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Multiple responses with input dependent covariances

I Two response variables:
y1(x): concentration of cadmium at a
spatial location x.
y2(x): concentration of zinc at a
spatial location x.

I The values of these responses, at a
given spatial location x∗, are
correlated.

I We can account for these
correlations (rather than assuming
y1(x) and y2(x) are independent) to
enhance predictions.

I We can further enhance predictions
by accounting for how these
correlations vary with geographical
location x. Accounting for input
dependent correlations is a
distinctive feature of the Gaussian
process regression network.
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Motivation for modelling dependent covariances

Promise
I Many problems in fact have input dependent uncertainties and correlations.

I Accounting for dependent covariances (uncertainties and correlations) can
greatly improve statistical inferences.

Uncharted Territory

I For convenience, response variables are typically seen as independent, or as
having fixed covariances (e.g. multi-task literature).

I The few existing models of dependent covariances are typically not expressive
(e.g. Brownian motion covariance structure) or scalable (e.g. < 5 response
variables).

Goal
I We want to develop expressive and scalable models (> 1000 response variables)

for dependent uncertainties and correlations.
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Outline

I Gaussian process review
I Gaussian process regression networks
I Applications
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Gaussian processes

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning (f (x1), . . . , f (xN)) ∼ N (µ,K),
with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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Gaussian processes

“How can Gaussian processes possibly
replace neural networks? Did we throw the
baby out with the bathwater?”

David MacKay, 1998.
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Semiparametric Latent Factor Model

The semiparametric latent factor model (SLFM) (Teh, Seeger, and Jordan, 2005) is a
popular multi-output (multi-task) GP model for fixed signal correlations between
outputs (response variables):

p×1︷︸︸︷
y(x) =

p×q︷︸︸︷
W

q×1︷︸︸︷
f(x) +σy

N (0,Ip)︷︸︸︷
z(x)

I x: input variable (e.g. geographical location).

I y(x): p× 1 vector of output variables
(responses) evaluated at x.

I W: p× q matrix of mixing weights.

I f(x): q× 1 vector of Gaussian process
functions.

I σy: hyperparameter controlling noise
variance.

I z(x): i.i.d Gaussian white noise with p× p
identity covariance Ip.
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Deriving the GPRN

f1(x1)

f2(x1)
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y1(x2)

y2(x2)

Structure at
x = x1

Structure at
x = x2

At x = x1 the two outputs (responses) y1 and y2 are correlated since they share the
basis function f1. At x = x2 the outputs are independent.
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From the SLFM to the GPRN
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From the SLFM to the GPRN
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Gaussian process regression networks

p×1︷︸︸︷
y(x) =

p×q︷ ︸︸ ︷
W(x) [

q×1︷︸︸︷
f(x) +σf

N (0,Iq)︷︸︸︷
ε(x) ]︸ ︷︷ ︸

f̂(x)

+σy

N (0,Ip)︷︸︸︷
z(x)

or, equivalently,

y(x) =

signal︷ ︸︸ ︷
W(x)f(x) +

noise︷ ︸︸ ︷
σf W(x)ε(x) + σyz(x) .

I y(x): p× 1 vector of output variables
(responses) evaluated at x.

I W(x): p× q matrix of weight functions.
W(x)ij ∼ GP(0, kw).

I f(x): q× 1 vector of Gaussian process node
functions. f(x)i ∼ GP(0, kf ).

I σf , σy: hyperparameters controlling noise
variance.

I ε(x), z(x): Gaussian white noise.
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GPRN Inference

I We sample from the posterior over Gaussian processes in the weight and node
functions using elliptical slice sampling (ESS) (Murray, Adams, and MacKay,
2010). ESS is especially good for sampling from posteriors with correlated
Gaussian priors.

I We also approximate this posterior using a message passing implementation of
variational Bayes (VB).

I The computational complexity is cubic in the number of data points and linear
in the number of response variables, per iteration of ESS or VB.

I Details are in the paper.
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GPRN Results, Jura Heavy Metal Dataset

1 2 3 4 5
longitude

1

2

3

4

5

6

la
ti

tu
d
e

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

f2(x)

f1(x)

W11(x)

W12(x)

W21(x)

W22(x)

W31(x)

W32(x)

y1(x)

y2(x)

y3(x)

y(x) =

signal︷ ︸︸ ︷
W(x)f(x) +

noise︷ ︸︸ ︷
σf W(x)ε(x) + σyz(x) .

13 / 20



GPRN Results, Gene Expression 50D
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GPRN Results, Gene Expression 1000D
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Training Times on GENE

Training time GENE (50D) (s) GENE (1000D) (s)

GPRN (VB) 12 330
GPRN (ESS) 40 9000
LMC, CMOGP, SLFM minutes days
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Multivariate Volatility Results

GPRN (VB) GPRN (ESS) GWP WP MGARCH
0

1

2

3

4

5

6

7

M
S

E

MSE on EQUITY dataset

17 / 20



Summary

I A Gaussian process regression network is used for multi-task regression and
multivariate volatility, and can account for input dependent signal and noise
covariances.

I Can scale to thousands of dimensions.

I Outperforms multi-task Gaussian process models and multivariate volatility
models.
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Generalised Wishart Processes
Recall that the GPRN model can be written as

y(x) =

signal︷ ︸︸ ︷
W(x)f(x) +

noise︷ ︸︸ ︷
σf W(x)ε(x) + σyz(x) .

The induced noise process,

Σ(x)noise = σ2
f W(x)W(x)T + σ2

y I ,

is an example of a Generalised Wishart Process (Wilson and Ghahramani, 2010). At
every x, Σ(x) is marginally Wishart, and the dynamics of Σ(x) are governed by the
GP covariance kernel used for the weight functions in W(x).
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GPRN Inference New

y(x) =

signal︷ ︸︸ ︷
W(x)f(x) +

noise︷ ︸︸ ︷
σf W(x)ε(x) + σyz(x) .

Prior is induced through GP priors in nodes and weights

p(u|σf ,γ) = N (0,CB)

Likelihood

p(D|u, σf , σy) =

N∏
i=1

N (y(xi); W(xi)f̂(xi), σ
2
y Ip)

Posterior

p(u|D, σf , σy,γ) ∝ p(D|u, σf , σy)p(u|σf ,γ)

We sample from the posterior using elliptical slice sampling (Murray, Adams, and
MacKay, 2010) or approximate it using a message passing implementation of
variational Bayes.
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