable effort to optimize the benchmarks to the
benefit of GHC even when not required for our own compiler. How-

ever, it is possible that someone more familiar with the strengths
and weaknesses of the GHC compiler might be able to improve
upon the relative performance of GHC vs our compiler. The style
of benchmark measured here is also particularly favorable to our
compiler. We hope that these results will not be taken as a criticism
of the GHC compiler, especially given that we rely essentially on
GHC as a high-level optimizing front-end for our compiler.

As of this writing, we have only ported a subset of the bench-
marks from the ninja-gap paper. This selection is not entirely
random—the easier to port benchmarks were chosen for porting
first, and the last remaining unported benchmarks seem likely to
be the most difficult to get good performance on. The selection of
benchmarks should if anything therefore be viewed as skewed in
favor of Haskell.

1.4 HRC
HRC is discussed in detail elsewhere [6] and we only briefly de-
scribe it here. The compiler uses GHC as a front-end and intercepts
the Core intermediate language before generation of spineless-
tagless G-machine code. Core code for the entire program (includ-
ing all libraries) is aggregated by our compiler in order to perform
whole-program optimization. Some initial high-level optimization
and transformation are performed before translation to a strict SSA-
style internal representation in which most optimization is done.
The backend of our compiler generates code in an extension of C
called Pillar [1], which is then transformed to standard C code and
compiled with the Intel C compiler or GCC. Our compiler performs
a number of loop-based and representation-style optimizations as
described elsewhere [6, 7]. In addition, SIMD vectorization is per-
formed where applicable as described by Petersen et al [8].

HRC implements most of the functionality of the GHC system,
and can correctly compile and run most of the nofib benchmark
suite. The most notable known deficiencies in functionality are that:

1. Re-evaluating a thunk which exited with an exception will pro-
duce an error instead of re-raising the exception.

2. Asynchronous exceptions are not supported.

The first issue can be addressed but has not been a priority. Ad-
dressing it will likely have some adverse effect on performance of
thunk intensive code, but is irrelevant to these benchmarks, which
have no laziness in performance-critical sections. The second is-
sue seems likely to be impossible to address given our language-
agnostic runtime representation.

2. Benchmarks and Performance Analysis
We begin by describing qualitatively the benchmarks which we
have chosen to port, and the manner in which we have chosen
to port them. For each benchmark, the ninja-gap paper studied
three implementations: a naive C implementation (“naive C”), a
best-optimized implementation (“ninja C”), and an algorithmically
tuned C version (“optimized C”). The naive C code for a given
benchmark generally consisted of the “obvious” C implementation
for that benchmark, with little thought given to performance tuning.
The ninja code on the other hand consisted of deeply and carefully
optimized code, using compiler intrinsics and pragmas as appropri-
ate, validated to match the performance of the best published results
for that problem. Finally, the optimized C code was developed by
taking the naive C code and performing small, low-effort algorith-
mic improvements to produce C code comparable in performance
to that of the ninja code. Very few programmers have the skill to
produce ninja C; many more programmers have or can be taught
the skills to produce optimized C. For more details about the algo-
rithms and the C implementations upon which our C code is based,
we refer the reader to the ninja-gap paper [9].



For our work, we have where possible reconstructed each of
the three C versions for each of the selected benchmarks, starting
from versions of the code used in the original ninja-gap paper. It is
important to note that since the ninja code was written for previous
architectures using (at times) hand-coded assembly or intrinsics, it
was explicitly not designed to be “future proof”. That is, unlike the
optimized C code which could be successfully retargeted to a new
architecture simply by passing different flags to the C compiler,
the ninja code would require hand re-coding and re-tuning. While
we have for some of these benchmarks attempted this re-coding,
we cannot claim to be ninja programmers, and so it is likely that
the ninja code that we measure no longer truly represents the best-
optimized code. Similarly, for the optimized C code, it is likely that
a small tuning effort comparable to that described in the ninja-gap
paper might give further performance improvements on machines
with non-uniform memory access (NUMA) behaviors such as those
on which we perform our measurements.

Given all this, we emphasize that the reader should interpret
our results not as situating Haskell relative to the absolute best C
versions, but rather as situating Haskell relative to a range of C
versions, from the fairly ordinary, to the very good, to the possibly
quite excellent. Nonetheless, for clarity and for consistency with
the ninja-gap paper, we continue to use the naive/optimized/ninja
terminology throughout the rest of the paper.

2.1 Performance analysis
For each benchmark, we follow the qualitative discussion with
quantitative measurements providing a comparison between the
different implemented versions of the benchmark. Generally we
analyze six different configurations: three C configurations and
three Haskell configurations. In a few cases some configurations are
not available or not reportable for reasons noted in the discussion.
The three C configurations are referred to throughout as C Naive,
C Opt, and C Ninja. For most benchmarks, we present HRC results
both with and without SIMD vectorization in order to provide
a useful baseline for comparison. In all of the graphs, the label
HRC refers to timings taken from code compiled without SIMD
vectorization, and the label HRC SIMD refers to timings taken
from code compiled with the SIMD vectorization optimization
enabled. We report results for GHC both with and without the
LLVM backend, labelling these results as GHC LLVM and GHC
respectively.

We analyze the performance of the benchmarks in terms of both
sequential performance and parallel speedup. For each benchmark
we present two charts: a chart showing sequential speedup relative
to the C naive configuration, and a chart showing parallel speedup
relative to the best-performing sequential algorithm. For the se-
quential performance chart, all numbers are normalized to C naive,
that is, for a given configuration, the height of the bar on the Y
axis is computed by dividing its run time by the run time of the C
naive configuration. Hence, lower is better on these charts. For the
parallel speedup charts, we show speedup relative to the best se-
quential configuration, whichever that is; generally, but not always
this configuration is the C ninja configuration. For a given configu-
ration, the X axis indicates the number of parallel threads run, and
the value on the Y axis is computed by dividing the run time of
the best sequential configuration on one thread by the run time of
the given configuration (on that number of threads). We have cho-
sen to show speedup over the best sequential configuration since
this measure reflects absolute performance; in all cases, a higher
value on the Y axis on such a graph indicates better absolute per-
formance (something that is not necessarily the case with graphs of
self speedup). Higher is better on these charts.

For each benchmark, we also calculate the Haskell Gap between
the best performing C code and the best performing Haskell code.

This number is calculated by dividing the fastest runtime for the
Haskell version (at any number of cores) by the fastest runtime for
any of the C versions (at any number of cores). This number gives
the slowdown (or speedup) factor of the Haskell code relative to the
best C, allowing for both sequential and parallel speedup.

All of the C programs measured in this paper were compiled
using the Intel C++ Compiler, version 13.1.2.190. All of the GHC
compiled Haskell programs were compiled with GHC version
7.6.1. When compiled with the LLVM backend, LLVM version 2.9
was used. For all GHC configurations, the “-optlc-enable-unsafe-
fp-math” option was passed to GHC to permit unsafe floating-point
optimizations to be performed.

For all of the benchmarks, we report results as measured on an
Intel Xeon CPU with 128 GB of RAM running Microsoft Win-
dows Server 2008. The machine contains 4 Intel Xeon E5-4650
(codename Sandy Bridge) processors, each of which has 8 cores
for a total of 32 execution cores. Each core has 32KB L1 data and
instruction caches and a 256KB L2 cache. Each processor has a
20MB L3 cache shared among 8 cores. All runs were performed
with hyperthreading off.

For each benchmark we also report results as measured on a
Xeon Phi 57 core co-processor. Benchmarks were run on the Xeon
Phi in native mode and did not involve the host CPU or the PCI
bus. The board we have access to is not a final production chip,
and may have additional idiosyncracies in addition to the odd core
count. Our support for the Xeon Phi is very preliminary and very
little performance analysis and tuning has been performed. The
vector support in particular is a very recent addition, and contains
a number of performance compromises for the sake of achieving
initial functionality. Nonetheless, we believe that these numbers
are interesting, measuring as they do the scalability of a Haskell
implementation on a machine with a very large number of cores. To
the best of our knowledge, these are the first Haskell performance
numbers reported for the Xeon Phi. There is no GHC version
available targeting Xeon Phi, and so we report Haskell numbers
using HRC only.

In general, the benchmarks investigated in this paper are nu-
merical and array or matrix oriented and are not heavy on object
allocation. Thus, they do not spend a significant amount of time
in garbage collection. However, as described in Section 2.4, the
artificial iteration mechanism of several of the C benchmarks un-
fairly forces Haskell to allocate some objects not required in C and
we thus incur some small additional garbage collection overhead.
While garbage collection was not a significant factor in this study,
it should be noted that these benchmarks may not be representa-
tive of typical Haskell programs. Therefore, it may be the case that
other kinds of benchmarks would exhibit a larger performance gap
between C and Haskell due to the differing approaches to memory
management taken by the two languages.

2.2 NBody
The NBody benchmark is an implementation of the naive quadratic
algorithm for computing the aggregate forces between N point
masses. Given an array of bodies described as a coordinate in
space with a mass, the sum of the forces induced by the pair
wise interactions between each body and all of the other bodies
is computed and placed in an output array.

The translation of this benchmark to Haskell was entirely
straightforward using the Repa libraries [2, 4, 5]. Bodies are repre-
sented using quadruples of floating-point numbers containing x, y,
and z coordinates along with a mass. Computed forces are repre-
sented as triples of floating-point numbers. The vector of bodies is
represented using an unboxed dimension one vector of points, and
the result vector is represented using an unboxed dimension one
vector of forces. The main computational kernel then consists of



a parallel map over the points. At each point, another map is per-
formed to compute an intermediate vector containing the pair-wise
interactions between the given point and all other points. Finally, a
fold is performed over this intermediate vector summing the forces
computed by each pair-wise interaction. The computation of the
pair wise interaction between two points is computed as follows:

pointForce :: Point -> Point -> Force
pointForce (xi, yi, zi, _) (xj, yj, zj, mj) =

let
dx = xj-xi
dy = yj-yi
dz = zj-zi
eps_sqr = 0.01
gamma_0 = dx*dx + dy*dy + dz*dz + eps_sqr
s_0 = mj/(gamma_0 * sqrt(gamma_0))
r0 = s_0 * dx
r1 = s_0 * dy
r2 = s_0 * dz
r = (r0, r1, r2)

in r

Strictness annotations are required on the parameters to the helper
function which performs the summation in the fold (and nowhere
else). The Repa library provides a clean unboxed struct of array
(SOA) representation for the data structures, and avoids unneces-
sary subscript checks. The GHC compiler successfully eliminates
all of the intermediate data structures implied by the idiomatic code
as written, and the result after further optimization is a clean tight
inner loop which is amenable to SIMD vectorization.

The naive C version of this benchmark uses a struct of array
representation to represent the input vector of bodies and the output
vector of forces, and performs the computation using a simple
nested loop. The C compiler is unable to vectorize this version,
most likely because it is unable to prove that the array reads and
writes in the loop do not interfere.

The optimized C version of this benchmark uses a struct of array
representation, keeps all of the data structures in static globals, and
accumulates into temporary variables instead of directly into the
output array. As a result, the C compiler is able to vectorize this
very successfully. We implemented two different versions of this
optimized version, one which unrolls the outer loop four times, and
second which does blocking to increase cache locality.

The inner loop for this benchmark is extremely tight, and a sub-
stantial speedup is obtained by the C compiler’s ability to eliminate
a division and square root instruction in favor of a single recipro-
cal square root instruction. This is done essentially by rewriting the
formula s0 = mj/(γ0 ∗

√
γ0) as s0 = mj ∗ (1/

√
γ0)

3). The latter
formula can be computed using only a single reciprocal square root
instruction and a series of multiplies. Since the reciprocal square
root instruction and each multiply cost only a few cycles (both la-
tency and throughput) as opposed to the division and square root
instructions which each cost tens of cycles, this optimization gives
a more than 2X speedup. The C compiler is not able to perform this
optimization for us on the already vectorized code that we emit,
and so we do not get the benefit of this optimization.

The ninja version of this benchmark was originally imple-
mented using SSE intrinsics, and modified for this paper to use
AVX intrinsics. All arrays are aligned on 256-bit boundaries allow-
ing the use of aligned loads. The outer loop is hand unrolled four
times. The algebraic re-arrangement described above is performed
by hand.

2.2.1 CPU Performance
For the N Body benchmark, we measure six different configura-
tions. The C versions include a naive C version, an optimized C

1.00 

0.13 0.11 

0.80 

0.29 

3.37 

1.36 

0

0.5

1

1.5

2

2.5

3

3.5

4

C Naive C Opt C Ninja HRC HRC SIMD GHC GHC LLVM

Figure 1. N body CPU normalized run time

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

C Naive

C Opt

C Ninja

HRC SIMD

GHC LLVM

Figure 2. N Body CPU speedup (best sequential)

version (hand unrolled), and a ninja C version written using AVX
intrinsics. We measure the Haskell code as compiled with HRC,
and with GHC and GHC LLVM. The blocking version of the C
code that we implemented showed no additional performance or
scalability on this architecture, and so we elide those results. The
benchmarks were run simulating 150,000 bodies.

The relative sequential performance is given in Figure 1. The C
compiler is able to do an excellent job of vectorizing and optimiz-
ing this benchmark. The optimized C version runs in approximately
13% of the time of the naive C versions, and is only 18% slower
than the ninja code. The GHC compiled code is slower than the
naive C code by a factor of 3.37×, and is 31× slower than the
ninja code. The GHC LLVM code is only 1.36× slower than the
naive code, or 12.45× slower than the ninja code.

HRC produces code that is significantly faster than the naive
C code, primarily because of its ability to vectorize the code. It
remains a factor of 2.6× slower than the optimized C versions
however, due to the C compiler’s ability to eliminate the division
and square root instructions from the inner loop as discussed above.
On the one hand, this is a disappointing result in that there is a
substantial gap between the Haskell code and the C code. However,
we find it encouraging that Haskell code can be optimized to the
point that machine level peephole optimizations can make this
substantial a difference.

It is worth emphasizing here that the relative performance is
highly dependent not just on the choice of compilers and algo-
rithms, but even on the flags passed to the compiler. Passing options
requiring the C compiler to maintain the source level precision of
the division and square root operations results in this optimization
being disabled, reducing the performance of the optimized C code
to almost exactly that of the Intel compiled Haskell code. More-
over, in order to vectorize the code both the C compiler and HRC
must re-associate floating-point operations which does not preserve
source level semantics. Consequently, forcing fully strict floating-



1.00 

0.05 

0.87 

0.08 

0

0.2

0.4

0.6

0.8

1

1.2

Naïve C Opt C HRC HRC SIMD

Figure 3. N body Xeon Phi normalized run time

point semantics reduces performance even further for both the C
and the Haskell code.

Figure 2 shows the speedup of the various configurations rela-
tive to the ninja sequential performance. As we will do throughout,
we do not show results for the standard GHC configuration on the
scalability graphs, since the results do not differ in any interesting
way from the GHC LLVM results (other than performing slightly
worse). Similarly, we elide the HRC non-SIMD results from these
graphs. Note that the lower slopes of the GHC and HRC lines on
this scalability graph do not reflect poorer scalability relative to the
C code. All of the configurations shown here scale almost perfectly
relative to their own sequential performance, in each case reach-
ing approximately a 28× self speedup on 32 processors. Since the
ninja C code scales equally well however, it maintains its perfor-
mance advantage throughout the range of processor counts. The fi-
nal Haskell Gap for GHC LLVM is 12.5×, and for HRC is 2.67×.

2.2.2 Xeon Phi Performance
Figure 3 shows the sequential runtime relative to the C Naive
configuration. The optimized C configuration runs in 5% of the
time of the naive C version—a substantial increase in performance.
The blocked version of this code again gives no significant benefits
over the unrolled version. Our compiler is able to vectorize this
code for reasonably good speedup, albeit not as significant a drop
as with the C code. The use of prefetch instructions in the vector
loop provided significant speedups on this benchmark on the Xeon
Phi.

Figure 4 shows the speedup of the configurations at 1 to 57
threads over the optimized C sequential runtime. Much as with
the Black Scholes code discussed below, the optimized C code
scales poorly past 27 processors, with performance dropping off
significantly at higher numbers of processors. The naive C code
however scales fairly linearly. This suggests the possibility that
the optimized C code is saturating an architectural resource (e.g.
bus bandwidth) and causing contention at high core counts, but we
have not definitively confirmed this. The HRC SIMD configuration
exhibits a somewhat similar scalability curve. The final Haskell
Gap for this benchmark is 1.25×.

2.3 1D convolution
The 1D convolution benchmark performs a one-dimensional con-
volution on a large array of complex numbers (the real and imag-
inary components of which are represented as single precision
floating-point numbers). The kernel for the convolution contains
8192 floating-point elements. The main computation of the simple
naive C version consists of a doubly nested loop iterating over the
elements of the main array in the outer loop, and for each element
iterating over the stencil kernel in the inner loop. The naive ver-
sion uses an array of struct (AOS) representation for the elements,

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60

Naïve C

Opt C

HRC

HRC SIMD

Figure 4. N Body Xeon Phi speedup (best sequential)

passes arrays as function arguments, and accumulates the result of
the inner iteration directly into the output array. Note that the input
arrays are padded to avoid the need for conditionals to deal with
boundary conditions. The optimized version passes arrays through
globals, aligns all arrays, uses a struct of array representation, and
accumulates into temporary variables. The C compiler is able to
vectorize this code very successfully.

The ninja version of this code uses the same basic representa-
tions as the optimized C version. The original version was imple-
mented using SSE intrinsics, and modified to use AVX intrinsics
for this paper. The inner loop in this version is hand-unrolled four
times.

Translating this code to Haskell presented a somewhat interest-
ing challenge. While the Repa libraries include support specifically
for stencils [4], this support is somewhat preliminary and is limited
to two dimensional arrays. Only small fixed size stencils are fully
optimized. However, after some brief experimentation a performant
implementation was obtained by using the Repa extract function to
obtain a slice of the input array which was then zipped together
with the stencil array using the convolution function, and then re-
duced with a fold. It was somewhat surprising to us that GHC was
able to successfully eliminate the implied intermediate arrays with
this, but combined with our backend optimizations we were indeed
able to obtain excellent code. The code of the stencil computation
is as follows:

convolve0 :: Complex -> Float -> Complex
convolve0 (r, i) s = (r*s - i*s, r*s + i*s)

convolve :: Int -> Stencil -> Data -> Data
convolve size stencil input = output
where
genOne tag =
let
elements = R.extract tag stencilShape input
partials = R.zipWith convolve0 elements stencil

in R.foldAllS complexPlus (0.0, 0.0) partials
shape = R.Z R.:. size :: R.DIM1
[output] = R.computeUnboxedP

$ R.fromFunction shape genOne

In our original implementation of this benchmark, we used a Repa
“delayed” representation for the stencil array. The GHC optimizer
is able to fold the computation of the stencil array into the inner
loop, with the result that the stencil array is never explicitly repre-
sented in memory. It can be argued that this is an unfair comparison,
since the C implementation is not able to do this optimization, and
since this optimization cannot be done for all stencils. However, it
was felt that the fact that a general purpose library is able to ex-
ploit these special cases is a benefit of the Haskell approach, and



1.00 

0.16 0.28 

1.21 

0.18 

8.68 
9.10 

0

1

2

3

4

5

6

7

8

9

10

C Naive C Opt C Ninja HRC HRC SIMD GHC GHC LLVM

Figure 5. 1D Convolution CPU normalized run time

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

C Naive

C Opt

C Ninja

HRC SIMD

GHC LLVM

Figure 6. 1D Convolution CPU speedup (best sequential)

that artificially disabling the Haskell optimization was equally un-
fair. Consequently we have chosen to report results for the bench-
mark as originally written. Measurements taken with the stencil ar-
ray forced to an explicit representation show approximately a 30%
slowdown over the results as reported here.

Surprisingly, GHC itself initially performed extremely poorly
on this benchmark despite successfully eliminating the intermedi-
ate arrays (so poorly that measurements could not reasonably be
taken). Inspection of the Core IR showed that the GHC generated
code contained allocation in the inner loop which our compiler was
able to eliminate. With the addition of some additional strictness
annotations, we were able to eliminate this allocation and improve
the GHC performance significantly. We report results here with
these strictness annotations in place—however, they provide no ad-
ditional performance benefit for our compiler over the original im-
plementation.

2.3.1 CPU Performance
The relative sequential performance is given in Figure 5. All num-
bers were taken by convolving 3,000,000 elements. For this bench-
mark, the optimized C code runs in approximately 16% of the time
taken by the naive C program. This is a good example of the haz-
ards of comparison to C that we wish to highlight in this paper.
Even keeping the C compiler fixed, we observe an 84% reduction
in run time simply through the use of a few quite small changes
to the source code. The ninja code (written using AVX intrinsics)
does not perform as well as the code optimized by the C compiler.
This may reflect either improvements in the C compiler since the
original ninja-gap paper was written, or changes in the underlying
architecture, or both. On the latter point, it is important to note that
the ninja versions of these benchmarks, written using intrinsics, are
explicitly not “future proof”, that is, they are highly tuned to an
explicit architecture and instruction set.

1.00 

0.04 0.07 

0.73 

0.05 

0

0.2

0.4

0.6

0.8

1

1.2

Naïve C Opt C Ninja C HRC HRC SIMD

Figure 7. 1D Convolution Xeon Phi normalized run time

The Haskell code compiled with HRC runs in 18% of the time
taken by the naive C code. This is a substantial speedup over
the naive code, and only a little slower than the best sequential
code. We are very pleased with the performance of this benchmark:
the code is written in a natural and idiomatic style, the GHC
frontend fuses away the intermediate data structures effectively,
and our compiler is able optimize and vectorize the key loops
very effectively. Unfortunately, even with the additional strictness
annotations, the GHC compiled code still runs fairly slowly, taking
8.7× as long as the naive C code. Interestingly for this benchmark
the GHC LLVM backend is slightly less performant.

The speedup graph is given in Figure 6. All of the configura-
tions exhibit good scalability and are able to use effectively all of
the processors. However, since the optimized C version scales quite
well and is substantially faster at one processors, all of the configu-
rations exhibit a significant performance gap at 32 processors. The
final result is an overall Haskell Gap of 82.86× for the GHC com-
piled code, and 1.24× for the HRC compiled code

2.3.2 Xeon Phi Performance
For the 1D convolution benchmark, the naive, ninja, and optimized
C configurations were compiled for the Xeon Phi. Figure 7 shows
the sequential runtime relative to the C Naive configuration. The
optimized C configuration is able to take good advantage of the
wide vector instruction set, running in 4% of the time of the naive
C configuration (slightly better than the ninja performance). The
Haskell code is also able to beat the naive C configuration, running
in 73% of the time without vectorisation and 5% of the time when
compiled with vectorization enabled. Prefetching in the vector loop
was again a key optimization for this benchmark.

Figure 8 shows the speedup of the configurations at 1 to 57
threads over the optimized C sequential runtime. All of these
configuration scale cleanly up to 57 threads. The final measured
Haskell Gap is 1.15×.

2.4 2D Convolution
The 2D convolution benchmark performs a convolution over a two-
dimensional array of floating-point numbers using a 5x5 stencil.

The naive C version passes arrays as function arguments, but
uses a temporary variable as an accumulator in the inner loop. The
C compiler is able to successfully vectorize this code, yielding good
speedups. The ninja-gap paper reports using a preliminary version
of the Cilk++ array notation to produce an optimized version of this
code vectorized on the second-from-outer loop. This code was not
compatible with current compilers, however, a suitable optimized
version was obtained by fully hand unrolling the inner loop over
the stencil kernel and using a “#pragma simd” on the second-from-
outer loop to force SIMD code generation on the unrolled loop
body. The ninja version of the code is implemented using AVX



0

10

20

30

40

50

60

0 10 20 30 40 50 60

Naïve C

Opt C

Ninja C

HRC

HRC SIMD

Figure 8. 1D Convolution Xeon Phi speedup (best sequential)

intrinsics. The ninja code performs the outer-loop vectorization
described in the original ninja-gap paper, fully eliminating the inner
loop in favor of straightline AVX code. In addition, this code is
unrolled to perform four vector iterations at a time.

Producing a Haskell version of this code was entirely straight-
forward, since the Repa stencil libraries provide direct support for
this style of stencil operation. Interestingly, the problem as origi-
nally written used a stencil of all ones, with the result that the com-
piler stack was able to eliminate all of the stencil multiplies entirely.
While indicative of the greater optimization flexibility available in
a functional language, it was felt that this was not indicative of the
performance of the code on general stencil problems, and so the
stencil was changed in both the C and the Haskell code to consist
of all twos. With this change we are still able to constant prop-
agate the value, but the multiply can no longer be eliminated. In
general, even the values in non-uniform but constant stencils could
be similarly constant propagated in the presence of loop unrolling.
The generated code is overall quite good, and our compiler is able
to vectorize the inner loop. Initially, due to unrolling performed
by the Repa libraries, our vector code contained strided load in-
structions which are not supported in the AVX instruction set and
instead must be emulated with some loss of speedup. By changing
the Repa library implementation to unroll along a different axis, we
were able to generate more vector friendly code.

A difficult issue arose in the translation and measurement of the
2D convolution benchmark, as well as several other of the ported
benchmarks. In order to measure large enough problem sizes to
obtain good timing results (particularly at larger number of proces-
sors), the C programs were written to iteratively re-compute the re-
sult an arbitrary number of times as specified on the command line.
The re-computation is performed after distribution of the work to
the worker threads: that is, each worker thread receives a portion
of an array to convolve, and an iteration count telling it how many
times to perform the convolution. We saw no clean way to imple-
ment this directly in the Haskell code, and were forced instead to
iterate notionally outside of the worker threads by repeatedly doing
the entire convolution. This is problematic for comparison purposes
for a number of reasons: firstly in that it potentially introduces ad-
ditional synchronization and communication overhead; secondly in
that it introduced garbage collection into the equation since new re-
sult arrays must be allocated and collected; and thirdly that it pro-
duces somewhat different cache behavior than in the C program.
All of the C benchmarks were written in this style, and we do not
have a general solution to this problem. Where possible, we have
chosen to increase the problem size to the point where a single it-
eration suffices. For some programs, such as 2D convolution, this
was not possible. Consequently, the performance results reported
here are likely overly pessimistic.

1.00 

0.15 0.14 

0.67 

0.17 

2.39 

1.27 

0

0.5

1

1.5

2

2.5

3

C Naive C Opt C Ninja HRC HRC SIMD GHC GHC LLVM

Figure 9. 2D Convolution CPU normalized run time

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

C Naive

C Opt

C Ninja

HRC SIMD

GHC LLVM

Figure 10. 2D Convolution CPU speedup (best sequential)

1.00 

0.14 0.13 

1.08 

0.15 

0

0.2

0.4

0.6

0.8

1

1.2

Naïve C Opt C Ninja C HRC HRC SIMD

Figure 11. 2D Convolution Xeon Phi normalized run time

2.4.1 CPU Performance
For the 2D convolution benchmark, we measured naive C, opti-
mized C, and ninja C versions of the code, the last using AVX in-
trinsics. We also measured the Haskell code compiled with both the
Intel compiler (with and without the SIMD optimization) and the
GHC compiler (with and without the LLVM backend). All mea-
surements were taken by convolving a 8192 by 8192 image repeat-
edly for 50 iterations.

The relative sequential performance is given in Figure 9. The
ninja code performs best, but the optimized code comes within
10% of the ninja performance. The ninja code is substantially faster
than the naive C code, despite the fact that the compiler is able to
vectorize the naive C code, indicating that the hand-unrolling of the
inner loop performed by both the optimized C and the ninja code is
a key optimization for this benchmark. The GHC compiled Haskell
code is almost 2.4× slower than the naive C code and hence almost
18× slower than the ninja code. The GHC LLVM backend gives



0

5

10

15

20

25

30

0 10 20 30 40 50 60

Naïve C

Opt C

Ninja C

HRC

HRC SIMD

Figure 12. 2D Convolution Xeon Phi speedup (best sequential)

substantial benefit on this benchmark, exhibiting only a 1.27×
slowdown over the naive C, or a 9.4× slowdown over the ninja
C. However, the Intel compiled Haskell code is substantially faster
than the naive C code, and only around 1.2× slower than the ninja
code.

Figure 10 shows the parallel speedup of the various configu-
rations relative to the sequential performance of the ninja config-
uration. Both the ninja and the optimized C code scale well up
to 9 or 10 processors and subsequently behave somewhat oddly.
This is highly suggestive of communication issues arising from the
multi-socket architecture and preliminary analysis of performance
counter data supports this, but we have not been able to pursue
this analysis further. The HRC SIMD code exhibits a similar scal-
ability profile, albeit at lower absolute performance levels. Despite
this lack of scalability on the part of the ninja code, none of the
other configurations is able to make up the substantial head-start
provided by the significantly better sequential performance of the
C code. The GHC compiled code remains the slowest throughout
the full range, with a final Haskell Gap of 3.81×. Interestingly, the
naive C code scales quite cleanly, eventually almost matching the
performance of the HRC SIMD compiled Haskell code by making
better use of higher number of cores. The final Haskell Gap for the
HRC compiled code is 1.8×.

2.4.2 Xeon Phi Performance
For the 2D convolution benchmark the naive C configuration was
compiled for the Xeon Phi, and a version of the ninja code was pro-
duced by modifying the implementation used in the original ninja-
gap paper to measure results on an earlier software development
platform sharing the same ISA. Haskell code was compiled with
HRC, again with and without vectorization. All measurements were
taken by convolving a 8192 by 8192 image repeatedly for 10 itera-
tions.

Figure 11 shows the sequential runtime relative to the C Naive
configuration. The ninja C and optimized C configurations again
get substantial speedups from the wide vector units, running in 13%
and 14% (respectively) of the time of the naive C configuration. The
HRC compiled Haskell code is 8% slower than naive C without
vectorization, and vectorization boosts the results by almost 7×,
only slightly slower than the ninja and optimized C runtimes.

Figure 12 shows the speedup of the configurations at 1 to 57
threads over the ninja sequential runtime. The ninja C and opt C
configurations scale fairly well, but the HRC compiled code scales
poorly. The final Xeon Phi Haskell Gap for this benchmark is
3.71×.

2.5 Black Scholes
The Black Scholes benchmark computes put and call options. The
computational kernel is a loop computing a cumulative normal

1.00 

0.20 0.21 

0.88 

0.23 

3.85 
3.65 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C Naive C Opt C Ninja HRC HRC SIMD GHC GHC LLVM

Figure 13. Black Scholes CPU normalized run time

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

C Naive

C Opt

C Ninja

HRC SIMD

GHC LLVM

Figure 14. Black Scholes CPU speedup (best sequential)

distribution function. The naive C version uses an array of struct
representation. The C compiler does not choose to auto-vectorize
the loop (though it can be forced to by using a pragma). The
optimized C version uses a struct of array representation, but the
auto-vectorizer still chooses not to vectorize the loop, possibly
because of the presence of a conditional in the loop. Annotating
the loop with “#pragma simd” suffices to cause vector code to
be generated and the SOA format is well-suited to vector code
generation. The ninja version uses the same representation as the
optimized C version but is written using AVX intrinsics directly.

The Haskell port of this code was subject to fairly extensive
performance tuning. The core of the kernel is a relatively straight-
forward translation of the C code, with some re-arrangement to
eliminate some conditionals. One strictness annotation is used on a
helper function. The option data is represented as a tuple, and the
input array of options is represented as a one-dimensional Repa un-
boxed array of options. The Repa library performs the AOS-SOA
conversion on the input data. The iteration over the option array
to produce the result is performed using the Repa “map” function
over the input array. The inner loop of both the C and the Haskell
versions of this code contains a conditional. HRC maps this con-
ditional to a use of a conditional move instruction, and hence is
able to vectorize this code directly without generating fully-general
predicated code.

2.5.1 CPU Performance
For the Black Scholes benchmark, we measured the performance
of all of the implementations on a data set of 61,000,000 options.
The relative sequential performance is given in Figure 13. The op-
timized C code runs in 20% of the time of the naive code and ac-
tually slightly outperforms the ninja code, again possibly reflecting
changes in architectures or compiler improvements.

The baseline Haskell code compiled with our compiler runs
slightly faster than the naive C code, but is a factor of 4.4× slower



1.00 

0.06 0.08 

1.15 

0.20 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Naïve C Opt C Ninja C HRC HRC SIMD

Figure 15. Black Scholes Xeon Phi normalized run time

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

Naïve C

Opt C

Ninja C

HRC

HRC SIMD

Figure 16. Black Scholes Xeon Phi speedup (best sequential)

than the optimized C code. Adding the SIMD optimization brings
the HRC compiled code to within 15% of the performance of the
optimized C code. The GHC LLVM compiled code is slower than
the naive C code by a factor of 3.85×, and is slower than the
optimized C SIMD code by almost a factor of 18×.

Figure 14 shows the speedup of the main configurations rel-
ative to the best sequential version (the optimized C code). The
scalability results for this benchmark are significantly mixed. The
ninja and optimized C implementations scale reasonably well up to
8 or 9 processors, and then drop somewhat before flattening out.
It is likely based on our preliminary investigations that this is re-
lated to migration of data between sockets. The server machine on
which these measurements were taken contains 4 separate physical
processors, each with 8 cores. The phase transition at 8 threads is
suggestive, but not definitive. The HRC compiled code exhibits al-
most exactly the same scalability curve, albeit with slightly lower
absolute performance. The GHC compiled code scales quite well,
achieving a 24× speedup over its own sequential performance at
32 processors. However, this is still not remotely sufficient to over-
come the sequential performance deficit, requiring 24 processors
just to match the sequential performance of the optimized C code.
The final Haskell Gap for the GHC compiled code is 4.48×, and
the Haskell Gap for the HRC compiled code is 1.32×.

2.5.2 Xeon Phi Performance
For the Black Scholes benchmark the naive C, optimized C and
ninja C configurations were compiled for the Xeon Phi, and the
Haskell code was compiled with HRC. All configurations were run
with 50,000,000 options for a single iteration. (Note that, since we
are not comparing platforms, we use a different number of options
so as to stay within the memory available.)

Figure 15 shows the sequential runtime relative to the C Naive
configuration. The optimized C configuration runs in 6% of the
the time of the naive C version. This is somewhat faster than

the the ninja version, which runs in 8% of the runtime of the
naive C code. The HRC compiled code is slightly slower than
the naive C code without vectorization, but with the addition of
the SIMD optimization runs in 20% of the time of the naive C
code (3.3× slower than the optimized C code). Because of an
interaction between our code generation for 64-bit platforms and
our experimental support for vectorizing conditional moves, the
HRC generated SIMD code for this benchmark currently utilizes
only half of the available vector instruction width, which surely
accounts for a significant portion of the remaining performance
gap.

Figure 16 shows the speedup of the configurations at 1 to 57
threads over the optimized C sequential runtime. For this bench-
mark, the ninja and optimized C configurations scale poorly past 20
processors, with performance dropping off significantly at higher
numbers of processors. The Haskell code scales somewhat more
evenly but still not linearly, and in any case never achieves parity
with the C code. The final Xeon Phi Haskell Gap for this bench-
mark is 1.76×.

2.6 Volume Rendering
The volume rendering benchmark projects two-dimensional images
into a three-dimensional volume. The computation is irregular, with
conditionals and a data-dependent while-loop. The naive C version
of this benchmark passes all arguments in global variables, and is
sufficiently well-optimized by the C compiler that no optimized
version was written. The ninja version of the benchmark uses hand-
written AVX intrinsics. Mask registers are simulated using standard
AVX registers.

Writing a performance version of this benchmark in Haskell
was somewhat challenging, since the structure of the kernel com-
putation does not fit naturally into any of the patterns supported by
existing array libraries. The final tuned implementation implements
the inner loop of the computation as a recursive function which tra-
verses a section of the opacity and visibility arrays from the input
data. Unsafe indexing is used in this function, and strictness an-
notations were required on the arguments. The function contains
multiple recursive calls, all in tail positions.

The outer iteration of the computation is performed using the
Repa “traverse” array generator to traverse the input array of rays,
obtaining the index of each element in the process for use in the
call to the recursive function. The use of traverse incurs an extra
array bounds check which is not eliminated in this code. Strictness
annotations are also used on these iteration functions. The overall
structure of this program is too complex for our compiler to vector-
ize.

2.6.1 CPU Performance
For the Volume Rendering benchmark, we measure five different
configurations: a naive C version, a ninja version written with AVX
intrinsics, a Haskell version compiled with the HRC Compiler, and
the Haskell version compiled with GHC and GHC LLVM. Since
our compiler cannot generate SIMD code for this benchmark, we
report only a single configuration for HRC. All configurations were
measured with a single run rendering 100,000,000 voxels.

The relative sequential performance for these configurations is
given in Figure 17. The ninja code runs in 37% of the time of the
naive C code. The GHC compiled Haskell code takes a factor of
2.31× times slower than the naive C code, or 2.39× slower when
using the LLVM backend. The HRC compiled code runs 1.05×
slower than the naive C.

The speedup of all of the configurations relative to the ninja
code is given in Figure 18. The C ninja configuration scales well to
8 processors and then drops off. The HRC compiled code and the
C naive code scale well to around 16 processors before dropping



1.00 

0.37 

1.05 

2.31 2.39 

0

0.5

1

1.5

2

2.5

3

C Naive C Ninja HRC GHC GHC LLVM

Figure 17. Volume Rendering CPU normalized run time

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35

C Naive

C Ninja

HRC

GHC LLVM

Figure 18. Volume Rendering CPU speedup (best sequential)

1.00 

0.32 

0.86 0.86 

0

0.2

0.4

0.6

0.8

1

1.2

Naïve C Ninja C HRC HRC SIMD

Figure 19. Volume Rendering Xeon Phi normalized run time

off but cannot match the overall performance of the ninja code.
The GHC compiled code scales quite well but cannot overcome the
initial deficit in sequential performance. The final Haskell Gap for
this benchmark is 1.49× for HRC, and 1.72× for GHC.

2.6.2 Xeon Phi Performance
On the Xeon Phi platform, the ninja version of this benchmark runs
in 32% of the time of the naive C version. The HRC compiled
Haskell version runs in 86%of the time of the naive C version, 2.7×
slower than the ninja C code. The relative sequential performance
for these configurations is given in Figure 17. The speedup of all of
the configurations relative to the ninja code is given in Figure 18.
The ninja code does not scale well past 30 processors. The Haskell
code scales somewhat better, and is able to make up some (but not
all) of the initial sequential performance deficit. The final Haskell
Gap for this benchmark is 1.7×.

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Naïve C

Ninja C

HRC

HRC SIMD

Figure 20. Volume Rendering Xeon Phi speedup (best sequential)

2.7 Tree Search
The tree search benchmark does a search on a structured tree to
find data by index. The code is consequently quite control depen-
dent. The naive C version is implemented using the obvious bi-
nary search algorithm over a static index structure laid out breadth
first in an array. The optimized C version implements a fast algo-
rithm by Kim et al [3], performing multi-level search over a tree re-
organized into hierarchical blocks. The blocking structure helps to
improve page and cache memory locality, and even permits a SIMD
vector implementation after algorithmic change to avoid early loop
exits. Further optimizations such as loop unrolling make the code
suitable for compiler auto vectorization. The Ninja C version im-
plements the same algorithm as the optimized C with hand written
SSE intrinsics. It also implements SIMD-level blocking as well as
pipelining, neither of which are used by the optimized C version.
These optimizations require the use of gather instructions which
must be emulated on CPU. Both the ninja C and the optimized C
programs can only deal with a specific fixed tree depth in order to
completely unroll the inner loops and get rid of all early loop exits.
In contrast, the naive C can deal with arbitrary tree size.

The Haskell version of the code represents the search tree using
a Repa unboxed array, and implements the same optimized binary
search algorithm as the optimized C version. Rather than manually
unrolling the loop as in optimized C, the Haskell program repre-
sents a single step of tree traversal as a function, composes that
into a traversal for a block, and composes multiple block traversals
into a traversal for the entire tree. GHC is able to inline all the inter-
mediate function compositions and thus achieves the same effect as
loop unrolling. HRC is then able to vectorize the resulting program.
As with the ninja C and optimized C programs, the Haskell version
can only handle a specific fixed tree depth. One may argue that
statically composing traversal functions to get a single fused search
function for a fixed tree depth is beyond the scope of idiomatic
Haskell. But since we are implementing the same algorithm as the
optimized C, we feel it is fair to compare fused Haskell functions
with loop-unrolled C functions, especially when both versions are
able to vectorize.

2.7.1 CPU Performance
For the Tree Search benchmark, the ninja C code has not been
ported to AVX architcture, so we use a SSE version only. On the
other hand, both the optimized C version and the Haskell version
compiled with HRC have been vectorized to use AVX intrinsics.
All programs were run with 95 million queries over a binary tree of
depth 24.

The relative sequential performance for these configurations is
given in Figure 21. For this code, the optimized C runs in 43% of
the time of the naive C, mostly because it is blocked, vectorized,
and specialized to handle fixed tree depth of 24. The ninja version



1.00 

0.43 

0.52 
0.60 

0.39 

1.07 
1.02 

0

0.2

0.4

0.6

0.8

1

1.2

C Naive C Opt C Ninja HRC HRC SIMD GHC GHC LLVM

Figure 21. TreeSearch CPU normalized run time

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

C Naive

C Opt

C Ninja

HRC SIMD

GHC LLVM

Figure 22. TreeSearch CPU speedup (best sequential)

using SSE intrinsics runs slightly slower than the optimized C,
possibly because of the use of SSE instructions instead of the
full length AVX instructions. The Haskell code compiled with
HRC without SIMD vectorization runs faster than the naive C, but
slower than the optimized C. However, adding SIMD vectorization
improves the performance substantially, with the HRC SIMD code
running 10% faster than the optimized C code. The GHC compiled
code runs approximately as fast as the naive C code.

Figure 22 shows the speedup of all of the configurations relative
to the HRC SIMD sequential performance (the fastest of the con-
figurations). The ninja C code demonstrates superior scalability up
to 8 processors, but then falls off substantially. This again reflects
the fact that the ninja code was tuned for a single socket architec-
ture and is not well-tuned for multi-socket architectures. The opti-
mized C code and the HRC SIMD code both continue to scale up
to 32 processors, albeit less efficiently past 8 processors. The HRC
SIMD code continues to exhibit superior performance throughout
the range of processors. The final Haskell Gap is 1.73× for GHC
LLVM, and 0.95× for HRC SIMD.

2.7.2 Xeon Phi Performance
For the TreeSearch benchmark, since we have yet to re-produce a
ninja version using the Xeon Phi vector ISA and its native gather
support, we only report the performance for the naive C, and for
optimized C compiled with the Intel C compiler for the Xeon Phi.
The Haskell programs were compiled and vectorized with HRC.
All benchmarks were run with 10 million queries over a binary tree
of depth 24.

The relative sequential performance for these configurations is
given in Figure 23. Again, we observe poor performance with the
naive C code. The C code optimized for a depth 24 tree (Opt C)
is 50% faster than the naive C, comparable to the HRC compiled
Haskell code without SIMD vectorization. The HRC SIMD com-
piled Haskell version is the fastest of all, running about 84% faster

1.00 

0.51 0.53 

0.16 

0

0.2

0.4

0.6

0.8

1

1.2

Naïve C Opt C HRC HRC SIMD

Figure 23. TreeSearch Xeon Phi normalized run time

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

Naïve C

Opt C

HRC

HRC SIMD

Figure 24. TreeSearch Xeon Phi speedup (best sequential)

1.24 1.32 
1.80 

2.67 

0.95 
1.49 

82.86 

4.48 3.81 

12.45 

1.73 1.72 

0.10

1.00

10.00

100.00

HRC SIMD

GHC LLVM

Figure 25. The Haskell Gap on CPU (log scale)

than naive C. This result provides an interesting comparison to the
performance numbers on CPU for the same benchmark, contrasting
the difference in hardware architectures.

Figure 24 shows the speedup of all the configurations relative
to the HRC SIMD sequential runtime. All versions scale relatively
linearly except for HRC SIMD, which scales poorly beyond around
30 threads. We have good reasons to believe a native ninja C version
if available could beat Haskell, but from the results presented here,
the final measured Haskell Gap for this benchmark is 0.76× when
compared to the best C performance available for now.

2.8 Summary
Figure 25 summarizes the Haskell Gap for these benchmarks on
CPU, using HRC and GHC with the LLVM backend. Our use of
the Haskell Gap measurement in these benchmarks is intended to
capture the overall potential peak performance achievable using
Haskell, relative to well optimized C versions, accounting for both
sequential performance, SIMD parallelism, and thread parallelism.



1.15 

3.71 

1.76 

1.25 

0.76 

1.70 

0.00

1.00

2.00

3.00

4.00

HRC SIMD

Figure 26. The Haskell Gap on Xeon Phi

We believe that this measure emphasizes the point that achieving
performance parity with low-level languages necessarily requires
both good sequential performance and good scalability. For cer-
tain of these benchmarks, generally ones in which we are able to
effectively leverage SIMD parallelism and provide good baseline
sequential performance, the Haskell Gap is encouragingly small.
For others however, the gap remains wide.

Figure 26 summarizes the Haskell Gap on Xeon Phi. We are en-
couraged to achieve an overall improvement in peak performance
over the best C version on the Tree Search benchmark. Our per-
formance on the 2D convolution benchmark is disappointing when
compared to our performance on the CPU. This may in part reflect
the preliminary nature of our vectorization support on this architec-
ture, and in particular some new issues to be resolved in supporting
a 64-bit architecture.

3. Conclusions
We strongly believe that empirical performance comparisons to C
and other high-performance languages serve as a valuable refer-
ence point and sanity check for work on optimizing functional lan-
guages in general, and Haskell in particular. However, we hope that
this paper makes the point that such comparisons are extremely dif-
ficult to do well. There are always, at some point, judgment calls
to be made—among them the crucial questions “What C?”, and
“What C compiler?”. A benefit of programming in C is that there
are substantial opportunities for hand-optimization—as we show
in this paper, relatively simple code transformations can make dra-
matic changes in performance. Therefore, exactly what C code is
compared to is critical. Similarly, the choice of C compiler and the
options passed to it can significantly change the result of the com-
parison. Finally, there is always the question of what is “fair” to use
in the C code. Is the use of pragmas to induce vectorization where
the compiler otherwise would not “fair”? What about intrinsics?
What about inline assembly code? To what extent should we allow
the C compiler to re-arrange floating-point computations in ways
that may change the precision of the computed result?

And on the other side of the equation, what Haskell code should
be used for a comparison? One can, with sufficient effort, essen-
tially write C code in Haskell using various unsafe primitives. We
would argue that this is not true to the spirit and goals of Haskell,
and we have attempted in this paper to remain within the space
of “reasonably idiomatic” Haskell. However, we have made abun-
dant use of strictness annotations, explicit strictness, and unboxed
vectors. We have, more controversially perhaps, used unsafe array
subscripting in places. Are our choices reasonable?

We do not believe that there are definitive answers to these
questions. We have tried, in this paper, to explore very carefully
a space of answers to these questions that we feel is reasonable.
We have shown that for our notion of “reasonable” Haskell, using

the compiler technology we have developed, there are reasonable
C programs which are significantly out-performed by our reason-
able Haskell programs; and that there are other, equally reasonable
C programs which in turn significantly out-perform our reasonable
Haskell. We have also tried, as best as possible, to leverage pre-
vious work [9] to situate our choices of “reasonable” programs
relative to the best published algorithms. We hope that this work
provides a valuable set of data points for programmers and imple-
menters wishing to understand better how certain classes of Haskell
programs stack up against “equivalent” C programs. We also hope
that this work encourages a practice of taking comparisons seri-
ously, and presenting them transparently, with the understanding
that every such comparison inevitably relies on making choices and
is hence only meaningful insofar as those choices can be seen and
understood by the reader.

Acknowledgments
We are grateful to the authors of the ninja-gap paper [9] for provid-
ing us with access to their source code, answering our questions,
and for providing the inspiration for this work.

References
[1] T. A. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, L. Pe-

tersen, M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zhang. Pillar:
A parallel implementation language. In LCPC, pages 141–155, 2007.

[2] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in Haskell.
In ICFP, pages 261–272, Baltimore, Maryland, USA, 2010. ACM.
ISBN 978-1-60558-794-3.

[3] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey. Fast: fast architecture sensi-
tive tree search on modern CPUs and GPUs. In ACM SIGMOD Inter-
national Conference on Management of Data, pages 339–350. ACM,
2010.

[4] B. Lippmeier and G. Keller. Efficient parallel stencil convolution in
Haskell. In Haskell Symposium, pages 59–70, Tokyo, Japan, 2011.
ACM. ISBN 978-1-4503-0860-1.

[5] B. Lippmeier, M. Chakravarty, G. Keller, and S. Peyton Jones. Guiding
parallel array fusion with indexed types. In Haskell Symposium, pages
25–36, Copenhagen, Denmark, 2012. ACM. ISBN 978-1-4503-1574-6.

[6] H. Liu, N. Glew, L. Petersen, and T. A. Anderson. The Intel Labs
Haskell research compiler. In Haskell Symposium, pages 105–116,
Boston, Massachusetts, USA, 2013. ACM. ISBN 978-1-4503-2383-3.

[7] L. Petersen and N. Glew. GC-safe interprocedural unboxing. In Com-
piler Construction, pages 165–184, Tallinn, Estonia, 2012. Springer-
Verlag.

[8] L. Petersen, D. Orchard, and N. Glew. Automatic SIMD vectorization
for Haskell. In ICFP, pages 25–36, Boston, Massachusetts, USA, 2013.
ACM. ISBN 978-1-4503-2326-0.

[9] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey. Can traditional programming bridge the
ninja performance gap for parallel computing applications? In ISCA,
pages 440–451, Portland, Oregon, 2012. IEEE Computer Society. ISBN
978-1-4503-1642-2.


