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Abstract

I define a process over all stationary covariance kernels. I show how
one might be able to perform inference that scales as O(nm2) in a GP
regression model using this process as a prior over the covariance kernel,
with n datapoints and m < n. I also show how the stationarity assumption
can be relaxed.

1 Introduction

Gaussian process regression models in machine learning (Rasmussen and Williams,
2006) are considered to be “Bayesian nonparametric models”. However, at the
heart of every Gaussian process regression model – controlling all the modelling
power – is a parametrised covariance kernel, greatly restricting the flexibility of
the corresponding Gaussian process. One would almost never believe that the
true process underlying real data has a parametrised kernel used in Gaussian
process regression.

A fully Bayesian nonparametric treatment of regression would place a non-
parametric prior over the Gaussian process covariance kernel, to represent un-
certainty over the values of the kernel function, and to reflect the belief that
the kernel does not have a simple parametric form. However, typically we only
have access to a single realisation of a stochastic process, and therefore it is
difficult to extract useful information about the covariance structure of that
process if we make no assumptions about the covariance kernel; for example,
to estimate cov(f(xi), f(xj)) we could only use the single pair (f(xi), f(xj)).
On the other hand, if we were to assume the process f(x) is stationary, we
could estimate cov(f(xi), f(xj)), by considering the function f(x) evaluated at
all pairs of points (xa, xw) such that xa − xw = xi − xj .

In this paper, I define a process over all stationary kernels, and use it as a
prior over the covariance kernel in a Gaussian process regression (or classifica-
tion) model. With this process, interesting covariance structures – periodicity,
Markovian dynamics, etc. – and mixtures of covariance structures can be dis-
covered without having to a priori “hard-code” these structures into a (sum of)
parametric covariance kernels. Moreover, in typical Gaussian process regression
or classification, with a parametrised kernel, inference is O(n3), where n is the
number of datapoints. In this process, inference could possibly be O(m2n),
where m < n. I also show how the stationarity assumption can be relaxed.
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2 Prior over Stationary Kernels

Bochner’s theorem says that any stationary kernel can be expressed as

k(xi, xj) =

∫
exp(2πis · (xi − xj))dµ(s) , (1)

where µ is a positive finite measure, and xi, xj are p× 1 vector valued inputs.
If µ has a density S(s), we can write Bochner’s theorem as

k(xi, xj) =

∫
exp(2πis · (xi − xj))S(s)ds , (2)

S(s) =

∫
k(xi, xj) exp(−2πis · (xi − xj))d(xi − xj) . (3)

Therefore there is some “spectral density” or “power spectrum” S(s) corre-
sponding to any popular parametrised stationary covariance kernel. For exam-
ple, consider the popular squared exponential covariance kernel,

kSE(xi, xj) = a0 exp(−0.5(xi − xj)>R−1(xi − xj)) , (4)

where R = diag(l21, . . . , l
2
p). Then using (3),

S(s) = a0
√
|2πR|exp(−2π2s>Rs) (5)

The normalised spectral density p(s) = S(s)/k(0, 0).
Since mixtures of Gaussian are dense in the set of distribution functions,

Bochner’s theorem says that if our spectral density is an infinite mixture of
Gaussians, then the induced process will have support for any stationary kernel
functions.

First, let us consider S(s) when it is a single Gaussian, and integrate (2),
assuming xi, xj , s are scalars:

k(xi, xj) =

∫
exp(2πis(xi − xj))

1√
2πσ2

exp(− 1

2σ2
(s− µ)2)ds (6)

let m = xi − xj

=
1√

2πσ2

∫
exp[2πim− 1

2σ2
(s2 − 2µs+ µ2)]ds (7)

=
1√

2πσ2

∫
exp[− 1

2σ2
s2 + (2πim+

µ

σ2
)s− µ2

σ2
]ds (8)

let a =
1

2σ2
, b = 2πim+

µ

σ2
, c = − µ2

2σ2

=
1√

2πσ2

∫
exp(−a(s− b

2a
)2) exp(

b2

4a
+ c)ds (9)

= exp[(2πim+
µ

σ2
)2
σ2

2
− µ2

2σ2
] (10)

= exp[(−4π2m2 + 4πim
µ

σ2
+
µ2

σ4
)
σ2

2
− µ2

2σ2
] (11)

= exp[−2π2(xi − xj)2σ2][cos(2π(xi − xj)µ) + i sin(2π(xi − xj)µ))] .
(12)
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Therefore if S(s) =
∑Q
q=1 wq exp(− 1

2σ2
q
(s − µq)2), then the integral (2) is ana-

lytic, and will be a sum of Q terms of the form (12). This result easily generalises
to the case where xi, xj , s are p-dimensional vectors, and S(s) is a sum of p vari-
ate Gaussians with axis aligned covariance matrices; the integral in (2) becomes
a product of integrals like (6).

Notice that when µ = 0 the imaginary part of (12) disappears. Indeed, the
spectral density S(s) should be symmetric about the origin s = 0. Therefore we
can let S(s) = [p(s) + p(−s)]/2, where p(s) is an infinite mixture of Gaussians,
and still have coverage of all stationary kernels. To derive (12) we let S(s) =

1√
2πσ2

exp(− 1
2σ2 (s − µ)2). If we instead follow the same derivation, but using

S(−s) as the spectral density, the final result is

k(xi, xj) = exp[−2π2(xi−xj)2σ2][cos(2π(xi−xj)µ)−i sin(2π(xi−xj)µ))] . (13)

Therefore if p(s) is a Gaussian, then a spectral density S(s) = p(s) + p(−s) will
be real with kernel

k(xi, xj) = exp[−2π2(xi − xj)2σ2][cos(2π(xi − xj)µ)] . (14)

So if p(s) is an infinite mixture of univariate Gaussians, then the kernel for
S(s) = p(s) + p(−s) is

k(xi, xj) = lim
Q→∞

Q∑
q=1

wq exp[−2π2(xi − xj)2σ2
q ][cos(2π(xi − xj)µq)] (15)

Supposing p(s) is an infinite mixture of p-dimensional axis aligned Gaussians,

where the qth component has mean vector µq = (µ
(1)
q , . . . , µ

(p)
q ) and covari-

ance matrix M = diag(v
(1)
q , . . . , v

(p)
q ), and mj is the jth component of the p

dimensional vector xi − xj , and S(s) = p(s) + p(−s),

k(xi, xj) = lim
Q→∞

Q∑
q=1

wq

p∏
a=1

exp[−2π2m2
av

(a)
q ][cos(πmaµ

(a)
q )] (16)

3 Inference

We let S(s) = [p(s) + p(−s)]/2, where

p(s) = lim
q→∞

Q∑
q=1

wq
1√

2πσ2
q

exp[
(s− µq)2

2σ2
q

] . (17)

wq ∼ GEM(α), and we can put Gaussian and inverse Gamma priors on µq and
σ2
q respectively.

The observations y(x) ∼ N (f(x), ), where f(x) ∼ GP(0, k). For any set of
observations y = (y1(x1), . . . , yn(xn))> we wish to perform inference over f =
(f1(x1), . . . , fn(xn))>. Every pair of function values f(xi), f(xj) is assigned to
a cluster with mean and variance µzij and σ2

zij where zij is a cluster assignment

variable. Given cluster assignments means, and variances, γ = {zij}, {µq}, {σ2
q},

p(f |y, γ) is Gaussian. We can infer posteriors over γ and f using a CRP Gibbs
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sampling procedure, with slice sampling or HMC for non-conjugate updates.
However, based on my experience Gibbs sampling hyperparameters of GP re-
gression models, I think this would mix very poorly. It would be preferable to
do VB inference, and consider the GP function values and DPM components
jointly, using the stick breaking construction? Although bookkeeping would be
more painful, it would probably also be better to immediately work with multi-
variate axis aligned Gaussians. Or it may be a lot better to work with isotropic
covariance functions, and only use 1D Gaussians in our DPM mixture (see the
next section).

By calculating the spectral density of a particular covariance function (e.g.
see (5)) we can set the means on our prior mixture components so that the
expected kernel for our process is that covariance function. This way our process
can use that parametrized kernel as a “base kernel”. I suspect this could be
valuable for good performance and reasonable inference – and it will let one
incorporate more intuition into our process.

4 Isotropic Covariance Function

It may be advantageous to further restrict our covariance functions to be isotropic,
and not just stationary. I think the covariance function for most stationary pro-
cesses will be isotropic to a good approximation, and this assumption will allow
us to extract yet more signal from the data for learning the covariance function.
The other major benefit is we can use univariate Gaussians in our DPM for
the kernel function, regardless of the dimensionality of the input space. The
drawback is we have to evaluate a Bessel function.

If the covariance function is isotropic it can be proven that the spectral
density S(s) is a function of |s| only – e.g. we can henceforth treat s as one
dimensional. Supposing the input space is p dimensional, and we let r = ||xi −
xj ||, then switching to spherical coordinates,

k(r) =
2π

rp/2−1

∫ ∞
0

S(s)Jp/2−1(2πrs)sp/2ds , (18)

S(s) =
2π

sp/2 − 1

∫ ∞
0

k(r)Jp/2−1(2πrs)rp/2dr , (19)

where Jp/2−1 is a Bessel function of order p/2− 1. A Bessel function of order α
is

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(
1
2x
)2m+α

(20)

We can analytically integrate a product of a Gaussian S(s) and a polynomial
Jp/2−1(2πrs)sp/2 quite easily. The spectral density S(s) for a Matern covariance
function is given in equation 4.15 of Rasmussen and Williams (2006).
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5 Efficient Inference

Lázaro-Gredilla et al. (2010) evaluate (2) by re-writing it as

k(xi, xj) =

∫
exp(2πis · (xi − xj))S(s)ds (21)

=

∫
exp(2πis · xi) exp(2πis · xj)∗S(s)ds . (22)

(22) is just
ES(s)[exp(2πis · xi) exp(2πis · xj)∗] , (23)

where ∗ is a complex conjugate operator. They estimate (23) using a simple
Monte Carlo sum, noting that it is valid to sample pairs sr,−sr, since the
spectral density is symmetric about the origin. By sampling in this way, the
complex part of the simple Monte carlo sum is eliminated:

ES(s)[exp(2πis · xi) exp(2πis · xj)∗] ≈
1

m

m∑
r=1

cos(2πsr · (xi − xj)) = k(xi, xj).

(24)
This is exactly the same covariance function as in Bayesian linear regression
with trigonometric basis functions. The marginal likelihood is in equation 8 of
Lázaro-Gredilla et al. (2010) and can be evaluated in O(nm2) operations, where
m is the number of basis functions, and n is the number of observations. In their
paper they determine the values of the points {s1, . . . , sm} (called spectral fre-
quencies in the Bayesian linear regression model) by maximizing the Bayesian
linear regression marginal likelihood. Sometimes this model works well, but
sometimes it severely overfits: see figures 7 and 8 in Lázaro-Gredilla et al.
(2010). They are basically just doing Bayesian linear regression with trigono-
metric basis functions and maximum likelihood for setting the parameters of
the basis functions. The only relation it has to typical “Bayesian nonparamet-
ric” Gaussian process regression is that as the number of trinogometric basis
functions→∞, they can, in principle, approximate any GP with any stationary
kernel arbitrarily well; however, in practice, they won’t be able to do this too
well (at all?) with maximum likelihood estimation of the sr. They would need
to be able to estimate the real spectral density of whatever covariance function
they want arbitrarily well (given the data), and to sample the spectral frequen-
cies from that spectral density to do their simple Monte Carlo sum. But to do
that, they would need to use our DPM mixture model to estimate the spectral
density of the true process.

We could possibly exploit the connection between our kernel function in
(15) and the kernel function for a Bayesian linear regression model with a finite
number of basis functions (for a choice of basis functions that gives us the same
form for the covariance kernel as in (15)). Although we are using an infinite
mixture of Gaussians, we can “truncate” the mixture at e.g. m = 100 Gaussians.
Our model would be more flexible and would not suffer from the overfitting and
performance problems in Lázaro-Gredilla et al. (2010). For instance, we can
naturally incorporate a base kernel, and will not overfit. Our process could also
be used as a general prior over covariance kernels in any GP regression model.
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6 Non-stationarity

We can allow for some nonstationarity by instead using a dependent Dirichlet
process mixture. We can let the mixing weights {wq} be input dependent, such
that e.g.wq = wq(a, b). If wi(a, b) has support for any continuous function of
two inputs, then we can essentially have support for any covariance function.
We can construct a dependent dirichlet process with such support by using the
stick breaking construction, and generating wi(a, b) by transforming a Gaussian
process (with two inputs) such that it has beta marginals (e.g. (Wilson and
Ghahramani, 2010)).
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