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Background: Energy-Based Regression - Training Learning the Proposal

» We derive an efficient and convenient objective that can be employed to train The neural network fy(x,y) can be trained using various methods for fitting a Result 1: For a conditional EBM p(y|x; ) = &"*)/ [ e*¥)dy and
a parameterized distribution g(y|x; ¢) by directly minimizing its KL divergence distribution p(y|x; §) to observed data {(x;,y;) }%¥, distribution g(y|x; ¢),
to a conditional energy-based model (EBM) p(y|x; 6). 1M ey
» We employ the proposed objective to jointly learn an effective MDN proposal The rpost stra.1gh‘.cf0rward training r%ethod P probably to.appr0X1mate the . VoD (p [l 4) = Vs log (]\_/I Z q(y'™|x: ¢)> ’
. . . . . e negative log-likelihood L£(6 ) = — Z 1 log p(yi|x;; ) using importance sampling: m=1 ’
distribution during EBM training, thus addressing the main practical limitations y |
. M £y ™) where {y™1M are M independent samples drawn from q(y|x; ¢).
of energy-based regression. (i m
. ’., 9(x) me1 4Yi ) Given data {x;}Y,, Result 1 implies that g(y|x; ¢) can be trained to
{371 M g(y) (proposal distribution). approximate the EBM p(y|x; 8) by minimizing the loss,
—><> > —> ‘—»f(x,y) M el )
I . | o J(0) =55 D log (17 ,
Previous work has also employed noise contrastive estimation (NCE): N~ M ~ 01(371 ‘xu &)
(0) (0)
(4) CcX Xi, ; —lo ; :
JNCE NZ ]NCE NCE(Q) =log v p{fQ( y ) gq(y )} | {yl i 1 ~ q(y‘xu ¢)

> exp{fa(xi, Y™ —log g(y\™ )}

m=0
Joint Trainineg Method
S92y, (M} ~ aty) (noie distribution).

(0)

Background: Energy-Based Models

» Effectively, JNcr() is the softmax cross-entropy loss for a classification problem > Since JkL(9) is identical to the first term of the EBM loss J(6) in (1),

An energy-based model (EBM) specities a probability distribution p(x; #) over with M + 1 classes (which of the M + 1 values {3’1 M, is the true target y;?). the EBM p(y|x; #) and proposal q(y|x; ¢) can be trained by jointly
x € X directly via a parameterized scalar function fy : X — R: minimizing (1) w.r.t. both 6 and ¢.
p(x;0) = _ / 1) Jx Practical Limitations of Energy-Based Regression » The EBM p(y|x; #) and proposal/noise distribution g(y|x; ¢) can also
be jointly trained by updating ¢ via Jx1.(¢), and updating 0 via Jycg(0).
assumptiOnS on the tfrue dlStrlbUtlon p(DC) The normaliZing partition funCtion Gaussian Components Centered a1t the frue target yi’ q(y) — % lejzl N(y)y“ O-I%I)
Z(0) = [ é"¥dx is however intractable, which complicates evaluating or A
sampling from the EBM p(x; ). > q(y) contains task-dependent hyperparameters K and {o7}} ;.

» g(y) depends on the true target y; and can thus only be utilized during training.

Background: Energy-Based Regression

We address both these limitations by jointly learning a parameterized
proposal/noise distribution g(y|x; ¢) during EBM training. We derive an efficient
and convenient objective that can be employed to train g(y|x; ¢) by directly
minimizing its KL divergence to the EBM p(y|x; ).

Utilizing the Proposal

Train a neural network fy : X x ) — R to predict a scalar value fy(x,y) € R, then
model the distribution p(y|x) with the conditional EBM p(y|x; 6):

oyl 0) = (%) Z(x.9) - /e’l@(x&)dj’/ As g(y|x; ¢) has been trained to approximate the EBM p(y|x; #), it can
’ Z(x,0) | be utilized with self-normalized importance sampling to e.g. compute
Learning the Proposal the EBM mean at test-time, thus producing a stand-alone prediction y*.
) .. It can also be used to draw approximate samples from the EBM:
Background: Energy-Based Regression - Prediction » We want the proposal/noise distribution g(y|x; ¢) to be a close approximation EBM  MDN Proposal  EBM Samples
of the EBM p(y|x; #). Specitically, we want to tind ¢ that minimizes the KL o
Predict the most likely target under the model given an input x* at test-time, i.e. divergence between gq(y|x; ¢) and p(y|x; 9). | S i\.‘- ErIoRoR of o /ﬁ\
y* = arg max, p(y|x*; ) = arg max, fo(x*,y). In practice, y* = arg max, fo(x*,y) is ol
approximated by refining an initial estimate y via T steps of gradient ascent, > Therefore, we seek to compute VD, (p(y|x; ) || q(v|x; ¢)). The gradient Nk
V Dk is generally intractable, but can be conveniently approximated. §

y <~y + AV, fo(x",y).
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