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In this appendix we provide some additional experiments regarding the under-fitting property of GP
maximum marginal likelihood estimation of kernel length-scales. We also provide instructions and
some questions asked in the human experiments. To participate in the exact experiments, and view
demonstrations, see http://www.functionlearning.com.

We begin with a brief description of Gaussian processes. For more detail, see Rasmussen and
Williams [1].

1 Gaussian Processes

Throughout we assume we have a dataset D of n input (predictor) vectors X = {x1,...,X,}, each

of dimension D, corresponding to an x 1 vector of targets y = (y(x1),...,y(x,)) .

A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint
Gaussian distribution. Using a GP, we can define a distribution over functions f(x) ~ GP(u, k),
meaning that any collection of function values f has a joint Gaussian distribution:

f:f(X):[f(x1)7""f(xn)]TNN(IJ"K)' (1)

The n x 1 mean vector pt; = 1(x;), and n x n covariance matrix K;; = k(x;, x;), are defined by the
user specified mean function p(x) = E[f(x)] and covariance kernel k(x,x") = cov(f(x), f(x'))
of the Gaussian process. The smoothness and generalisation properties of the GP are encoded by the
covariance kernel and its hyperparameters 6. For example, the popular RBF covariance function,
with length-scale hyperparameter ¢, has the form

krer(x,x') = exp(—0.5]|x — x'||?/£2) . )

If the targets y(x) are modelled by a GP with additive Gaussian noise, e.g., y(x)|f(x) ~
N (y(x); f(x),0?), the predictive distribution at n, test points X, is given by
f*|X*7X7Ya0702 NN(f*,COV(f*))7 (3)
f.=px, +Kx. x[Kxx+0’I]7ly,
COV(f*) = KX*,X* — KX*,X[KX,X + Uz[}ilKX,X* .

Kx, x, for example, denotes the n, x n matrix of covariances between the GP evaluated at X, and
X.pn X, is the n, X 1 mean vector, and K x x is the n X n covariance matrix evaluated at training
inputs X . All covariance matrices implicitly depend on the kernel hyperparameters 6.

We can analytically marginalise the Gaussian process f(x) to obtain the marginal likelihood of the
data, conditioned only on the kernel hyperparameters 0:

model fit complexity penalty

log p(y|0) f[yT(Kg+021)71y+1og|K.9+021H. 4)

Eq. (4) separates into automatically calibrated model fit and complexity terms [2], and can be opti-
mized to learn the kernel hyperparameters 6.
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Figure 1: GP Under-fitting via Marginal Likelihood Hyperparameter Estimation. Left: Each curve
represents the estimated length-scale of a Gaussian process for a particular dataset, at a given data-
size. There are 100 datasets (and thus 100 different coloured curves). Right: The log-lengthscale
results in the left plot have been averaged to produce this figure. The results using 1000 datasets are
shown in magenta, and they are similar to the results with 100 datasets. These figures consistently
show length-scale overestimation, equivalently GP under-fitting, particularly for small N < 20
datasets. The standard deviation over the 1000 datasets follows the same trend as the magenta curve
with a low of 0 and a high of 7.

2 GP Under-Fitting

To exemplify this surprising under-fitting property of maximum marginal likelihood estimation of
kernel hyperparameters, consider the following experiment. We sampled 100 datasets of size N =
150 from a GP with a squared exponential covariance function with a true length-scale of 4, signal
standard deviation of 1, and noise standard deviation 0.2, at 1 unit intervals. Using marginal like-
lihood optimization, we then estimated the kernel hyperparameters (length-scale, signal, and noise
stdev) on each of these datasets, as a function of increasing datasize, initializing hyperparameters
at their true values. Each curve in Figure 2 (left) shows the estimated log length-scale, for a partic-
ular dataset, as a function of datasize. Figure 2 (right) shows the learned length-scale, averaged in
log-space, e.g., an estimate of E[log ¢] not log E[¢], over the 100 datasets. The truth is in black. The
trend is clearest in Figure 2 (right): there is a systematic length-scale overestimation (under-fitting),
which is mostly negligable after about N = 20 datapoints. In high dimensional input spaces, this
under-fitting property may be even more pronounced. As shown in Figure 2 (right) averaging 1000
datasets gives almost exactly the same results (the deviation in these plots is insignificant).

In Figure 2, we show a representative plot of the GP log marginal likelihood as a function length-
scale. In this case, there are N = 5 datapoints, the true length-scale shown with the dashed green
curve, and the mode of the marginal likelihood shown in dashed black. The mode will typically be
to the right of the true length-scale, but much of the probability mass will be to the left of the mode.
This suggests that sampling, even with a vague (uniform) prior over length-scale, will remove the
bias.

We can understand this under-fitting behaviour as follows: If we are unconstrained in estimating the
GP covariance matrix, we will converge to the maximum likelihood estimator, K = (y—7)(y—7) T,
which is degenerate and therefore biased. Parametrizing a covariance matrix by a length-scale (for
example, by using an RBF kernel), restricts this matrix to a low-dimensional manifold on the full
space of covariance matrices. A biased estimator will remain biased when constrained to a lower
dimensional manifold, as long as the manifold permits movement along the direction of the bias.
Increasing a length-scale moves a covariance matrix towards the degeneracy of the unconstrained
maximum likelihood estimator. The low-dimensional manifold becomes more constrained with
more data, and less influenced by this under-fitting bias.
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Figure 2: Log marginal likelihood as a function of length-scale. The true length-scale is shown by
the dashed green curve, and the mode of the marginal likelihood is shown in dashed black.

3 Materials for Experiment 5.2, Progressive Function Learning

3.1 Introductory text

The goal of this study is to understand what patterns people see in data, and how
people think those patterns will continue when they are given incomplete infor-
mation.

In the following screens, you will try to understand some relationships using plots
containing data points.

All of the relationships come from the same underlying system, so there may be
similarities between them. Try to use this information to make better predictions.

Based on your understanding of each relationship, you will predict the values of
new points.

It should only take a few seconds to make each judgment, and there are approx-
imately 6 relationships requiring approximately 40 judgments each. The exper-
iment is expected to take about 20 minutes in all. Also, please take note of the
following:

e There is no single correct pattern in any of the cases you will observe, but
your judgments will be reviewed by a human, and your submission may be
rejected if it is clear that you did not attempt to find any pattern.

o This study does not currently work with touchscreen devices. If you are using
such a device, such as a tablet or smartphone, please return this HIT.

e We apologize for any inconvenience.

e Once you have submitted a judgment, you will not be able to change it —
please do not attempt to use the back button during the experiment.

4 Materials for Experiment 2

4.1 Introductory text

The goal of this study is to understand what patterns people see in data, and how
people think those patterns will continue when they are given incomplete infor-
mation.

In the following screens, you will try to understand two distinct relationships using
plots containing data points.

The relationships may or may not resemble ones you have seen before.

Based on your understanding of the relationships, you will predict the values of
new points.



Judgment 1 out of 33
This is the first function from the system. Please try to predict the new points as well as you can based on the points you can see.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, click the 'submit point’ button or hit the 's' key to submit the point.

Figure 3: Screenshot of draw 1 from kernel 1

Judgment 1 out of 33
This is the another function from the system. Please try to predict the new points as well as you can based on the points you can see and the previous functions.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, click the 'submit point’ button or hit the 's' key to submit the point.

Figure 4: Screenshot of draw 2 from kernel 1

It should only take a few seconds to make each judgment, and the experiment
is expected to take fewer than 12 minutes in all. Also, please take note of the
following:

e There is no single correct pattern in any of the cases you will observe, but
your judgments will be reviewed by a human, and your submission may be
rejected if it is clear that you did not attempt to find any pattern.

o This study does not currently work with touchscreen devices. If you are using
such a device, such as a tablet or smartphone, please return this HIT.

e We apologize for any inconvenience.

e Once you have submitted a judgment, you will not be able to change it —
please do not attempt to use the back button during the experiment.



Judgment 1 out of 33
This is the another function from the system. Please try to predict the new points as well as you can based on the points you can see and the previous functions.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, click the 'submit point' button or hit the 's' key to submit the point.

Figure 5: Screenshot of draw 3 from kernel 1

Judgment 1 out of 33
This is the another function from the system. Please try to predict the new points as well as you can based on the points you can see and the previous functions.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, click the 'submit point’ button or hit the 's' key to submit the point.

Figure 6: Screenshot of draw 4 from kernel 1

5 Materials for Experiment 5.3, Learning Unconventional Kernels
6 Materials for Experiment 5.4, Human Occam’s Razor
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Judgment 1 out of 33
This is the another function from the system. Please try to predict the new points as well as you can based on the points you can see and the previous functions.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, click the 'submit point’ button or hit the 's' key to submit the point.

Figure 7: Screenshot of draw 5 from kernel 1

Judgment 1 out of 33
Here is the second function. It is unrelated to the first. Please try to predict the new points as well as you can based on the points you can see.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, hit the 's' key to submit the point.

Figure 8: Screenshot of the saw function in Experiment 2.



Judgment 33 out of 33
Here is the second function. It is unrelated to the first. Please try to predict the new points as well as you can based on the points you can see.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, hit the 's’ key to submit the point.

Figure 9: Screenshot of the saw function in Experiment 2 with a set of example judgments.

Judgment 1 out of 40
Here is the first function. Please try to predict the new points as well as you can based on the poinis you can see.
Please click along the blue line to say what you think the height of the point is for that location.

Once you have selected a position along the line, hit the 's' key to submit the point.

Figure 10: Screenshot of the step function in Experiment 2.

Imagine that you are a scientist trying to figure out the patterns or functions behind different
sets of data points. Specifically, your goal is to understand how the vertical position of each
point changes as a function of its horizontal position.

There will be four sets of data points in all. If at any point two answers seem very similar, just
go with your best guess about which is better — there isn't any single correct answer.

Figure 11: Screenshot of the introduction to Experiment 3.



Here are the points in a data set, shown as black circles:

Below is a set of possible relationships that might have generated the points you see above,
shown as red lines. Please rank them from "most likely to have generated the points” (1; the
top location) to "least likely to have generated the points” (5; the bottom location), by dragging

and dropping them.

Figure 12: Screenshot of the introduction to one question in Experiment 3.

Figure 13: Function option in Experiment 3: fit using maximum marginal likelihood (MM) length
scale.

Figure 14: Function option in Experiment 3: Actual point-generating function.
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Figure 15: Fit using MM scale times exp(1.0) .
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Figure 16: Fit using MM scale times exp(.5) .
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Figure 17: Fit using MM scale times exp(—1.0) .
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Figure 18: Fit using MM scale times exp(—1.5) .



Figure 19: Fit using MM scale times exp(—2.5) .

finalQuestions

For the last set of points you saw, did you feel that the relationship (function)
you ranked most highly was likely to have generated the points? That is, if
you could draw a curve through the points, would it look very similar to at
least one of the presented options in red?

O Yes
O No

Please say a few words about why you answered yes or no above.

Was anything unclear about this survey? If so, please let us know. [optional]

Figure 20: Screenshot of the final page of Experiment 3.
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