The Intel Labs Haskell Research Compiler

Hai Liu Neal Glew

Leaf Petersen

Todd A. Anderson

Intel Labs

{todd.a.anderson,hai.liu,leaf.petersen } @intel.com

Abstract

The Glasgow Haskell Compiler (GHC) is a well supported opti-
mizing compiler for the Haskell programming language, glaith

its own extensions to the language and libraries. HasKalt' se-
mantics imposes a runtime model which is in general diffitmilt
implement efficiently. GHC achieves good performance aceos
wide variety of programs via aggressive optimization tgkadvan-
tage of the lack of side effects, and by targeting a caretulhed
virtual machine. The Intel Labs Haskell Research Compitasu
GHC as a frontend, but provides a new whole-program optimiz-
ing backend by compiling the GHC intermediate represeoiat

a relatively generic functional language compilation falah. We
found that GHC'’s external Core language was relatively g¢asy
use, but reusing GHC's libraries and achieving full coniphty
were harder. For certain classes of programs, our platfawn p
vides substantial performance benefits over GHC alonegieaitfig

2x faster than GHC with the LLVM backend on selected modern
performance-oriented benchmarks; for other classes afranas,
the benefits of GHC's tuned virtual machine continue to oigive
the benefits of more aggressive whole program optimiza@wer-

all we achieve parity with GHC with the LLVM backend. In this
paper, we describe our Haskell compiler stack, its impleatém
and optimization approach, and present benchmark resutipar-
ing it to GHC.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Compilers

Keywords Functional Language Compiler; Compiler Optimiza-
tion; Haskell

1. Introduction

The Glasgow Haskell Compiler (GHC) is a robust optimizingieo
piler for the Haskell programming language, providing estee li-
braries and numerous extensions on top of standard HaGke.

is widely used by the Haskell community as a standard develop
ment platform, and also serves as a vehicle for active pnogriag
language research. The Haskell programming language islyid
used within the functional programming (FP) community, had
gained increasing traction outside of the FP world as well.

Permission to make digital or hard copies of all or part o thork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. Copyrights for components of this work aivbg others than the
author(s) must be honored. Abstracting with credit is petedi To copy otherwise, or
republish, to post on servers or to redistribute to listguies prior specific permission
and/or a fee. Request permissions from permissions@agm.or

Haskell'l3 September 23-24, 2013, Boston, MA, USA.

Copyright is held by the owner/author(s). Publication tiglicensed to ACM.

ACM 978-1-4503-2383-3/13/09. .. $15.00.
http://dx.doi.org/10.1145/2503778.2503779

aglew@acm.org

Despite the apparent complexity of the Haskell surface lan-
guage, the design philosophy of the language is such thapis-
sible to reduce (or “de-sugar”) the surface language to prisdr
ingly small core language. GHC in fact does this explicitypart
of its compilation strategy: most of the advanced featufeth®
language are quickly eliminated, leaving only a relativeiyple
System F based intermediate representation (IR) known as Co
[27, 29]. Much of the more advanced optimization technology
GHC is implemented as transformations on Core.

In addition to aggressive optimization, GHC also employs
a highly-tuned virtual machine and garbage collector dexig
closely around the requirements of implementing the lazgase
tics of Haskell efficiently. After optimization is perforrden Core,
programs are translated to an IR based on this virtual machin
the Spineless Tagless G-Machine (STG Machine) [25]. ST@rep
sentations are then translated il@tom a variant of the €- lan-
guage [23] before passing to GHC’s native code generatoiGINC
or LLVM to generate binary executables.

This paper reports on an ongoing effort to compile Haskell by
using GHC as a frontend to an existing functional language-co
piler built at Intel Labs that is largely language agnosiée use
GHC to perform de-sugaring and high-level optimizatioteinept
the Core IR from GHC and translate the lazy Core languageainto
strict, lower-level, general-purpose IR; perform aggressvhole-
program compilation on this IR; and compile the result evathy
to Pillar [2], also inspired by €. Our choice of building a Haskell
compiler by marrying two compiler platforms together isidet-
ate. Being able to support the Haskell language and variddG G
extensions gives us instant access to a large set of reat \Wworl
braries and programs, as well as the opportunity to contragt
compare our methodologies in compiling functional langsagith
those taken by GHC.

We observe that the promised simplicity of the Core IR has by
and large been borne out, but that the consequent compleiity
the interactions with the runtime system makes using GH@is t
fashion more difficult than it might at first seem. We present r
sults across a wide range of benchmarks and show that for some
programs we are able to add substantial value over the coe GH
system, thereby demonstrating that our more aggressivaiapt
tion can overcome the lack of a specialized runtime; but fiat
other programs we are still a long way from being able to m#teh
performance of the tuned virtual machine and runtime. Qe
achieve parity with GHC with the LLVM backend, and achieve a
2x speedup on a set of modern performance-oriented benchmarks
We refer to our compiler as the Intel Labs Haskell Researahn-Co
piler (HRC).

We make the following contributions:

e An experiment to reuse GHC as a Haskell frontend, connect-
ing it to our own middle-end and backend, demonstrating that
GHC's external Core is indeed easy to use, but reusing GHC'’s
libraries and achieving full compatibility are harder.

l Haskell Source

GHC Frontend H FLRC E
Ext Core files E MIL IR Pillar files

miateteletelelele il ettt ettt h ailaletaieiaieieieileleteiel Tt Y Y H
: HRC CoreHsParse E H Simplifier Pillar2C E
E CoreHs IR H E C files H
H Y E : Yl i H
H Normalizer E ' MIL Opt Pass H A
H AbsCore IR vl ' Intel C Compiler
H ANormLazy IR [:
: Y P A : Object files
: AbsCoreEval Strictness P Simplifier : A 4
! : E . E Linker
: ANormStrict IR i . :
H AbsCore IR Y . e ea- . : i Executable
: Optimizer i % ' MILOptPasses } '
ANormStrict IR I ! OMILIR
: L 4 Vo A 4 :
H Closure Conversion E H Outputter H

Figure 1. IRs and Passes of Intel Labs Haskell Research Compilerifépel

¢ A detailed description of an alternative approach to imm@etn
ing Haskell based on a traditional explicit-thunks IR arat tr
ditional compiler optimizations tailored to exploit fuimal-
language properties.

used to translate the Pillar code to C code, and the Intel (idem
is used to produce the final machine executable.

At the core of FLRC is a language agnostic intermediate repre
sentation calleIL, with an associated set of optimization passes.
The majority of the optimization in the compiler takes platehe
MIL level. From MIL code, we generate low-level Pillar codl-
lar provides facilities to support garbage collection atitboessen-
tial functionality for supporting high-level languagesitfis other-
wise essentially C (and is in fact implemented as an extartsio

e A novel design of a functional compiler IR that combines low-
level control flow with a high-level object model, thereby- en
abling a number of optimizations not yet available to otlene
pilers, including optimizations on immutable arrays witfi i
tializing writes. To the best of our knowledge, this concept

initializing writes is novel to our compiler.)- N .
9 P Specializations of FLRC to concrete languages are reabyed

implementing language specific frontends targeting MIL baek-
end. FLRC was originally developed to support an experiaient
strict functional language [11], which has a separate &odthan
HRC. Both frontends implement a set of language specific opti
mizations on higher-level intermediate representatifmti®wed by
2. FLRC a globalization/closure-conversion pass which lowersehgigh-

HRC is constructed as a frontend to a more general functional !€vel representations into MIL.
language compilation platform called the Intel Labs Fuowi

Language Research Compiler (FLRC). We begin by giving an 55 L

overview of the principle components of our compiler. Wecdiss
the approach taken to compilation, give a general desonut the
main intermediate representations used, and describeagtt &eliel
the important optimizations performed.

e Evidence confirming the highly-tuned nature of GHC's STG
Machine and garbage collector, but also showing that GHC
leaves performance on the table for certain applications.

MIL is a loosely typed, control-flow-graph (CFG) based, ci@s
converted, intermediate representation. The essensajmphilos-
ophy behind MIL is to maintain a relatively high-level objeep-
resentation while using a low-level CFG representationrofjpam
control flow. Our observation is that there are dramaticrojzia-
tion benefits that can be obtained from leveraging the foneti
language properties @hmutabilityandmemory-safetyin order to
take advantage of these properties, our intermediategeptation
uses an object-based model of memory. We do not view memory as
a large array of bytes which may be arbitrarily mutated, bther
as a collection of objects with well-defined initializatioeading,
and (for mutable objects) updating operations. On the dihed,

2.1 Architecture

Figure 1 gives the overall pictorial view of our compiler giime.

The boxes represent transformation passes of the compitelr,
lines represent data flowing through the compiler, anndtati¢h

the specific IR going into and coming out of each pass. When
we compile a set of input Haskell files, we first invoke GHC to
compile them to external Core files, read them back in, then go

through various internal transformations and multiple, |Bsfore
outputting a program in a language callelar [2] (an extension
to the C language inspired by-€ [23]). A tool calledPillar2c is

while maintaining high-level object representations jules great
optimization benefits, we argue that there are significanéfies to
a low-level representation of control flow with very few dasiates.

Since we are particularly interested in optimizing code alahi
operates on high-level aggregate objects such as immuaatalgs,
it is important that the initialization code (including tlventrol-
flow) for these objects be expressible directly in the locRGCat
their allocation point. In order to combine high-level aliewith a
low-level control-flow representation, we usgtializing writes—
a write to an object field that is guaranteed to be dynamicaky
only write to that field. Initializing writes allow us to brleaown
the initialization of large (even statically unboundedjealts into
sequences of writes or loops while preserving immutabitifgr-
mation. From the perspective of optimization, initialigiwrites to
fields can be optimized in essentially the same way as an gajgre
immutable object construction. For example, a read froma dien
be freely replaced by the operand of an initializing writéte same
field. In order for this perspective to hold, initializing itas must
satisfy two unchecked invariants: a field cannot be read itns
initialized and a field cannot be initialized twice. To thesbef our
knowledge, the use of initializing writes is novel to our qular.

functions (corresponding approximately to C functionsimitive
values (such as integers or floating pointer numbers), dradts
heap values. Heap values are allocated, initialized, antipna
lated via instructions (making extensive use of initiadgziwrites
to preserve immutability properties). Inter-procedum@htcol-flow
is effected via call and eval instructions. Calling coni@msé pro-
vide for either calls/evals via abstractly representeduies or di-
rect calls/evals to code functions in the case that the taoge
function is known and no closure is required. Annotation<aih
sites allow (conservative approximations of) control-fioforma-
tion either apparent in the initial program or computed \datcol
flow-analysis to be recorded directly in the intermediaf@esen-
tation as sets of code pointers potentially reaching tHesital pro-
viding some of the benefits of de-functionalization [26].

To represent instructions, MIL uses a variant of static Ising
assignment (SSA) form similar to that used in compilers sagh
the MLton compiler [30]. Basic blocks are parameterizedrone
put variables (playing the role of phi functions from stamt&SA

A more standard approach used in compilers such as MLton [30] form), contain a sequence of instructions, and are termdhiay ei-

and GHC is to allocate and initialize small heap values atattyj,
but to initialize large aggregates using mutable operatard only
subsequently coerce the result to an immutable repregamtat

2.2.1 Types

MIL is loosely typed in that every variable has a type, andsého
types must satisfy certain properties. However, it is type safe

since the types of heap values are not accurately tracketl, an

consequently the correctness of heap accesses cannotiballyta

checked. Types are used in MIL primarily as means of tracking

and maintaining garbage collection information and seadhd
as an engineering methodology to improve the correctnesiseof
compiler.

In addition to the usual constraints of correctness witlpees
to program semantics, it is essential that the final gengredele
maintain a GC-safety property. Accurate garbage collactio-
poses certain requirements on programs, needing infasmaktiout
which variables and object fields contain GC-managed refee
Aggressive optimization such as inter-procedural objettoxing
may change the GC status of variables and fields of object4 §10
The MIL language must support the tracking of such inforomati
and the MIL optimizations must successfully maintain tmifoi-
mation. In the IR design, we represent this information gisireta-
data associated with object allocation sites and usingstgperari-
ables.

2.2.2 Effects

While MIL optimization focuses primarily on purely functal
(non-side-effecting) code, side-effecting code must timless be
safely handled by the compiler. Side-effects arise botimfsource
code (e.g. monadic 10 in Haskell) and because of loweringdrig
level language constructs to a lower-level language (etting and
reading exception handler data-structures). In orderdsgawve cor-
rectness without forcing the compiler to make overly covatve
assumptions, MIL makes use of effect annotations that mar&-f
tions and thunks with a set of side-effects that may be uhkghs
by calling or evaluating the function or thunk. Effect arat@ins
consist of subsets drawn from the full set of effects inalgdpo-
tential non-termination, heap reads and/or writes, gé¢iverallo-
cation, input/output effects, exception throwing, andeosh

223

A MIL program is a set of global objects named by variableg @h
which (which must be a code function) is a designated entiytpo
for the program. A symbol table maps variables to variousulise
meta-data, most notably the type. Objects in MIL are eittoetec

IR structure

ther an inter-procedural or intra-procedural control $fan Blocks
contain zero or more successors, each explicitly given asgett
of the control transfer. Non-local control flow such as exieys
can be implemented via a second-class continuation mesrthani
and such exception edges are made explicit in the interrgedip-
resentation using annotations on transfers and call/éesd. dn-
put variables for blocks are defined in the control transfegeting
the block. This style of SSA fairly closely resembles (anovptes
many of the benefits of) the use of continuations in a contiona
passing style compiler, but with the added benefit of segirega
the local control-flow from the (potentially) truly interqcedural
control-flow.

2.3 MIL optimization

FLRC is de facto a whole program compiler in that whole pro-
gram compilation is the only supported compilation mode .oh
program compilation allows us to take advantage of the fagmit
optimization opportunities presented by having all of thegoam
code present for analysis. However, there is nothing in oola-
tion strategy that requires whole program compilation.drtipular
we have chosen not to do whole program de-functionalizg#6h
and our global optimizations, while clearly benefiting fraccess
to the entire program text, do not assume so.

The primary goal of the MIL optimizer is to leverage immutabi
ity and memory safety properties of source languages toigeov
aggressive optimizations that cannot feasibly be perfdrorear-
bitrary mutable code. The high-level object model provides
nificant benefit to the optimizer, since the various objecitsode
strong invariants about when and how the object can be nujtate
and what classes of objects might dynamically reach a gimen i
struction. At the same time, the low-level control flow sture al-
lows for high-level idioms such as loops expressed througgtsn
of mutually recursive functions to be expressed as locatrobn
flow. In principle, optimizations that apply to loops exmed as
control-flow graphs apply equally well to loops expressedfunc-
tions. This is true in the same sense that any intra-proetdgp-
timization can be done inter-procedurally: that is, it issgible
to do so, but requires substantially more effort, since eaath
optimization must rediscover and reconstruct the portibrthe
inter-procedural call graph which corresponds to locatmiflow
(that is, does not escape, and is well-behaved in other wamgs)
hence to which the intra-procedural optimization applRerform-
ing intra-procedural optimizations inter-proceduraliyn@lso com-
plicate the cost-model against which the optimization nimestle-
signed significantly: for example, the inter-procedurahlagy to
loop-invariant code motion in general requires introdganwrap-

per function to serve as a pre-header, the cost of which may ou
weigh the benefit of the code motion. Our experience leads us t
believe that it is vastly simpler and more efficient to justadiver
once and for all which portions of the inter-procedural cgfiph
implement local control-flow, and to represent these postidi-
rectly as local control-flow to which standard intra-proeesd op-
timizations (suitably adapted) can be applied.

2.3.1 Optimizations

Given the emphasis on using standard intra-proceduramaorat
tions where possible, a key element of MIL optimization istaog
inter-procedural control-flow into local control-flow. lim¢ MIL
this is done by two sets of optimizations. The first is a cardi
tion [9] pass which turns uses of (mutual) recursion int@kad his
may be thought of as a very generalized version of the stdrafar
proach to turning self tail-recursive functions into lodpgich is
also done as part of this pass). This pass is very effectieérat-
nating inter-procedural control-flow. Secondly, in adulitito con-
tification, several different inlining passes are run ugiifterent
heuristics. In one frequently run pass, functions knownesimall
are inlined aggressively. Another pass performs more agiye
inlining using fairly standard cost-budget inlining hestigs. A fi-
nal inlining pass uses a static profile estimation approasied on
work by Wu and Larus [31] to perform selective inlining att{es
mated) high-frequency call sites.

Another large set of mostly intra-procedural optimizatiare
performed by a simplifier in the general style of Appel and [Bin
In order to implement this efficiently, before each run of #ia-
plifier the MIL intermediate representation is wrapped inigm
perative data structure notionally implementing the lintéae ap-
proach described by Appel and Jim, and previously implestent
by Benton et al [4]. A general worklist algorithm is run perfe
ing a large set of dataflow based optimizations includingldsade
elimination, constant and copy propagation, and otherrg¢sanm-
plifying reductions. The simplifier is designed to avoid rie&s-
ing program size and to only perform optimizations whichc#iy
improve the program: consequently it can safely be run with e
tremely high-frequency (before and after every other ojztition).
The imperative representation has proved extremely effidie
practice, and each run of the simplifier contributes onlyligdgy
to overall compile time.

The compiler also implements a number of inter-procedel r
resentation optimizations using a field-sensitive, uriiftcabased
flow analysis [10, 19]. The main analysis can be roughly tinbof
as computing a set of equivalence classes on variables gact ob
fields such that any two members of different equivalencssels
can be guaranteed never to contain the same dynamic heap valu
Given such an analysis, the compiler can use the informatom
puted by it to perform a number of representation optimareti
in a GC safe manner [10, 19]. For example, small, singlefield
immutable objects (such as boxed floating point numbersyeare
placed inter-procedurally by the contents of the objecis Thdone

however, and extending this with a subset based analysiagimsm
an area of interest for future work.

A number of intra-procedural optimizations target loopshia
control-flow graph. A loop inversion pass is used to attenopt t
rewrite inner loops into a more amenable form for optimizati
Specifically, it turns top-test loops into bottom-test ledp which
once entered, the loop is guaranteed to run its body at le&ast o
This transformation allows loop-invariant code to be mowet of
loops in a non-speculative fashion, avoiding performana cor-
rectness issues associated with speculative optimizatidoop-
invariant code motion pass does such non-speculative nmeviem
when safe to do so. Finally, a SIMD vectorization pass isqraréd
to attempt to create SIMD vector versions of inner loops [21]
key advantage of performing vectorization in MIL is that the-
pendence analysis problem for immutable arrays is vastlyemo
tractable than the generalized problem for mutable ar@ysvec-
torizer is able to vectorize loops for which the underlying@n-
piler is not able to safely produce vector code.

A number of supporting optimizations such as common sub-
expression elimination, effect analysis, code functiocepe anal-
ysis, recursive function analysis, control-flow graph difigation
and redundant branch elimination are also implemented @ndia
either as standalone passes or as sub-components of otisespa

Our initial implementation focus with the MIL optimizer, &
supporting lazy code via thunks, was intended to target ¢ode
which thunking was relatively rare. From the perspectivehaf
optimizer, thunks are pernicious not just because of theheasl
they incur directly, but more generally because they dravaldy
obscure the control-flow of a program and hence greatly ethe
effectiveness of the optimizer. It is important to note ttas is
completely unrelated to the choice of using a strict-byad#fin-
termediate representation: whether laziness is expliéinplicitly
represented, the program semantics remain the same angtthe o
mizer must perform the same reasoning about control flowceSin
thunks are vastly more common in Haskell, we have begun im-
plementing optimizations targeting thunked code spedi§ic@ne
current optimization pass attempts to recognize and mankkkh
which are either already values, or which can safely be avatu
at their definition site and passed as values. A second qgattion
makes a preliminary attempt at performing inlining of tharty
using a data-flow analysis to discover thunks that are eteduan
every path from their definition and to evaluate these $yrithis
work is preliminary, but has shown good results so far. Fonyna
classes of Haskell programs, we see significant remainipgroy-
nities.

2.4 Pillar

FLRC and Pillar [2] were concurrently developed in the saaie |
and one goal of the FLRC project was to act as a test case for
language development on top of Pillar. Pillar is a language)-
piler, and runtime that provides programming languageastfuc-
ture. The idea behind Pillar is to allow language developefscus

even when the object in question is placed into the heap ds par on compiler optimizations unique to that language and otime

of other mutable or immutable objects, and is always deith-
out introducing any additional allocation or projection ofaras,
even at escape points. Other optimizations performed uiisg
analysis include inter-procedural dead-code and deadi€fiehina-
tion, function argument flattening, inter-procedural ¢anspropa-
gation, and control flow analysis. The analysis is also usetirni-
nate the overhead of checking the evaluation status of thwhlere
possible. The choice to use a unification based algorithnthisr
analysis was driven in part by efficiency concerns, and it ipar
the need to deal with GC safety issues. The analysis has grove
very scalable in practice, and generally very effectivee Timi-
tations of unification based analysis do at times becomerappa

code for unique aspects of those languages. The Pillarsinfra
ture optimizes and provides support for features that anenoon
to many languages and runtimes.

The core idea of Pillar is quite similar to (and inspired by t
C--language [23], with which it shares many common concepts. A
key difference between Pillar and-€is that Pillar is implemented
as an extension to C, rather than as an entirely separatedgeg
This allows for the reuse of the numerous existing toolslakibe
for compiling, debugging, and performance-tuning C codead-
dition, this approach makes it easy to incorporate exis@ngpde
into Pillar programs, since most C code can simply be cordgite
Pillar code with no modification.

GHC

HRC

Desugaring, type analysis, Core-to-Core transformation

Same process, since it uses GHC as frontend

Functional language, object based memory model, SSA, CFG based blocks with explicit transfer,
STG . . MIL . .
and optimized for currying and thunks object based memory model, but conventiongl
Cmm Based on €-, C.FG based b.|OCkS’ low-level types, Pillar Inspired by G-, C types, C calling convention
and custom calling convention
LLVM or P.ortable LLVM bitcode, gr Intel C/F:++ Portable C code compiled to assembly
NCG direct assembly generation Compiler

Runtime and GC optimized for currying and thunks

Conventional runtime and GC

Table 1. Comparison between GHC and HRC

The Pillar language extends C with a small number of addi-
tional constructs including parallelism Ref type identifying GC-
managed pointers, second-class continuations, taileatscalling
conventions for the integration of Pillar and ordinary C eotlhe
Pillar compiler infrastructure is responsible for takingjd® code,
lowering it to machine code, and in conjunction with the aill
runtime, providing support for stack walking, root-set graration
(RSE), tailcalls, composable continuations, and tramsstbetween
managed and unmanaged code.

Originally, the Pillar compiler was implemented as modiica
tions to the Intel C/C++ Compiler. This approach allowRdfs
and tailcalls to be implemented with no runtime overheadalsa
required frequent reintegration of our modifications with ever
changing compiler codebase, which quickly became burdeeso
Therefore, we experimented with a different Pillar implertagion
that translates Pillar to C using thllar2C translator and then
uses an unmodified (and up-to-date) Intel C/C++ compileoto-c
pile the translated output to binary. Pillar2C uses a shastawk
approach to suppoRefsand implements a number of optimiza-
tions for the shadow-stack and tailcalls. With these optations,
the average Pillar2C runtime overhead when compared tcatiesn
compiler was approximately 10%.

The runtime for our compiler uses a modified version of the
TGC garbage collector [1] that was created for the first FLRC
frontend. These modifications include the addition of Hiske
specific features such as weak pointer objects and theyatnlit
perform thunk indirection removal. In the original frontemwrites
to global objects were minimal due to an eager evaluatioat-str
egy that worked well with TGC's private nurseries. Convbfsas
described by Marlow and Peyton Jones [16] and verified by us,
the lazy evaluation strategy of Haskell produces many moitesv
to global objects. These writes cause very frequent privats-
ery collections in TGC and the overhead from these collestio
can increase the runtime of an application by several tiffilesse
collections could be minimized through the use of a readidrarr
integrated with thunk evaluation [16]. However, we haveingile-
mented this approach since we felt it broke Pillar moduégran.
Instead, we use a non-generational mark-sweep-compaa mod
TGC without private nurseries. This illustrates an advgataf
GHC's integrated runtime.

3. HRC

GHC compiles Haskell source programs to a typed internakrep
sentation called Core that is very close to System F [27],iand
able to export an external representation of the Core pnogvith

well defined syntax [29]. HRC uses GHC as a frontend to compile
from Haskell source to Core, and then takes GHC's externad Co
and translates it to MIL, before passing down to the rest dREL
compilation pipeline.

Table 1 summarizes the difference between GHC and HRC
at different compilation stages. Most notably, GHC's ST@ree
sentation is drastically different from the MIL IR employdy
HRC/FLRC. The former is still of a functional style with laiidp
abstraction and application, while the latter follows a SS&fe
with CFG based block structure; the former has a custom desig
to handle fast currying [15], while the latter stays withinaven-
tional heap object model.

The CFG based block structure used by MIL is similar to low-
level control flows found in Cmm or LLVM, but it's the high-
level object representation that puts MIL in a unique positio
exploit properties of functional programs. In contrastcimof the
high-level type and meta information is lost once GHC lowars
program from STG to Cmm (and to that extent, LLVM bitcode).
Sophisticated analysis is required to even attempt to eetie
invariant that could be encoded into the meta-data (e.gichwh
object fields are written to only once) from IRs that use a lewe
level memory model such as Cmm or LLVM bitcode.

As a consequence of the MIL design, we choose to intercept
the intermediate Core representation of GHC rather than 8TG
Cmm because we want to keep available the rich type infoomati
in Core to help build object type and meta-data in MIL. Howgve
the task of connecting GHC as a frontend to FLRC is not as simpl
as a mere translation from GHC Core to MIL. There are numerous
practical challenges involved in making this work out:

e GHC is an incremental compiler, which compiles each module
in relative isolation (modulo extensive cross-modulenimg),
while FLRC is currently a whole program compiler.

The intermediate representation of GHC is essentially @ laz
functional language based on System F, while MIL is a CFG-
based strict language with first-order functions. GHC aatest
impure operations in its IR via state-passing, whereas Mksu
an explicit effect annotation system.

GHC compiled programs rely on (and are sometimes tightly
coupled with) the GHC runtime, a complex and highly tuned
system, for implementing critical features including GHGp
itives, multi-threading, garbage collection, etc.

In the remainder of this section, we describe these diffesin
more detail and discuss the impedance matching requirertar o
to integrate the two compilers. We begin by discussing thdifino
cations required to GHC itself in order to enable its intégrainto
our compiler pipeline.

3.1 Modifications to GHC

Outputting external Core GHC has both an internal Core and an
external Core representation [29], with the latter intehtie sup-
port the exchange of programs with the outside world. Unfort
nately over the years this part of GHC has not been fully main-

tained as it is not widely used. In order to make use of thigifigc

we have brought this code back into a sufficiently usable gtat
cover the large fragment of Core that we require for corestnas
well as some additional annotation information such astsgss
information that are important for performance reasons.

A related issue for our purposes is that in order to impedance
match between the GHC incremental compilation model and the
FLRC whole-program model, we require the ability to access n
just the external Core representation of the main prograinalso
the installed libraries. To deal with this, we have modifiee build
process of GHC and the related Cabal library tool to outptérexl
Core files when compiling libraries, and to copy Core filesglo
with standard binary files when installing libraries.

LibraryLinking Because of differences in the runtime model, we
cannot directly link HRC compiled object files with GHC's time

or with GHC compiled libraries. However, many programs and
libraries contain C or FFI code fragments that are not reprtable

in external Core, and that will result in link errors if notritked
properly. Besides, recent GHC will also automatically prosl
stub codes (in C) when compiling certain form of FFI imports,
which may then be referenced in the generated external Core.
solve these linking problems, we add a ndstub-onlyoption to

tell GHC to produce object files that contain only foreign eod
segments. If we use this modified GHC to compile a Haskektijr
we will get a binary library file containing objects with orflyreign
definitions in them. When HRC takes the external Core as jnput
it is able to find foreign function definitions in these libydiles

at link time. The Cabal library has also been modified to uge th
option when compiling and installing Haskell libraries féRC.

Arbitrary precision integer FLRC has internal support for arbi-
trary precision integer as a primitive type, while GHC pa®»s it
through one of the two librariegteger-simpler integer-gmpThe
former is pure Haskell and portable, but it is not a high penfance
library. The latter links with GMP C library, but contains-Ecode
as well as GC hooks that are tied into GHC's runtime, and there
fore does not properly work with FLRC. Our solution is to nfygdi
GHC to declare a set of primitives that operate on integertdelve
them as unimplemented. Then we modify the integer-simptary
to implement its API in terms of these newly added primitiges
that we can eventually intercept them in our compiler and toap
FLRC’s built-in integer primitives.

Building GHC Building GHC is a rather complex job that in-
volves multi-stage compilation in which a stage-1 compsarsed
to build a stage-2 compiler, and so on. It is critical that mad-
ifications do not break GHC'’s own functionality during theilldu
process. However, some of our modifications such as the esang
to the integer-simple library pose a challenge: we eitheetta
fully implement the new integer primitives in GHC itself, osk
having broken libraries that prevent the next stage froniding.
Our (not entirely satisfactory) solution is to hack the cdatpn
process to have GHC compile both the modified and unmodified
versions of integer-simple, install binaries from unmeaatifiersion
to support continuing building GHC, and install externalesoand
stub-only libraries from the modified version to support HRG@re
must be taken to make sure both versions export exactly the sa
set of names, and mismatching internal names do not aceitient
leak into header files as they are randomly generated by GH&C. M
matches in function names will either produce errors of finde
symbols, or lead HRC to retrieve a wrong definition from theeCo
files, which is even more hiderous. There are also a numbehef o
modifications to the base library that require this sort afdiimg
due to differences in runtime support.

Immutable Arrays MIL is based around immutable arrays with
initializing writes, whereas the GHC array and vector lilga

tend to create mutable arrays, initialize them with writes] then
freezethe mutable array to an immutable array type. This freeze
operation just returns its input but with a different typdthugh
MIL is capable of handling mutable arrays and repeatingesriour
optimizations are all targeted at immutable arrays andhiizing
writes. Therefore, we have modified GH@&:tor library to target
our immutable arrays. These modifications include adding ne
primitive types in GHC for our immutable arrays (GHC has its
own immutable arrays, but we decided to keep those separate)
adding new primitive operations for creating without ialtzation,
initializing writes, length, and reading of these new imahlé
arrays, and modifying theector library itself to use these new
primitive types and operations.

3.2 Architecture of HRC

The overall architecture of HRC is shown in Figure 1. Contmla
begins by first invoking the modified GHC executable to compil
the input program to external core, which is then read batik in
HRC and parsed into an internal representation of Core ctalle
CoreHs A dependence analysis is performed on this representation
to determine what other Haskell modules are required to tetep
the program. Since our modified GHC has already compiled and
installed GHC libraries along with their external Core filésey
can then be read into HRC based on the results of the dependenc
analysis. This process proceeds transitively until thé Hialskell
program is read in. This process also serves to determine any
required linking options for external libraries.

The result of this process is a representation of the entiskel|
program that is to be compiled, in a representation faintyilsir
to that used by GHC itself. After some initial cleanup wortkist
program is passed through two additional representatiefcrd
being translated to MIL, the main optimization IR discussed
Section 2.2.

3.3 Lazy A-Normal Form

The first transformation in the HRC frontend translates tbee€s
code into a lazy A-Normal form [8] language call@dNormLazy
Some cleanup work such as primitive and constructor sabaré
performed as part of this translation. The primary tramsfgion
performed on this intermediate representation is a segsranaly-
sis pass.

Strictness Analysis The purpose of a strictness analyzer is to
annotate variable bindings with strictness informatiorfuAction

f is strict in its argument if and only iff L = L. Instead of
calculating on the actual value domain, an abstract iné¢aion

of f operates on an abstract domain of two or multiple points.
However, due to the limitation of modular compilation, GH@lyo
keeps limited information of the strictness of each funciio the
interface (hi) file, and therefore sacrifices accuracy in exchange
for efficiency and modularity.

Since our compiler functions as a whole program compiler, we
suspected that there might be an opportunity to uncoveatisess
properties of the source program that might have been miged
ing modular compilation. As an experiment, we have implet@eén
a strictness analysis pass for the ANormLazy IR. The aratg&es
an abstract interpretation approach over an abstractsemiaion
derived from ANormLazy calleébsCore Our initial implementa-
tion uses a relatively simple algorithm described by Peyiomes
and Partain [22], but we hope at some point to replace it with a
more complex algorithm such as that used by Jensen et al¢12] t
better handle higher-order functions. This optimizatias proved
less effective than we had hoped, but we continue to feekhieae
are opportunities to be had in this domain, in part becausaroéx-
periences with simple ad hoc strictness analyses perfoimlater
phases of the compiler.

3.3.1 Strict A-Normal Form

The final and most significant intermediate form change in the
HRC frontend is the translation from the ANormLazy language
in which laziness is implicit, to a strict A-Normal form langge
calledANormStrictin which laziness is represented explicitly. The
ANormStrict IR provides primitive thunks for suspending ttom-
putation of terms and explicgval operations for forcing a thunk
and memoizing its result. This is usually regarded as a mamne c
ventional treatment of handling laziness, as comparedemjti-
mized design in GHC's STG machine [25]. Bolingbroke and Pey-
ton Jones have also proposed a strict Core for GHC [6], adiwaca
the benefits of representing laziness explicitly.

Because variable bindings in ANormLazy are already anno-
tated with strictness information, translating from ANdrazy to
ANormsStrict is a relatively straight-forward process. Each strict
expression binding in the lazy language, the strict code evasu-
ate the expression to a value, bind a fresh variable to th#tresd
wrap the fresh variable in a thunk bound to the original \@&a
For each lazy binding in the lazy language, the strict cod®lsi
constructs a thunk containing the translated expressidrbards
the original variable to it. Unboxed primitive bindings asienply
translated directly to strict bindings. Case constructgchvifiorce
the computation of thunks are translated into uses of therANo
Strict primitive eval construct which computes, memoizes] re-
turns the results.

We choose in this approach to wrap all boxed values explicitl
in thunks, even when they are values. An alternative apprisao
allow values to be subsumed into the class of thunks: thatigsy-
ing strict bindings to simply bind the value to the originaliable.

In this case, the eval primitive must be prepared to dyndiyica
distinguish between values and thunks. By choosing to whap a
boxed values explicitly, we allow our backend to choose et
to represent indirections explicitly, or to simply treag¢ith as static
coercions to the thunk type (relying on the runtime to digptish
between values and indirections). Our runtime can be camftbto
treat indirections in either manner simply by passing a ftathé
compiler.

3.3.2 ANormStrict optimizations

While the main body of optimization is performed after tiatisn

to MIL code, it has proved very beneficial to implement a small
set of cleanup and language specific optimizations in thetdral.
The first reason for this is that the translations throughviireous
frontend intermediate forms can be made much simpler if they
are not required to produce perfectly “clean” code. It iseoft
convenient to permit variable-to-variable moves to beoiticed,

or to use wrapper functions to ensure primitive saturags, This
kind of convenience code is easily eliminable, but intex$ewith

the effectiveness of the closure converter if not actudityieated.

The second reason for performing optimizations at the ANorm
Strict level is that certain language specific optimizatiane sim-
pler and more effective when performed at that level, bottabse
of the more structured nature of the intermediate reprasent
and because of additional language specific invariants skéla
programs. For example, strictness properties are muchlesirg
compute at the ANormStrict level, in part because the Haskkel
ception semantics [24] allows more code motion than is akel
after translation to MIL.

There are three main groups of optimizations performed en th
ANormStrict language: general shrinking simplificationscurry-
ing, and strictness. Shrinking simplifications are impleted us-
ing a fairly standard down and up traversal of the interntedia
representation, performing dead code elimination, simgnkeduc-
tions, copy and constant propagation, thunk specific opttions,
and various other minor code improvements.

The uncurrying optimization is a simple syntactic optimiza
tion which rewrites curried functions as wrappers arouncbuaned
functions, and replaces all saturated known applicatidnsach
curried wrapper by a call to its uncurried version. This apgh
was easy to implement and gave good improvements in runtime.
However, the overhead of curried functions continue to bssune
in some benchmarks, suggesting that more sophisticatedoton
flow analysis based techniques [5] might be beneficial (eitthe
the ANormStrict level, or in MIL). We have also considered ex
perimenting with dynamic techniques such as those desthlge
Marlow and Peyton Jones [15], but would prefer to exploréicsta
options first, since dynamic options impose an overhead when
they are not used.

The strictness optimization is a very simple but surprising
effective dataflow based approach that attempts to find r{inte
procedurally) for each thunk variable the earliest progpenimt at
which it is guaranteed to be evaluated along all subsequathsp
If a thunk is guaranteed to be evaluated on all paths fronefieid
tion, then it can be evaluated eagerly, the thunk staticeliyaced
with an indirection, and all syntactically visible usesleggd with
the underlying computed value (thboxedversion). Otherwise,
the thunk can be evaluated at the earliest point at whichgtiés-
anteed to be evaluated and all subsequent syntactic usasl{itg
arguments to known functions) replaced with the unboxedioer
Some care must be taken to avoid incorrectly permuting cempu
tations that exhibit control effects (such as non-ternamgtwith
effectful code, since the GHC state passing representdties not
sequence control effects with input/output effects.

The analysis for the strictness optimization traversesptioe
gram in a down and up fashion, performing a recursive top down
analysis and then summarizing the results of the analysikeore-
turns from the recursive calls. Each function body is aredyas
it is reached to produce a procedure summary indicating ichwh
arguments and free variables it is strict. Procedure suiesiare
used to incorporate strictness information on functioruargnts
and free variables when calls to known functions are enevadt
Summaries for recursive (or mutually recursive) functiaresscom-
puted by iteratively re-analyzing until a fixed point is read. The
strictness optimization also performs dead code, deachwgy
and dead field elimination simultaneously with strictnéasesthe
analysis required is essentially identical.

These optimizations were easy and quick to implement and
have proved effective in eliminating a fair bit of the obwvsocruft
and low-hanging fruit. There remain substantial oppottesifor
further optimization at this level.

3.3.3 Closure conversion

One of the primary requirements for the translation from the
ANormStrict language to MIL is the representation of fuons
(and thunks) as closures. In principle this is straightemdv a
valid implementation is simply to compute the set of fredalales
of every function and place those in its closure. Howevdrstan-
tial benefit can be obtained by refining this in a number of ways

Firstly, closure size can be reduced substantially by dhgds
represent globally available small objects as static d&hahich
do not need to appear in closures. We refer to this procegislasl-
ization While it is possible to perform globalization independgnt
from closure conversion, the result is less effective thenfigpming
the analysis simultaneously with the closure analysis. rElason
for this is that a closure can only be represented by a gldtzl i
of its free variables are globals, which in turn may dependhen
choice of which closures are represented as globals. Pgbqieal-
ization then is mutually dependent on closure conversiod,can-
sequently we perform both analyses simultaneously.

Secondly, many closures for non-escaping functions can be
eliminated entirely in the case that all free variables f@ func-
tion are available (in the sense of either being directlyciopg or
in scope via an enclosing closure, or being global) at allsits.
Such functions can avoid having closures allocated atratead
taking their arguments directly as additional parameteesaeh call
site (a so-calledlat call). Since flat-called functions do not require
a closure, the choice of which functions to flat-call is agaimntu-
ally dependent on globalization. This formulation of flatng is
safe for space, since it never adds free variables to otbsuis
in which they were not already present, and does not incriésase
live-range of variables.

Finally, call graph control-flow information that is appaten
the pre-closure converted program becomes obfuscated pott-
closure converted program if some effort is not made to pvese
it during closure conversion. The MIL representation sufspthe
annotation of call sites with the set of code pointers whicym
(conservatively) reach the call site: this is sufficient tegerve the
pre-closure conversion control-flow information. It isasghtfor-
ward to make the closure conversion algorithm preserverimde
tion matching up function and thunk variables projectednficdo-
sures to the original function or thunk definition to whicleyitor-
respond, and hence to use this information to build theainizll-
graph annotations in MIL. While subsequent control-flowlgsia
may improve these annotations further, choosing not to tbse
already present control-flow information proves very bemafin
bootstrapping the process.

Implementing this small set of extensions to a basic closone
version algorithm provided significant improvements in plegfor-
mance of the generated code for relatively small implentemta
effort. More sophisticated control-flow analysis basedrapphes
have been considered, but we have not yet had the resourers to
periment with this. One key limitation of our approach istthe
do not globalize thunks except in the case that they arecatiti
known to be values. In general, thunk globalization is né¢ $ar
space, since a thunk might compute and memoize an arbjtraril
large object which as a global would remain live for the dorat
of the program. GHC solves this problem elegantly by usirgy th
garbage collector to decide dynamically which globals toreer-
ate and hence permitting objects computed by global thumke t
garbage collected [14]. We do not currently support thisl eon-
sequently we avoid globalizing all computed thunks.

3.4 Limitations/unimplemented

While our goal is to support as much of the GHC functionalisy a
possible (including GHC extensions to Haskell), there axesal
known deficiencies in this regard (and of course, possibknawn
ones as well). The notable limitations that we are aware @faar
follows:

1. We do not currently implement the correct semantics fopar
gating exceptions through thunks. Re-evaluating a thunkhvh
exited with an exception will produce an error instead of re-
raising the exception. Addressing this could have someradve
effect on the performance of thunk intensive code, but teligr
irrelevant to the class of benchmarks on which we have fatuse
which have little or no laziness in performance criticaltgets.

. Asynchronous exceptions are not supported. We do not cur-
rently see any path to addressing this limitation given aur |
guage agnostic runtime representation.

. Although we have implemented many GHC primitives re-
lated to multi-threading and concurrency, we do not support
lightweight threads, or GHGparks partly because of the com-
plexity involved in designing their schedulers. We choase t

map eachforkIO invocation to creating a new thread using
third party libraries such as pthread (POSIX thread).

4. There are still some known quirks related to the foreign-
function interface and linking. In some infrequent casedGG
decides to inline a foreign call, preventing us from corsect
computing the external library to which the code must be
linked.

4. Performance

We measure the performance of HRC using a set of benchmarks
from a number of sources. The majority of them were taken from
thenofibbenchmark suite [18] which was designed to compare the
performance of different Haskell systems. We tried to d4eddual-
anced set of nofib benchmarks, both lazy and strict, rangimg f
list manipulation, to big number arithmetic, to array corgions.
Many of the nofib benchmarks were written more than 20 years
ago, and they often do not make use of modern GHC librarids suc
asData.Vector, but we still feel that they are representative of typ-
ical Haskell programs, especially when we consider theitinue
behaviors.

Besides nofib programs, we have also added a number of mod-
ern performance oriented Haskell programs mostly takem fiee
graphics, scientific computing, and finance spaces. Thesehbe
marks have been our primary focus in tuning the optimization
in our compiler. Many of these benchmarks spend much of their
time in array computations utilizing either tlvector or repa li-
braries [13]. These benchmarks are often relatively strinature,
either explicitly through programmer annotation or imjtlicvia
compiler optimization. For those benchmarks written by ws,
have generally tried our best to maintain an idiomatic fiomal
style rather than littering the programs with lower-levapierative
code.

All benchmark tests were conducted on a 2.7GHz Intel Xeon
E5-4650 machine running Windows Server 2008. All benchmark
were compiled to 32-bit binaries using a standard GHC 7GHC
7.6.1 with LLVM 2.9 backend, and HRC with our modified GHC
7.6.1 frontend and Intel C/C++ Compiler version 12.0.4.106r
measurements record the wall clock time spent by each bearghm
in kernelcomputation: i.e. without including the time taken to read
input or write output. We take the average from a number o run
of each configuration of each benchmark.

All three GHC compilers (standard, LLVM, and our modified
version) were invoked with the02 option and the-msse2 option.
When using LLVM, we also passed thept1o-02 option and the
-optlo-std-compile-opts option to GHC. For certain bench-
marks we have further tuned the optimization flags, usualtpad-
ing to suggestions provided by the benchmark authors. Time sa
flags are passed to our modified GHC and to the standard GHC ex-
cept in some limited cases where a flag was beneficial to GHC but
not to HRC. To eliminate SIMD vectorization as a factor infper
mance, HRC was run without enabling the vectorization [2d9
HRC/FLRC supports compilation with both a strict floatingrgo
model in which only value-safe IEEE compliant reductiores jaer-
formed and in which source level precision is maintainedi an
relaxed model in which non value-safe floating point optatians
(such as re-association) are performed, and in which therlyad
ing C compiler is allowed to compute results using more os les
precision than specified by IEEE semantics. For our bendksnar
all compilation was done with the strict floating point madel

All executables were run with a 1024 megabyte heap. For the
GHC builds, this was done by passing the runtime arguments
H1024m -M1024mThis choice seemed to provide the best perfor-
mance across a range of benchmarks, but was not highly tWhed.
HRC executables were run with the same heap restrictiodsnan

35
GHC+LLVM mHRC

2.5
2
15
L 1111l L, o
NIRRT] } rHrrr[I 1 I
o+ L L ELELEERAERERERREREREEERERR IIIIIIII' A,
= — - v own = = o»n n = I o = 0 = w e 4+
Q_gﬂ3@5_9mwN%Egmo.yg8w%g:Egzog%gog:'agoggwggguggg
28§ 885225 ig T L8538 S5 a88 "53¢5 E3383 ¢85 ¢
=] 2 55 g9 5 5 2 = c £ 8 c 3 caomgy @ Q% g3 2 3 @ I 250y 2 E
© 5 = 35 £ JRi S o T & 8 & = c I E @ G © 5 T 5 0O 9 © 52 0 o
c E° o = - © £ [] = c > 0 2 X e .5><:
o © S I £ < @ 20 IS T 38 E ¥ S = c s
5] < o5 & 5 g <3 6 2 © 5§ o @
s o s o € O 35 o T 9 9 E
© < g > © o
) = @

Figure 2. Kernel Execution Time Relative to GHC (smaller is better)

1.2

further tuning of the heap options was performed. For a fenche GHCHLLUM m HRC
marks, we required a larger stack size to be set at runtinmedha 1 |
standard default.
Figure 2 shows the comparison of normalized kernel exegutio 0.8 - —
time relative to standard GHC of all benchmarks. The norzedli
kernel time is computed by dividing the measured run time for
a given configuration by the run time of standard GHC with its 4, |
native backend (not LLVM). Lower is better on this graph, and
performance parity with GHC corresponds to the valuen the 0.2 4
y-axis. Bars are shown for each program as compiled by GHE wit
the LLVM backend, and by HRC. The benchmarks are sorted by
the relative performance of the latter, which makes it clehich o
ones are worse than GHC, which are better, and by how much.
Overall, the geometric mean of HRC is at parity when compsoed
the GHC LLVM configuration, which in turn is about 10% faster
than the standard GHC with native backend. Figure 3. Kernel Execution Time Relative to GHC for Selected
We must also note that all GHC+LLVM performance numbers Benchmarks (smaller is better)
presented here were obtained from programs compiled by LLVM
version 2.9 instead of a more recent version. This is becaigse
is the only LLVM version that works reliably for all benchmkar —4ing currying [5] than we have so far attempted might Hehere
programs on 32-bit Windows. Using any other LLVM versiomiro s 554 some room for improvement in our thunk representatio
3.0 to 3.3 would produce a segmentation fault error for a remb A second key performance differentiator between GHC and
grg&:aglse;tllr;gtr'fngfrhgﬁéér}%ssrécg%‘ggéu% iﬁge;élg’mv‘e/?ﬁ?draean HRC on these benchmarks is the match between the allocation
(relative to GHC with native backend) when LLVM 3.3 is used in Etj&?/é?ro?giggﬁmu;dkgrg/r!ngvhggi?;b;gepgﬂlclﬁﬁl%goar%?rxzogbz:erve
place of LLVM 2.9. . that HRC compiled programs spend substantially more tinteen
To the left of Figure 2 are programs that perform better with o506 collector. This is partly due to using less efficiEsject
GHC. Generally speaking, these tend to be programs writ@t m o esentations in our runtime—our objects are larger @mté
ing extensive use of lists or other lazy data-structures &he we allocate more and stress the GC more. However, even after
difficult to make strict. Based on our qualitative analysistize accounting for this it is apparent that the design choicegema
benchmarks, there seem to be a number of reasons why GHC outy, 1he GHC GC are much better suited to the allocation profile
performs our compiler on these benchmarks. of many Haskell programs. The mark-sweep-compact algurith
First and foremost the GHC runtime is highly tuned for execut 5o by the HRC TGC incurs substantial overhead when uséd wit

ing lazy code and curried functions. Many of the programshen t ; ;
- . . S programs that allocate at such a high rate, with large ansooint
left side of the graph are those for which HRC is unable toielate fragmentation, and with relatively large live object caaint

thunking and currying, result in higher-allocgtion (due:tprying) On the right side of Figure 2 are programs on which HRC per-
or more overhead due to our more heavyweight thunk implearent ¢, ¢ petter than GHC. We present a selection of these gebara

0.6 +

tion. We have some quantitative evidence in particulartieriatter P ;

h . . in Figure 3. These benchmarks are generally performarieeted
:n tlhat beqphn:a;lr(]s OI? the left s[[d?. of tk;]e _graph t%nd to becpahrt Haskell programs. They include several example prograoms fr
arly sensitive to thunk-representation choice (we have suc the Repa examples package (suchlas andsobel image process-

choices). We believe that a more sophisticated approachnid e ing benchmarks), several computationally intensive matteal
kernels (e.gmatrix-mult, finlay), some small micro-benchmarks

(e.g. dot-product, vectorise-add and vectorise-sum), some gen-
eral throughput oriented benchmarks (engody, convolution,
1d-convolution), and a variety of other computationally intensive
benchmarks. The geometric mean for this selected groupsstinai/
HRC is about x faster than GHC with LLVM, an@ x faster than
standard GHC.

4.1 Performance analysis

It is difficult to quantify contributions of specific optinations

to benchmark performance, since almost all optimizatianeri

act synergistically with others. Nonetheless, we belida inter-
esting insights into the contribution of the various optiations
can be obtained by selectively eliminating one optimizatior set

of optimizations) at a time, and measuring the resultinggper
mance penalty. We have performed a series of such expesment
using the subset of the benchmarks chosen for Figure 3 pius th
galois_raytracer benchmark. In the following discussion, we have
measured performance with an optimization removed anddadde
back in, and report the percent speedup of adding back in.

The backend C compiler optimizations are crucial for perfor
mance. Comparing no optimization to full optimization, we- o
serve speedups ranging from 41% and 91%, with a geometrioc mea
across the benchmarks of 70%. Much (but not all) of this bene-
fit can be obtained with the simpt@1 level optimizations. Com-
paring this level of optimization to full optimization we sérve
speedups ranging from -6.5% to 32%, with a geometric mean of
8%. Clearly there are substantial benefits provided fromftlie
level of optimization, but on average it seems that moretéchop-
timization and code generation can provide adequate peafoce.

Comparing the compiler with the entire suite of MIL optimiza
tions disabled to the standard configuration, we observetliea
MIL optimizations provide between a 20% and 98% speeduph wit
a geometric mean of 75%. We break this down further by disgbli
various of the specific optimizations within the MIL pipetirdis-
cussed in Section 2.2. Because the MIL optimizations arblyig
synergistic, these experiments are somewhat harder tpiatebut
nonetheless interesting. The contification optimizatioovjales a
speedup ranging from 0% to 97%, with a geometric mean of 62%.
That these numbers are close to the speedups obtained bg-the e
tire MIL pipeline reflects in part the fact that the contificat op-
timization is a crucial enabling optimization for all of thiL op-
timizations. The flow analysis based representation opétions
provide between a -6.1% and 97% speedup, with a geometric mea
of 25%. The experimental thunk optimizations discussedeaehd
of Section 2.2 provide a speedup of between -12% and 97% awith
geometric mean of 20%. The loop invariant code motion pass pr
vides only small benefits, ranging between -1.9% and 5.9%h, avi
geometric mean of 0.32%.

Our experimental strictness analysis on the ANormLazyeepr
sentation provides us speedup between -3.9% and 11%, wih a g
ometric mean of 0.82%. The ad hoc strictness at the ANoretStri

level provides between -6.7% and 97% speedup, with a geomet-

ric mean of 23%. We suspect that the significantly better dyges
provided by the ad hoc strictness relative to our ANormLargts
ness most likely reflect its position in the phase orderitgrafther
simplifications have been performed, but do not have strang e
idence for this. The uncurrying optimization in the ANorm&t

to certain benchmarks and not at all to others. Qualitativeke
have observed that our compiler is often able to make small bu
crucial improvements to key inner loops in these prograrasrés
sult in significant performance gains. Examples includediira-
ination of uses of laziness, improved representations tntime
data-structures (e.g. unboxing), hoisting of code out op& and
elimination of unnecessary branches. For most of the progjia
Figure 3, our compiler is able to turn the performance aitgec-
tions into almost entirely local control-flow, for which oaom-
piler is well-tuned. For certain of these benchmarks (rigtéte
1d-convolution benchmark), it is striking the extent to which dis-
abling any one of a number of optimizations eliminates atnadis
performance improvements from other optimizations.

The performance of many programs included in Figure 3 can
be significantly further improved by HRC using auto vectariz
tion [21] on SIMD-capable hardware. We have been careful not
to include this optimization in our performance study hesiace
we wish to focus on establishing a baseline sequential cosgra

While the overall performance results achieved so far aredyi
we believe that the HRC experiment provides valuable dabatab
tradeoffs and opportunities that lie in the different dasifpoices
available to compiler implementers. We also believe thist éx-
periment suggests that the limits of Haskell performanae et
been reached by existing compiler technology.

4.2 Compile Time

Our compiler has not been engineered for compilation time, a
there are numerous known opportunities to speed up its perfo
mance. However, design choices were made with the intenfion
providing good scalability up to very large programs. Whilany

of these benchmarks are textually small, they pull in vergdaets

of libraries that must be compiled by HRC in whole. If we calesi

a pretty-printed Core IR (after dependence analysis andimgu

of unused code) as input, on this set of benchmarks, the gamogr
size varies between 50k to 180k LOC (lines-of-code), andpiiem
time ranges from 1 minute and 34 seconds to 9 minutes. Summed
over all of these benchmarks, approximately 27% of the ctampi
time was spent in the frontend passes (including the GHC-fron
tend and those labeled HRC in Figure 1), 49% was spent in MIL
passes, 22.5% in the backend Pillar and C compilers, and ih5%
the linker.

5. Discussion

We did not set out to write a Haskell compiler, but came from th
perspective of adapting an existing functional languagepiter,
hoping for an interesting experiment to see if our sepayatelel-
oped techniques could be applied to Haskell. Many of theag®oi
that we made, were made in the context of that previous |layggua
and were not made because we thought they would be best for
Haskell. But by this experiment, we get to see to what extesy t
are, or are not, reasonable choices for compiling Haskell.
Reusing GHC was clearly a big win. The effort involved in
building a lexer, parser, and type checker for Haskell is ange,
not to mention some sort of reasonable standard library. GakC
all this plus high-level optimizations and can output a $rral
termediate representation. Our experience with reusing @ids

optimizer provides between a -5.3% and a 29% speedup, with amostly positive. External Core is indeed easy to use as #nérgj

geometric mean of 5.6%. Unfortunately, an outstanding dlemp
bug prevents us from fully disabling the remaining ANorniStr
optimizations for measurement.

These numbers provide some indication of the relative impor
tance of the various components of the compiler pipelinen&o
optimizations clearly play a crucial role in achieving argrfpr-
mance at all with our stack, while others contribute sigatfity

point for a Haskell backend. GHC's primitives are not soigtra
forward to implement and some impedance matching is negessa
Apart from the known limitations described in section 3.RE

is able to compile and correctly run most, if not all, nofib tlen
marks, as well as a good portion of GHC testsuites. Populakélia
libraries such asepa, parsec, monad-par, criterion, etc., are also
supported with little or no modification.

We chose to build a whole-program compiler based mostly on
an SSA-based CFG-based intermediate representation and op
mizations. This choice was inspired by MLton [30], which sied
the benefits of that approach for functional languages, anthav
lieve that we benefit from some of these advantages. We chose t
use a high-level object model based on initializing writeghis
low-level of control-flow representation. We have many wyiza-
tions that exploit immutability properties and that in candiion
with traditional loop optimizations can do things that opitiations
at higher levels of representation cannot. Our optimizetiare not
meant to replace those at a higher level of representati@he
clearly benefit from the high-level optimizations of GHCstead
they are complimentary, and our performance data clearyvsh
they can be very beneficial in some classes of applications.

We chose, for our previous language, to use a conventional ru
time and object model, and not to tailor their design to the la
guage. We decided to stick with this choice for Haskell, im-co
trast to GHC’s STG machine and GC. Our experience with these
choices was mixed. In many Haskell programs we can overcome
the overheads of not using a tailored runtime and GC, buthores
we clearly suffer compared to GHC. Our GC was developed for a
strict, mostly pure, functional language, and works wethiat con-
text. Haskell, however, from the perspective of garbagéectbn
is not mostly pure, mutating heavily if laziness is used esitely.
We had some previous experience with a GC for Java, but Haske
in contrast to Java, also has a high allocation rate. Thusxperi-
ence indicates that the high mutation and high allocatitesnmean
that choices that might work well for other languages do natikw
well for lazy functional languages. GHC clearly has maderaca
ful set of design choices for its GC and dramatically outfqrens
our GC on a number of programs. While we do not have direct
evidence, we also suspect that when extensive currying artilp
application are used, GHC’s STG machine approach has stiasta
benefit.

We chose to use Pillar to separate our compiler from low-
level code generation. Pillar, like-G, is intended to provide high-
level language implementers with a target that is portahtehan-
dles issues like register allocation, instruction setettinstruction
scheduling, and optimization for the target architect@a.mod-
ern platforms such issues are important to address welltaked
considerable effort to do and to do well, and that effort labe
repeated anew for each target platform. An infrastructieeC--,
Pillar, or LLVM is a big win for high-level language develage

The original vision for Pillar was to support several highel
languages and we originally implemented a native compiber f
Pillar. That vision never materialized, and for completelgn-
technical reasons we abandoned our native Pillar compiidr a
wrote a converter to C. We learned two lessons from that éxper
ence. First, while converting to C has overheads and doepeatet
form as well as a native compiler, those overheads are nictita
Second, we benefit a lot from using the Intel C compiler. Ldts o
effort goes into the code generation part of the Intel coenpjland
the knowledge of our processors and their microarchitestim-
forms the low-level optimizations. Furthermore, the coempton-
tinually tracks newer versions of our processors, and pges/us
with the performance benefits available from specificalfgetting
the processor being used. We observe that GHC gets simitar be
fits from using the LLVM infrastructure.

In summary the lessons we learned are:

e Reusing GHC as a frontend is a good idea. External core is easy
to use. Reusing GHC's libraries is doable, but less easy.

e Low-level control with high-level object model representa
tions exploiting knowledge and invariants of the high-ldae-

guage provides benefits that functional languages implesren
should consider.

e Separating allocation from initialization using initizilhg writes
is a powerful technique for lowering immutable objects to a
lower level where additional optimizations and transfadiora
can be applied.

e The overheads of not using a specialized runtime such as
the STG machine and GHC’s GC can be overcome on many
Haskell programs, but are important to some.

e Eliminating thunks from hot loops is critical to achievingh-
performance for Haskell programs.

¢ Aninfrastructure for separating high-level language ienpén-
tation from low-level code generation is very beneficial for
high-level language implementers.

e There are overheads to compiling through C, but with careful
design these can largely be overcome. In turn, the benefits
provided by the industrial strength code generation of mode
C compilers such as Intel's can be very substantial. An Intel
compiler for Pillar or G- would obviously be preferable.

6. Related and Future Work

Besides GHC, there are a number of other compilers and/er-int
preters for Haskell including UHC [7], JHC [17], and a few eith
that are no longer maintained.

UHC supports most of Haskell 98 standards with some exten-
sions. It also employs multiple backends, including anrprigter, a
whole-program compilation backend called GRIN (Graph Redu
tion Intermediate Notation) that eventually outputs meehiode,
and some other ones including a Javascript backend. UHCauses
heap “point-to” analysis on GRIN to eliminate unknown cohtr
flow due to thunk evals. The MIL IR used by our compiler is at
a slightly lower level than GRIN because it is based around ex
plicit basic blocks. UHC is also known for its novel use ofriitite
Grammar (AG) and an aspect oriented internal organizatibile
we take a more traditional multi-pass and multi-IR compéer
proach. JHC is another Haskell compiler with many expertalen
features including a unique class implementation and reigifer-
ence among others. It also uses a variant of GRIN as one of its
intermediate representations.

Both UHC and JHC aim to compile Haskell from source with
their own implementations of type analysis, Haskell exiams
high level transformations, etc., and thus they are noy fialter-
operable with GHC, Haskell's defacto standard implemémat

GHC itself has gone through a lot of changes over the years,
gaining a highly-tuned runtime and sophisticated garbadlec
tor, and a LLVM backend, among others. Tagict Coreproposal
for GHC [6] unfortunately was not implemented in GHC’s main
branch due to its potential impact to the already complatates-
tem. We make use of both a lazy and a strict ANorm IR, and the
latter bears many similarities to the Strict Core.

GHC'’s native backend translates from Core to STG, and then to
Cmm, a variant of €-, which was designed to be “portable assem-
bly” that eases translation from high-level languages tachire
code. It has a simple machine-level type system, suppaktsatts,
and has interfaces for garbage collection and exceptiodliman

While C-- strives to be small, simple, and portable, LLVM aims
to be comprehensive, multi-purpose, and portable. Dues taige
collection of tools and ease of use, LLVM is becoming a popula
choice among compiler writers. Even GHC has a LLVM backend
that translates from Cmm to LLVM’s IR. LLVM's IR is control flo
and SSA based, which is indeed very similar to MIL except that
LLVM IR is more assembly like, and MIL is at a slightly higher
level. While the LLVM IR also maintains static type infornat,

MIL has more elaborate meta-data and types, as well as effect [8] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. Tisewrse of

annotations. LLVM now also supports GC implementation tigio
a compiler plug-in. Terei and Chakravarty give a more dethil
comparison between Cmm and LLVM [28].

There are also other high-level virtual machines such as Mi-

compiling with continuations. If°LDI, pages 237-247. ACM, June
1993.

[9] M. Fluet and S. Weeks. Contification using dominators. |QfP,
pages 2-13. ACM, Sept. 2001.

crosoft's Common Language Runtime (CLR) and the Java Mirtua [10] N. Glew and L. Petersen. Type-preserving flow analysid mter-

Machine (JVM) that provide portable and high-performancme¢
piler backend. Some other functional languages, e.g.,aSmadl
Closure, have been targeted to these virtual machinesr rdthe
to real hardware. These virtual machines usually provideaire

modern features such as memory safety and GC, but they have ab

stracted away many hardware features to achieve portailRC
was designed to make best use of Intel hardware through bgiih h
level and low-level optimizations, and hence we have nosicbn
ered targeting CLR or JVM.

Aside from focusing on sequential performance in compiling

lazy languages, we have also experimented with SIMD pdisatie
through auto vectorization [21] and looked at performanae f
multicores and Intel’s Xeon Phi co-processor [20]. Our fetwork
will continue to investigate these topics and exploit maxedware
features such as integrated GPUs.

7. Conclusion

Being one of the most advanced functional-language conspile
GHC is hard to beat in terms of its feature set, performancd, a
robustness. By leveraging GHC itself as a frontend, we take a
vantage of GHC'’s high-level optimization before Core, ayI#Z,
and then we focus our effort on compiling Core to MIL, a strict
IR. Through a multitude of aggressive optimization passes,
produce good-quality low-level imperative code for penfiance-
oriented programs, and overcome the lack of a specializetihma
for a lazy language. Along the way, we have learned many fhssso

about the pros and cons of various design and implementation

procedural unboxing (extended version), Mar. 2012. afXi03.1986
[cs.PL],http://arXiv.org/.

[11] N. Glew, T. Sweeney, and L. Petersen. A multivalued legge with
a dependent type system. Dependently Typed ProgrammingCM,
Sept. 2013.

[12] K. Jensen, P. Hjresen, and M. Rosendahl. Efficienttsggs analysis
of Haskell. InStatic Analysisvolume 864 ofLNCS pages 346—362.
Springer-Verlag, 1994.

[13] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Paytdones, and
B. Lippmeier. Regular, shape-polymorphic, parallel asreyHaskell.
ACM Sigplan Notices45(9):261-272, 2010.

[14] S. Marlow and S. Peyton Jones. The new GHC/Hugs runtyets.
Jan. 1998. URIhttp://research.microsoft.com/apps/pubs/
default.aspx?id=68449.

[15] S. Marlow and S. Peyton Jones. Making a fast curry: Rargbf vs.
eval/apply for higher-order languageslFP, 16(4-5):415-449, July
2006.

[16] S. Marlow and S. L. Peyton Jones. Multicore garbageectithn with
local heaps. INSMM, pages 21-32. ACM, June 2011.

[17] J. Meacham. JHC: John's Haskell compiler, 2007.
http://repetae.net/computer/jhc/.

[18] W. Partain. The nofib benchmark suite of Haskell programin
Functional Programming, Glasgow 199%/orkshops in Computing,
pages 195-202. Springer-Verlag, 1993.

[19] L. Petersen and N. Glew. GC-safe interprocedural uimgpxin CC,
volume 7210 oL.NCS pages 165-184. Springer-Verlag, Apr. 2012.

[20] L. Petersen, T. A. Anderson, H. Liu, and N. Glew. Measgrihe
Haskell gap. Manuscript available from the authors, Juri20

URL

choices, and demonstrated that a good compiler can ach&ve n [21] L. Petersen, D. Orchard, and N. Glew. Automatic SIMDtweization

tive machine-level performance for functional programgsicglly
composed through high-level abstractions. Propertiearatfonal
languages such as type safety and immutability by defaelakso
crucial to many of these optimization techniques, not gaditain-
able in compiling traditional imperative languages. We énaupir
descriptions are useful to future Haskell implementerd,@ovide
them with options to consider. We also hope that our data demo
strates that the last word on Haskell performance is yet &aimk

References

[1] T. A. Anderson. Optimizations in a private nursery-tdgmrbage
collector. InISMM, pages 21-30. ACM, 2010.

[2] T. A. Anderson, N. Glew, P. Guo, B. T. Lewis, W. Liu, Z. Liu, Pe-
tersen, M. Rajagopalan, J. M. Stichnoth, G. Wu, and D. Zh&ilgar:
A parallel implementation language. IWCPC, volume 5234 o NCS
pages 141-155. Springer-Verlag, 2007.

[3] A. Appel and T. Jim. Shrinking lambda expressions in dinéme.
JFP, 7(5), Sept. 1997.

[4] N. Benton, A. Kennedy, S. Lindley, and C. Russo. Shrigkieduc-
tions in SML.NET. InIFL 2004, volume 3474 oLNCS pages 142—
159. Springer-Verlag, 2005.

[5] L. Bergstrom and J. Reppy. Arity raising in Manticore. IFL 2009,
volume 6041 oL NCS pages 90-106. Springer-Verlag, 2010.

[6] M. C. Bolingbroke and S. L. Peyton Jones. Types are aaltionven-
tions. InHaskell Symposiunpages 1-12. ACM, Sept. 2009.

[7] A. Dijkstra, J. Fokker, and S. D. Swierstra. The arcHitiee of the
Utrecht Haskell compiler. IrHaskell Symposiumpages 93-104.
ACM, Sept. 2009.

for Haskell. InICFP. ACM, Sept. 2013.

[22] S. Peyton Jones and W. Partain. Measuring the effes of a sim-
ple strictness analyser. Functional Programming, Glasgow 1993
Workshops in Computing, pages 201-221. Springer-Verlag41

[23] S. Peyton Jones, N. Ramsey, and F. Reig-:Q\ portable assembly

language that supports garbage collectionPRDP, volume 1702 of
LNCS pages 1-28. Springer-Verlag, Oct. 1999.

[24] S. Peyton Jones, A. Reid, F. Henderson, T. Hoare, andaBioi. A
semantics for imprecise exceptions. PbDI, pages 25-36. ACM,
May 1999.

[25] S. L. Peyton Jones. Implementing lazy functional laages on stock
hardware: the Spineless Tagless G-machi?, 2(2):127-202, Apr.
1992.

[26] J. C. Reynolds. Definitional interpreters for higheder programming
languages. IMCM Annual Conferencgages 717-740. ACM, 1972.

[27] M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and®&n-
nelly. System F with type equality coercions. ThDI, pages 53—-66.
ACM, Jan. 2007.

[28] D. A. Terei and M. M. Chakravarty. An LLVM backend for GHC
ACM Sigplan NoticesA5(11):109-120, 2010.

[29] A. Tolmach. An external representation for the GHC Claregguage.
Sept. 2001. URlhttp://www.haskell.org/ghc/docs/papers/
core.ps.gz.

[30] S. Weeks. Whole-program compilation in MLton. ML Workshop
pages 1-1. ACM, Sept. 2006.

[31] Y. Wu and J. R. Larus. Static branch frequency and progpeofile
analysis. INMICRO, pages 1-11. IEEE, Nov. 1994.

