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Abstract
Gaussian processes are typically used for
smoothing and interpolation on small datasets.
We introduce a new Bayesian nonparametric
framework – GPatt – enabling automatic pattern
extrapolation with Gaussian processes on large
multidimensional datasets. GPatt unifies and ex-
tends highly expressive kernels and fast exact in-
ference techniques. Without human intervention
– no hand crafting of kernel features, and no so-
phisticated initialisation procedures – we show
that GPatt can solve large scale pattern extrap-
olation, inpainting, and kernel discovery prob-
lems, including a problem with 383400 training
points. We find that GPatt significantly outper-
forms popular alternative scalable Gaussian pro-
cess methods in speed and accuracy. Moreover,
we discover profound differences between each
of these methods, suggesting expressive kernels,
nonparametric representations, and exact infer-
ence are useful for modelling large scale multi-
dimensional patterns.

1. Introduction
“The future of the human enterprise may well depend on
Big Data”, exclaimed West (2013), writing for Scientific
American. Indeed we have quickly entered an era of big
data, focussing recent machine learning efforts on develop-
ing scalable models for large datasets, with notable results
from deep neural architectures (Krizhevsky et al., 2012).

Neural networks first became popular in the 1980s because
they allowed for adaptive basis functions, as opposed to the
fixed basis functions in well known linear models. With
adaptive basis functions, neural networks could automat-
ically discover interesting structure in data, while retain-
ing scalable learning procedures (Rumelhart et al., 1986).
But this newfound expressive power came at the cost of
interpretability and the lack of a principled framework for
deciding upon network architecture, activation functions,
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learning rates, etc., all of which greatly affect performance.

Following neural networks came the kernel era of the
1990s, where infinitely many fixed basis functions were
used with finite computational resources via the kernel trick
– implicitly representing inner products of basis functions
using a kernel. Kernel methods are flexible, and often more
interpretable and manageable than neural network models.
For example, Gaussian processes can be used as rich prior
distributions over functions with properties – smoothness,
periodicity, etc. – controlled by an interpretable covariance
kernel.1 Indeed Gaussian processes have had success on
challenging non-linear regression and classification prob-
lems (Rasmussen, 1996).

Within the machine learning community, Gaussian process
research developed out of neural networks research. Neal
(1996) argued that since we can typically improve the per-
formance of a model by accounting for additional struc-
ture in data, we ought to pursue the limits of large models.
Accordingly, Neal (1996) showed that Bayesian neural net-
works become Bayesian nonparametric Gaussian processes
with a neural network kernel, as the number of hidden units
approach infinity. Thus Gaussian processes as nonparamet-
ric kernel machines are part of a natural progression, with
the flexibility to fit any dataset, automatically calibrated
complexity (Rasmussen & Williams, 2006; Rasmussen &
Ghahramani, 2001), easy and interpretable model specifi-
cation with covariance kernels, and a principled probabilis-
tic framework for learning kernel hyperparameters.

However, kernel machines like Gaussian processes are typ-
ically unable to scale to large modern datasets. Methods
to improve scalability usually involve simplifying assump-
tions, such as finite basis function expansions (Lázaro-
Gredilla et al., 2010; Williams & Seeger, 2001; Le et al.,
2013; Rahimi & Recht, 2007), or sparse approxima-
tions using pseudo (inducing) inputs (Snelson & Ghahra-
mani, 2006; Hensman et al., 2013; Seeger et al., 2003;
Quiñonero-Candela & Rasmussen, 2005). While these
methods are promising, they simplify standard Gaussian
process models, which are sometimes already too simple,
particularly when a large number of training instances are
available to learn sophisticated structure in data.

1We use the terms covariance kernel, covariance function, and
kernel interchangeably.
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Indeed popular covariance kernels used with Gaussian pro-
cesses are not often expressive enough to capture rich struc-
ture in data and perform extrapolation, prompting MacKay
(1998) to ask whether we had “thrown out the baby with
the bathwater”. In general, choice of kernel profoundly
affects the performance of a Gaussian process – as much
as choice of architecture affects the performance of a neu-
ral network. Typically, Gaussian processes are used either
as flexible statistical tools, where a human manually dis-
covers structure in data and then hard codes that structure
into a kernel, or with the popular Gaussian (squared ex-
ponential) or Matérn kernels. In either case, Gaussian pro-
cesses are used as smoothing interpolators, only able to dis-
cover limited covariance structure. Likewise, multiple ker-
nel learning (Gönen & Alpaydın, 2011) typically involves
hand crafting combinations of Gaussian kernels for spe-
cialized applications, such as modelling low dimensional
structure in high dimensional data, and is not intended for
automatic pattern discovery and extrapolation.

In this paper we propose a scalable and expressive Gaussian
process framework, GPatt, for automatic pattern discovery
and extrapolation on large multidimensional datasets. We
begin, in Section 2, with a brief introduction to Gaussian
processes. In Section 3 we then introduce expressive inter-
pretable kernels, which build off the recent kernels in Wil-
son & Adams (2013), but are especially structured for mul-
tidimensional inputs and for the fast exact inference and
learning techniques we later introduce in Section 4. These
inference techniques work by exploiting the existing struc-
ture in the kernels of Section 3 – and will also work with
popular alternative kernels. These techniques relate to the
recent inference methods of Saatchi (2011), but relax the
full grid assumption made by these methods. This exact in-
ference and learning costs O(PN

P+1
P ) computations and

O(PN
2
P ) storage, for N datapoints and P input dimen-

sions, compared to the standard O(N3) computations and
O(N2) storage associated with a Cholesky decomposition.

In our experiments of Section 5 we combine these fast in-
ference techniques and expressive kernels to form GPatt.
Our experiments emphasize that, although Gaussian pro-
cesses are typically only used for smoothing and interpo-
lation on small datasets, Gaussian process models can in
fact be developed to automatically solve a variety of practi-
cally important large scale pattern extrapolation problems.
GPatt is able to discover the underlying structure of an im-
age, and extrapolate that structure across large distances,
without human intervention – no hand crafting of kernel
features, no sophisticated initialisation, and no exposure to
similar images. We use GPatt to reconstruct large missing
regions in pattern images, to restore a stained image, to re-
construct a natural scene by removing obstructions, and to
discover a sophisticated 3D ground truth kernel from movie
data. GPatt leverages a large number of training instances

(N > 105) in many of these examples.

We find that GPatt significantly outperforms popular al-
ternative Gaussian process methods on speed and accu-
racy stress tests. Furthermore, we discover profound be-
havioural differences between each of these methods, sug-
gesting that expressive kernels, nonparametric representa-
tions2, and exact inference – when used together – are use-
ful for large scale multidimensional pattern extrapolation.

2. Gaussian Processes
A Gaussian process (GP) is a collection of random vari-
ables, any finite number of which have a joint Gaussian
distribution. Using a Gaussian process, we can define a
distribution over functions f(x),

f(x) ∼ GP(m(x), k(x, x′)) . (1)

The mean functionm(x) and covariance kernel k(x, x′) are
defined as

m(x) = E[f(x)] , (2)
k(x, x′) = cov(f(x), f(x′)) , (3)

where x and x′ are any pair of inputs in RP . Any collection
of function values has a joint Gaussian distribution,

[f(x1), . . . , f(xN )] ∼ N (µ,K) , (4)

with mean vector µi = m(xi) and N ×N covariance ma-
trix Kij = k(xi, xj).

Assuming Gaussian noise, e.g. observations y(x) =
f(x) + ε(x), ε(x) = N (0, σ2), the predictive dis-
tribution for f(x∗) at a test input x∗, conditioned on
y = (y(x1), . . . , y(xN ))> at training inputs X =
(x1, . . . , xn)>, is analytic and given by:

f(x∗)|x∗, X,y ∼ N (f̄∗,V[f∗]) (5)

f̄∗ = k>∗ (K + σ2I)−1y (6)

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2
nI)−1k∗ , (7)

where the N × 1 vector k∗ has entries (k∗)i = k(x∗, xi).

The Gaussian process f(x) can also be analytically
marginalised to obtain the likelihood of the data, condi-
tioned only on the hyperparameters θ of the kernel:

log p(y|θ) ∝ −[

model fit︷ ︸︸ ︷
y>(Kθ + σ2I)−1y+

complexity penalty︷ ︸︸ ︷
log |Kθ + σ2I|] .

(8)
2For a Gaussian process to be a Bayesian nonparametric

model, its kernel must be derived from an infinite basis function
expansion. The information capacity of such models grows with
the data (Ghahramani, 2012).
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This marginal likelihood in Eq. (8) pleasingly compart-
mentalises into automatically calibrated model fit and com-
plexity terms (Rasmussen & Ghahramani, 2001), and can
be optimized to learn the kernel hyperparameters θ, or used
to integrate out θ using MCMC (Murray & Adams, 2010).
The problem of model selection and learning in Gaussian
processes is “exactly the problem of finding suitable prop-
erties for the covariance function. Note that this gives us a
model of the data, and characteristics (such as smoothness,
length-scale, etc.) which we can interpret.” (Rasmussen &
Williams, 2006).

The popular squared exponential (SE) kernel has the form

kSE(x, x′) = exp(−0.5||x− x′||2/`2) . (9)

GPs with SE kernels are smoothing devices, only able to
learn how quickly sample functions vary with inputs x,
through the length-scale parameter `.

3. Kernels for Pattern Discovery
The heart of a Gaussian process model is its kernel, which
encodes all inductive biases – what sorts of functions are
likely under the model. Popular kernels are not often ex-
pressive enough for automatic pattern discovery and ex-
trapolation. To learn rich structure in data, we now present
highly expressive kernels which combine with the scalable
exact inference procedures we will introduce in Section 4.

In general it is difficult to learn covariance structure from
a single Gaussian process realisation, with no assump-
tions. Most popular kernels – including the Gaussian (SE),
Matérn, γ-exponential, and rational quadratic kernels (Ras-
mussen & Williams, 2006) – assume stationarity, mean-
ing that they are invariant to translations in the input space
x. In other words, any stationary kernel k is a function of
τ = x− x′, for any pair of inputs x and x′.

Bochner’s theorem (Bochner, 1959) shows that any station-
ary kernel k(τ) and its spectral density S(s) are Fourier
duals:

k(τ) =

∫
S(s)e2πis

>τds , (10)

S(s) =

∫
k(τ)e−2πis

>τdτ . (11)

Therefore if we can approximate S(s) to arbitrary accu-
racy, then we can also approximate any stationary kernel to
arbitrary accuracy, and we may have more intuition about
spectral densities than stationary kernels. For example, the
Fourier transform of the popular SE kernel in Eq. (9) is a
Gaussian centred at the origin. Likewise, the Fourier trans-
form of a Matérn kernel is a t distribution centred at the
origin. These results provide the intuition that arbitrary ad-
ditive compositions of popular kernels have limited expres-
sive power – equivalent to density estimation with, e.g.,

scale mixtures of Gaussians centred on the origin, which
is not generally a model one would use for density esti-
mation. Scale-location mixtures of Gaussians, however,
can approximate any distribution to arbitrary precision with
enough components (Kostantinos, 2000), and even with a
small number of components are highly flexible models.

Suppose that the spectral density S(s) is a scale-location
mixture of Gaussians,

S(s) =

A∑
a=1

w2
a[N (s;µa, σ

2
a) +N (−s;µa, σ2

a)]/2 , (12)

noting that spectral densities for real data must be sym-
metric about s = 0 (Hörmander, 1990), and assuming
that x, and therefore also s, are in R1. If we take the in-
verse Fourier transform (Eq. (11)) of this spectral density in
Equation (12), then we analytically obtain the correspond-
ing spectral mixture (SM) kernel function:

kSM(τ) =

A∑
a=1

w2
aexp{−2π2τ2σ2

a} cos(2πτµa) , (13)

which was derived by Wilson & Adams (2013), and applied
solely to simple time series examples with a small number
of datapoints. We extend this formulation for tractability
with large datasets and multidimensional inputs.

Many popular stationary kernels for multidimensional in-
puts decompose as a product across input dimensions. This
decomposition helps with computational tractability – lim-
iting the number of hyperparameters in the model – and
like stationarity, provides a restriction bias that can help
with learning. For higher dimensional inputs, x ∈ RP , we
propose to leverage this useful product assumption, inher-
ent in many popular kernels, for a spectral mixture product
(SMP) kernel

kSMP(τ |θ) =

P∏
p=1

kSM(τp|θp) , (14)

where τp is the pth component of τ = x − x′ ∈ RP , θp
are the hyperparameters {µa, σ2

a, w
2
a}Aa=1 of the pth spectral

mixture kernel in the product of Eq. (14), and θ = {θp}Pp=1

are the hyperparameters of the SMP kernel. With enough
components A, the SMP kernel of Eq. (14) can model any
product kernel to arbitrary precision, and is flexible even
with a small number of components. We use SMP-A as
shorthand for an SMP kernel with A components in each
dimension (for a total of 3PA kernel hyperparameters and
1 noise hyperparameter).

4. Fast Exact Inference
In this Section we present algorithms which exploit the
existing structure in the SMP kernels of Section 3, and
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many other popular kernels, for significant savings in com-
putation and memory, but with the same exact inference
achieved with a Cholesky decomposition.

Gaussian process inference and learning requires evaluat-
ing (K + σ2I)−1y and log |K + σ2I|, for an N × N co-
variance matrix K, a vector of N datapoints y, and noise
variance σ2, as in Equations (6) and (8), respectively. For
this purpose, it is standard practice to take the Cholesky de-
composition of (K+σ2I) which requiresO(N3) computa-
tions andO(N2) storage, for a dataset of sizeN . However,
nearly any kernel imposes significant structure on K that is
ignored by taking the Cholesky decomposition.

For example, many kernels separate multiplicatively across
P input dimensions:

k(xi, xj) =

P∏
p=1

kp(xpi , x
p
j ) . (15)

We show how to exploit this structure to perform exact
inference and hyperparameter learning in O(PN

2
P ) stor-

age and O(PN
P+1
P ) operations, compared to the standard

O(N2) storage andO(N3) operations. We first assume the
inputs x ∈ X are on a multidimensional grid (Section 4.1),
meaning X = X1 × · · · × XP ⊂ RP , and then relax this
grid assumption3 in Section 4.2.

4.1. Inputs on a Grid

Many real world applications are engineered for grid struc-
ture, including spatial statistics, sensor arrays, image anal-
ysis, and time sampling.

Assuming a multiplicative kernel and inputs on a grid, we
find4

1. K is a Kronecker product of P matrices (a Kronecker
matrix) which can undergo eigendecomposition into
QV Q> with only O(PN

2
P ) storage and O(PN

3
P )

computations (Saatchi, 2011).5

2. The product of Kronecker matrices such as K, Q, or
their inverses, with a vector u, can be performed in
O(PN

P+1
P ) operations.

Given the eigendecomposition of K as QV Q>, we can re-
write (K + σ2I)−1y and log |K + σ2I| in Eqs. (6) and (8)
as

(K + σ2I)−1y = (QV Q> + σ2I)−1y (16)

= Q(V + σ2I)−1Q>y , (17)

3Note the grid does not need to be regularly spaced.
4Details are in the Appendix.
5The total number of datapoints N =

∏
p |Xp|, where |Xp| is

the cardinality of Xp. For clarity of presentation, we assume each
|Xp| has equal cardinality N1/P .

and

log |K + σ2I| = log |QV Q> + σ2I| =
N∑
i=1

log(λi + σ2) ,

(18)

where λi are the eigenvalues of K, which can be computed
in O(PN

3
P ).

Thus we can evaluate the predictive distribution and
marginal likelihood in Eqs. (5) and (8) to perform exact in-
ference and hyperparameter learning, with O(PN

2
P ) stor-

age and O(PN
P+1
P ) operations (assuming P > 1).

4.2. Missing Observations

Assuming we have a dataset of M observations which are
not necessarily on a grid, we can form a complete grid us-
ing W imaginary observations, yW ∼ N (fW , ε

−1IW ),
ε → 0. The total observation vector y = [yM ,yW ]> has
N = M +W entries: y = N (f , DN ), where

DN =

[
DM 0

0 ε−1IW

]
, (19)

and DM = σ2IM .6 The imaginary observations yW
have no corrupting effect on inference: the moments of
the resulting predictive distribution are exactly the same
as for the standard predictive distribution in Eq. (5). E.g.,
(KN +DN )−1y = (KM +DM )−1yM .7

We use preconditioned conjugate gradients (PCG) (Atkin-
son, 2008) to compute (KN +DN )

−1
y. We use

the preconditioning matrix C = D
−1/2
N to solve

C> (KN +DN )Cz = C>y. The preconditioning ma-
trix C speeds up convergence by ignoring the imaginary
observations yW . Exploiting the fast multiplication of
Kronecker matrices, PCG takes O(JPN

P+1
P ) total oper-

ations (where the number of iterations J � N ) to compute
(KN +DN )

−1
y, which allows for exact inference.

For learning (hyperparameter training) we must evaluate
the marginal likelihood of Eq. (8). We cannot efficiently
decompose KM + DM to compute the log |KM + DM |
complexity penalty in the marginal likelihood, because
KM is not a Kronecker matrix, since we have an incom-
plete grid. We approximate the complexity penalty as

log |KM +DM | =
M∑
i=1

log(λMi + σ2) (20)

≈
M∑
i=1

log(λ̃Mi + σ2) . (21)

6We sometimes use subscripts on matrices to emphasize their
dimensionality: e.g., DN , DM , and IW are respectively N ×N ,
M ×M , and W ×W matrices.

7See the Appendix for a proof.
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We approximate the eigenvalues λMi of KM using the
eigenvalues of KN such that λ̃Mi = M

N λ
N
i for i =

1, . . . ,M , which is a particularly good approximation for
large M (e.g. M > 1000) (Williams & Seeger, 2001).
We emphasize that only the log determinant (complexity
penalty) term in the marginal likelihood undergoes a small
approximation, and inference remains exact.

All remaining terms in the marginal likelihood of Eq. (8)
can be computed exactly and efficiently using PCG. The
total runtime cost of hyperparameter learning and exact in-
ference with an incomplete grid is thus O(PN

P+1
P ).

5. Experiments
In our experiments we combine the SMP kernel of Eq. (14)
with the fast exact inference and learning procedures of
Section 4, in a GP method we henceforth call GPatt8, to
perform extrapolation on a variety of sophisticated patterns
embedded in large datasets.

We contrast GPatt with many alternative Gaussian pro-
cess kernel methods. In particular, we compare to the re-
cent sparse spectrum Gaussian process regression (SSGP)
(Lázaro-Gredilla et al., 2010) method, which provides fast
and flexible kernel learning. SSGP models the kernel spec-
trum (spectral density) as a sum of point masses, such that
SSGP is a finite basis function model, with as many ba-
sis functions as there are spectral point masses. SSGP
is similar to the recent models of Le et al. (2013) and
Rahimi & Recht (2007), except it learns the locations of
the point masses through marginal likelihood optimization.
We use the SSGP implementation provided by the authors
at http://www.tsc.uc3m.es/ miguel/downloads.php.

To further test the importance of the fast inference (Sec-
tion 4) used in GPatt, we compare to a GP which uses the
SMP kernel of Section 3 but with the popular fast FITC
(Snelson & Ghahramani, 2006; Naish-Guzman & Holden,
2007) inference, implemented in GPML9. We also compare
to Gaussian processes with the popular squared exponen-
tial (SE), rational quadratic (RQ) and Matérn (MA) (with
3 degrees of freedom) kernels, catalogued in Rasmussen
& Williams (2006), respectively for smooth, multi-scale,
and finitely differentiable functions. Since Gaussian pro-
cesses with these kernels cannot scale to the large datasets
we consider, we combine these kernels with the same fast
inference techniques that we use with GPatt, to enable a
comparison.10

Moreover, we stress test each of these methods, in terms
8We write GPatt-A when GPatt uses an SMP-A kernel.
9http:/www.gaussianprocess.org/gpml

10We also considered the model of Duvenaud et al. (2013), but
this model is intractable for the datasets we considered and is not
structured for the fast inference of Section 4.

of speed and accuracy, as a function of available data and
extrapolation range, number of components, and noise. Ex-
periments were run on a 64bit PC, with 8GB RAM and a
2.8 GHz Intel i7 processor.

In all experiments we assume Gaussian noise, so that we
can express the likelihood of the data p(y|θ) solely as a
function of kernel hyperparameters θ. To learn θ we opti-
mize the marginal likelihood using BFGS. We use a simple
initialisation scheme: any frequencies {µa} are drawn from
a uniform distribution from 0 to the Nyquist frequency (1/2
the sampling rate), length-scales {1/σa} from a truncated
Gaussian distribution, with mean proportional to the range
of the data, and weights {wa} are initialised as the empiri-
cal standard deviation of the data divided by the number of
components used in the model. In general, we find GPatt is
robust to initialisation.

This range of tests allows us to separately understand the
effects of the SMP kernel and proposed inference methods
of Section 4; we will show that both are required for good
performance.

5.1. Extrapolating a Metal Tread Plate Pattern

We extrapolate the missing region, shown in Figure 1a, on
a real metal tread plate texture. There are 12675 training
instances (Figure 1a), and 4225 test instances (Figure 1b).
The inputs are pixel locations x ∈ R2 (P = 2), and the
outputs are pixel intensities. The full pattern is shown in
Figure 1c. This texture contains shadows and subtle irreg-
ularities, no two identical diagonal markings, and patterns
that have correlations across both input dimensions.

To reconstruct the missing region, as well as the training re-
gion, we use GPatt with 30 components for the SMP kernel
of Eq. (14) in each dimension (GPatt-30). The GPatt recon-
struction shown in Figure 1d is as plausible as the true full
pattern shown in Figure 1c, and largely automatic. Without
human intervention – no hand crafting of kernel features to
suit this image, no sophisticated initialisation, and no ex-
posure to similar images – GPatt has discovered the under-
lying structure of this image and extrapolated that structure
across a large missing region, even though the structure of
this pattern is not independent across the two spatial input
dimensions. Indeed the separability of the SMP kernel rep-
resents only a soft prior assumption, and does not rule out
posterior correlations between input dimensions.

The reconstruction in Figure 1e was produced with SSGP,
using 500 basis functions. In principle SSGP can model
any spectral density (and thus any stationary kernel) with
infinitely many components (basis functions). However,
since these components are point masses (in frequency
space), each component has highly limited expressive
power. Moreover, with many components SSGP expe-
riences practical difficulties regarding initialisation, over-
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a) Train                 b) Test             c) Full Pattern

d) GPatt               e) SSGP                f) FITC

g) GP-SE            h) GP-MA             i) GP-RQ

Figure 1. Extrapolation on a Metal Tread Plate Pattern. Missing
data are shown in black. a) Training region (12675 points), b)
Testing region (4225 points), c) Full tread plate pattern, d) GPatt-
30, e) SSGP with 500 basis functions, f) FITC with 500 pseudo
inputs, and the SMP-30 kernel, and GPs with the fast exact infer-
ence in Section 4.1, and g) squared exponential (SE), h) Matérn
(MA), and i) rational quadratic (RQ) kernels.

fitting, and computation time (scaling quadratically with
the number of basis functions). Although SSGP does dis-
cover some interesting structure (a diagonal pattern), and
has equal training and test performance, it is unable to cap-
ture enough information for a convincing reconstruction,
and we did not find that more basis functions improved per-
formance. Likewise, FITC with an SMP-30 kernel and 500
pseudo-inputs cannot capture the necessary information to
interpolate or extrapolate. We note FITC and SSGP-500
respectively took 2 days and 1 hour to run on this example,
compared to GPatt which took under 5 minutes.

GPs with SE, MA, and RQ kernels are all truly Bayesian
nonparametric models – these kernels are derived from in-
finite basis function expansions. Therefore, as seen in Fig-
ure 1 g), h), i), these methods are completely able to capture
the information in the training region; however, these ker-
nels do not have the proper structure to reasonably extrapo-
late across the missing region – they simply act as smooth-
ing filters. We note that this comparison is only possible
because these GPs are using the fast exact inference tech-
niques in Section 4.

Overall, these results indicate that both expressive nonpara-
metric kernels, such as the SMP kernel, and the specific fast
inference in Section 4, are needed to be able to extrapolate
patterns in these images.

Figure 2. Automatic Model Selection in GPatt. Initial and learned
weight and frequency parameters of GPatt-30, for each input di-
mension (a dimension is represented in each panel), on the metal
tread plate pattern of Figure 1. GPatt-30 is overspecified for this
pattern. During training, weights of extraneous components auto-
matically shrink to zero, which helps indicate whether the model
is overspecified, and helps mitigate the effects of model overspec-
ification. Of the 30 initial components in each dimension, 15 are
near zero after training.

We note that the SMP-30 kernel used with GPatt has
more components than needed for this problem. However,
as shown in Figure 2, if the model is overspecified, the
complexity penalty in the marginal likelihood shrinks the
weights ({wa} in Eq. (13)) of extraneous components, as a
proxy for model selection – an effect similar to automatic
relevance determination (MacKay, 1994). As per Eq. (18),
this complexity penalty can be written as a sum of eigen-
values of a covariance matrix K. Components which do
not significantly contribute to model fit will therefore be
automatically pruned, as shrinking the weights decreases
the eigenvalues of K and thus minimizes the complexity
penalty. This weight shrinking helps mitigate the effects
of model overspecification and helps indicate whether the
model is overspecified. In the following stress tests we find
that GPatt scales efficiently with the number of components
in its SMP kernel.

5.2. Stress Tests

We stress test GPatt and alternative methods in terms of
speed and accuracy, with varying datasizes, extrapolation
ranges, basis functions, pseudo inputs, and components.
We assess accuracy using standardised mean square er-
ror (SMSE) and mean standardized log loss (MSLL) (a
scaled negative log likelihood), as defined in Rasmussen
& Williams (2006) on page 23. Using the empirical mean
and variance to fit the data would give an SMSE and MSLL
of 1 and 0 respectively. Smaller SMSE and more negative
MSLL values correspond to better fits of the data.

The runtime stress test in Figure 3a shows that the num-
ber of components used in GPatt does not significantly af-
fect runtime, and that GPatt is much faster than FITC (us-
ing 500 pseudo inputs) and SSGP (using 90 or 500 basis
functions), even with 100 components (601 kernel hyper-
parameters). The slope of each curve roughly indicates the
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a)                                                          b)

Figure 3. Stress Tests. a) Runtime Stress Test. We show the
runtimes in seconds, as a function of training instances, for evalu-
ating the log marginal likelihood, and any relevant derivatives, for
a standard GP with SE kernel (as implemented in GPML), FITC
with 500 pseudo-inputs and SMP-25 and SMP-5 kernels, SSGP
with 90 and 500 basis functions, and GPatt-100, GPatt-25, and
GPatt-5. Runtimes are for a 64bit PC, with 8GB RAM and a 2.8
GHz Intel i7 processor, on the cone pattern (P = 2), shown in
the Appendix. The ratio of training inputs to the sum of imagi-
nary and training inputs for GPatt (Section 4.2) is 0.4 and 0.6 for
the smallest two training sizes, and 0.7 for all other training sets.
b) Accuracy Stress Test. MSLL as a function of holesize on the
metal pattern of Figure 1. The values on the horizontal axis repre-
sent the fraction of missing (testing) data from the full pattern (for
comparison Fig 1a has 25% missing data). We compare GPatt-30
and GPatt-15 with GPs with SE, MA, and RQ kernels (and the
inference of Section 4), and SSGP with 100 basis functions. The
MSLL for GPatt-15 at a holesize of 0.01 is −1.5886.

asymptotic scaling of each method. In this experiment, the
standard GP (with SE kernel) has a slope of 2.9, which is
close to the cubic scaling we expect. All other curves have
a slope of 1 ± 0.1, indicating linear scaling with the num-
ber of training instances. However, FITC and SSGP are
used here with a fixed number of pseudo inputs and basis
functions. More pseudo inputs and basis functions should
be used when there are more training instances – and these
methods scale quadratically with pseudo inputs and basis
functions for a fixed number of training instances. GPatt,
on the other hand, can scale linearly in runtime as a func-
tion of training size, without any deterioration in perfor-
mance. Furthermore, the big gaps between each curve –
the fixed 1-2 orders of magnitude GPatt outperforms alter-
natives – is as practically important as asymptotic scaling.

The accuracy stress test in Figure 3b shows extrapolation
(MSLL) performance on the metal tread plate pattern of
Figure 1c with varying holesizes, running from 0% to 60%
missing data for testing (for comparison the hole shown
in Figure 1a is for 25% missing data). GPs with SE, RQ,
and MA kernels (and the fast inference of Section 4) all
steadily increase in error as a function of holesize. Con-
versely, SSGP does not increase in error as a function of
holesize – with finite basis functions SSGP cannot extract
as much information from larger datasets as the alterna-
tives. GPatt performs well relative to the other methods,

Table 1. We compare the test performance of GPatt-30 with SSGP
(using 100 basis functions), and GPs using squared exponential
(SE), Matérn (MA), and rational quadratic (RQ) kernels, com-
bined with the inference of Section 5.2, on patterns with a train
test split as in the metal treadplate pattern of Figure 1.

GPatt SSGP SE MA RQ

Rubber mat (train = 12675, test = 4225)

SMSE 0.31 0.65 0.97 0.86 0.89
MSLL −0.57 −0.21 0.14 −0.069 0.039

Tread plate (train = 12675, test = 4225)

SMSE 0.45 1.06 0.895 0.881 0.896
MSLL −0.38 0.018 −0.101 −0.1 −0.101

Pores (train = 12675, test = 4225)

SMSE 0.0038 1.04 0.89 0.88 0.88
MSLL −2.8 −0.024 −0.021 −0.024 −0.048

Wood (train = 14259, test = 4941)

SMSE 0.015 0.19 0.64 0.43 0.77
MSLL −1.4 −0.80 1.6 1.6 0.77

Chain mail (train = 14101, test = 4779)

SMSE 0.79 1.1 1.1 0.99 0.97
MSLL −0.052 0.036 1.6 0.26 −0.0025

even with a small number of components. GPatt is par-
ticularly able to exploit the extra information in additional
training instances: only when the holesize is so large that
over 60% of the data are missing does GPatt’s performance
degrade to the same level as alternative methods.

In Table 1 we compare the test performance of GPatt with
SSGP, and GPs using SE, MA, and RQ kernels, for extrap-
olating five different patterns, with the same train test split
as for the tread plate pattern in Figure 1. All patterns are
shown in the Appendix. GPatt consistently has the lowest
standardized mean squared error (SMSE), and mean stan-
dardized log loss (MSLL). Note that many of these datasets
are sophisticated patterns, containing intricate details and
subtleties which are not strictly periodic, such as lighting
irregularities, metal impurities, etc. Indeed SSGP has a pe-
riodic kernel (unlike the SMP kernel which is not strictly
periodic), and is capable of modelling multiple periodic
components, but does not perform as well as GPatt on these
examples.

We end this Section with a particularly large example,
where we use GPatt-10 to perform learning and exact infer-
ence on the Pores pattern, with 383400 training points, to
extrapolate a large missing region with 96600 test points.
The SMSE is 0.077, and the total runtime was 2800 sec-
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Figure 4. Recovering sophisticated product kernels. A product of
three kernels (shown in green) was used to generate a movie of
112500 3D training points. From this data, GPatt-20 reconstructs
these component kernels (the learned SMP-20 kernel is shown in
blue). All kernels are a function of τ = x − x′. For clarity of
presentation, each kernel has been scaled by k(0).

onds. Images of the successful extrapolation are shown in
the Appendix.

5.3. Recovering Complex 3D Kernels from a Video

With a relatively small number of components, GPatt is
able to accurately recover a wide range of product ker-
nels. To test GPatt’s ability to recover ground truth ker-
nels, we simulate a 50 × 50 × 50 movie of data (e.g.
two spatial input dimensions, one temporal) using a GP
with kernel k = k1k2k3 (each component kernel in this
product operates on a different input dimension), where
k1 = kSE + kSE × kPER, k2 = kMA × kPER + kMA × kPER,
and k3 = (kRQ + kPER) × kPER + kSE. (kPER(τ) =
exp[−2 sin2(π τ ω)/`2], τ = x − x′). We use 5 consec-
utive 50 × 50 slices for testing, leaving a large number
N = 112500 of training points. In this case, the big data-
size is helpful: the more training instances, the more in-
formation to learn the true generating kernels. Moreover,
GPatt-20 is able to reconstruct these complex out of class
kernels in under 10 minutes. We compare the learned SMP-
20 kernel with the true generating kernels in Figure 4. In
the Appendix, we show true and predicted frames from the
movie.

5.4. Wallpaper and Scene Reconstruction

Although GPatt is a general purpose regression method, it
can also be used for inpainting: image restoration, object
removal, etc.

We first consider a wallpaper image stained by a black ap-
ple mark, shown in the first row of Figure 5. To remove the
stain, we apply a mask and then separate the image into its
three channels (red, green, and blue). This results in 15047
pixels in each channel for training. In each channel we ran
GPatt using SMP-30. We then combined the results from
each channel to restore the image without any stain, which
is particularly impressive given the subtleties in the pattern
and lighting.

In our next example, we wish to reconstruct a natural scene

Figure 5. Image inpainting with GPatt. From left to right: A mask
is applied to the original image, GPatt extrapolates the mask re-
gion in each of the three (red, blue, green) image channels, and
the results are joined to produce the restored image. Top row:
Removing a stain (train: 15047 × 3). Bottom row: Removing a
rooftop to restore a natural scene (train: 32269× 3). The coast is
masked during training and we do not attempt to extrapolate it in
testing.

obscured by a prominent rooftop, shown in the second row
of Figure 5. By applying a mask, and following the same
procedure as for the stain, this time with 32269 pixels
in each channel for training, GPatt reconstructs the scene
without the rooftop. This reconstruction captures subtle
details, such as waves in the ocean, even though only one
image was used for training. In fact this example has been
used with inpainting algorithms which were given access to
a repository of thousands of similar images (Hays & Efros,
2008). The results emphasized that conventional inpainting
algorithms and GPatt have profoundly different objectives,
which are sometimes even at cross purposes: inpainting at-
tempts to make the image look good to a human (e.g., the
example in Hays & Efros (2008) placed boats in the wa-
ter), while GPatt is a general purpose regression algorithm,
which simply aims to make accurate predictions at test in-
put locations, from training data alone.

6. Discussion
Gaussian processes are often used for smoothing and in-
terpolation on small datasets. However, we believe that
Bayesian nonparametric models are naturally suited to
pattern extrapolation on large multidimensional datasets,
where extra training instances can provide extra opportu-
nities to learn additional structure in data.

The support and inductive biases of a Gaussian process are
naturally encoded in a covariance kernel. A covariance ker-
nel must always have some structure to reflect these induc-
tive biases; and that structure can, in principle, be exploited
for scalable and exact inference, without the need for sim-
plifying approximations. Such models could play a role in
a new era of machine learning, where models are expres-
sive and scalable, but also interpretable and manageable,
with simple exact learning and inference procedures.
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We hope to make a small step in this direction with GPatt,
a Gaussian process based Bayesian nonparametric frame-
work for automatic pattern discovery on large multidimen-
sional datasets, with scalable and exact inference proce-
dures. Without human intervention – no sophisticated ini-
tialisation, or hand crafting of kernel features – GPatt has
been used to accurately and quickly extrapolate large miss-
ing regions on a variety of patterns.

Acknowledgements: We thank Richard E. Turner, Ryan
Prescott Adams, Zoubin Ghahramani, and Carl Edward
Rasmussen for helpful discussions.
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7. Appendix
7.1. Introduction

We provide further detail about the eigendecomposition of kronecker matrices, and the runtime complexity of kronecker matrix vector
products. We also provide spectral images of the learned kernels in the metal tread plate experiment of Section 5.1, larger versions of
the images in Table 1, images of the extrapolation results on the large pore example, and images of the GPatt reconstruction for several
consecutive movie frames.

7.2. Eigendecomposition of Kronecker Matrices

Assuming a product kernel,

k(xi, xj) =

P∏
p=1

kp(xpi , x
p
j ) , (22)

and inputs x ∈ X on a multidimensional grid, X = X1 × · · · × XP ⊂ RP , then the covariance matrix K decomposes into a Kronecker
product of matrices over each input dimension K = K1 ⊗ · · · ⊗ KP (Saatchi, 2011). The eigendecomposition of K into QV Q>

similarly decomposes: Q = Q1 ⊗ · · · ⊗ QP and V = V 1 ⊗ · · · ⊗ V P . Each covariance matrix Kp in the Kronecker product has
entries Kp

ij = kp(xpi , x
p
j ) and decomposes as Kp = QpV pQp>. Thus the N ×N covariance matrix K can be stored inO(PN

2
P ) and

decomposed into QV Q> in O(PN
3
P ) operations, for N datapoints and P input dimensions. 11

7.3. Matrix-vector Product for Kronecker Matrices

We first define a few operators from standard Kronecker literature. Let B be a matrix of size p × q. The reshape(B, r, c) operator
returns a r-by-c matrix (rc = pq) whose elements are taken column-wise from B. The vec(·) operator stacks the matrix columns onto
a single vector, vec(B) = reshape(B, pq, 1), and the vec−1(·) operator is defined as vec−1(vec(B)) = B. Finally, using the standard
Kronecker property (B⊗C)vec(X) = vec(CXB>), we note that for any N argument vector u ∈ RN we have

KNu =

(
P⊗
p=1

Kp

N1/P

)
u = vec

KP
N1/P U

(
P−1⊗
p=1

Kp

N1/P

)> , (23)

where U = reshape(u, N1/P , N
P−1
P ), and KN is an N × N Kronecker matrix. With no change to Eq. (23) we can introduce the

vec−1(vec(·)) operators to get

KNu = vec

( vec−1

(
vec

( (
P−1⊗
p=1

Kp

N1/P

)(
KP
N1/P U

)> )) )> . (24)

The inner component of Eq. (24) can be written as

vec

((
P−1⊗
p=1

Kp

N1/P

)(
KP
N1/P U

)>
IN1/P

)
= IN1/P ⊗

(
P−1⊗
p=1

Kp

N1/P

)
vec

((
KP
N1/P U

)>)
. (25)

Notice that Eq. (25) is in the same form as Eq. (23) (Kronecker matrix-vector product). By repeating Eqs. (24-25) over all P dimensions,
and noting that

(⊗P
p=1 IN1/P

)
u = u, we see that the original matrix-vector product can be written as(
P⊗
p=1

Kp

N1/P

)
u = vec

([
K1
N1/P , . . .

[
KP−1

N1/P ,
[
KP
N1/P ,U

]]])
(26)

def
= kron mvprod

(
K1
N1/P ,K

2
N1/P , . . . ,K

P
N1/P ,u

)
(27)

where the bracket notation denotes matrix product, transpose then reshape, i.e.,[
Kp

N1/P ,U
]
= reshape

((
Kp

N1/P U
)>

, N1/P , N
P−1
P

)
. (28)

Iteratively solving the kron mvprod operator in Eq. (27) requires (PN
P+1
P ), because each of the P bracket operations requires

O(N
P+1
P ).

11The total number of datapoints N =
∏
p |Xp|, where |Xp| is the cardinality of Xp. For clarity of presentation, we assume each |Xp|

has equal cardinality N1/P .
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7.4. Inference with Imaginary Observations

The predictive mean of a Gaussian process at L test points, given N training points, is given by

µL = KLN

(
KN + σ2IN

)−1
y , (29)

where KLN is an L × N matrix of cross covariances between the test and training points. We wish to show that when we have M
observations which are not on a grid that the desired predictive mean

µL = KLM

(
KM + σ2IM

)−1
yM = KLN (KN +DN )−1 y , (30)

where y = [yM ,yW ]> includes imaginary observations yW , and DN is as defined in Section 4. as

DN =

[
DM 0
0 ε−1IW

]
, (31)

where we set DM = σ2IM .

Starting with the right hand side of Eq. (30),

µL =

[
KLM

KLW

] [
KM +DM KMW

K>MW KW + ε−1IW

]−1 [
yM
yW

]
. (32)

Using the block matrix inversion theorem, we get[
A B
C E

]−1

=

[
(A−BE−1C)−1 −A−1B(I − E−1CA−1B)−1E−1

−E−1C(A−BE−1C)−1 (I − E−1CA−1B)−1E−1

]
, (33)

where A = KM +DM , B = KMW , C = K>MW , and E = KW + ε−1IW . If we take the limit of E−1 = ε(εKW + IW )−1 ε→0−→ 0,
and solve for the other components, Eq. (32) becomes

µL =

[
KLM

KLW

] [
(KM +DM )−1 0

0 0

] [
yM
yW

]
= KLM (KM +DM )−1yM (34)

which is the exact GP result. In other words, performing inference given observations y will give the same result as directly using
observations yM . The proof that the predictive covariances remain unchanged proceeds similarly.

7.5. Spectrum Analysis

We can gain further insight into the behavior of GPatt by looking at the spectral density learned by the spectral mixture kernel. Figure 6
shows the log spectrum representations of the learned kernels from Section 5.1. Smoothers, such as the popular SE, RQ, and MA kernels
concentrate their spectral energy around the origin, differing only by their tail support for higher frequencies. Methods which used the
SMP kernel, such as the GPatt and FITC (with an SMP kernel), are able to learn meaningful features in the spectrum space.

7.6. Images

In the rest of the supplementary material, we provide the images and results referenced in the main text. Figure 7 illustrates the images
used for the stress tests in Section 5.2. In Figure 8, we provide the results for the large pore example. Finally, Figure 9 shows the true
and predicted movie frames discussed in Section 5.3.
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(a) GPatt-30 (b) FITC

(c) SE (d) RQ (e) MA

Figure 6. Spectral representation of the learned kernels from Section 5.1. For methods which used the SMP kernel (namely, a) GPatt and
b) FITC) we plot the analytical log spectrum using the learned hyperparameters. For c)Squared exponential, d) Rational quadratic, and
e) Matérn-3 we plot instead the empirical log spectrum using the Fast Fourier transform of the kernel.

(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail

 

 

(f) Cone

Figure 7. Images used for stress tests in Section 5.2. Figures a) through e) show the textures used in the accuracy comparison of Table
1. Figure e) is the cone image which was used for the runtime analysis shown in Figure 3a.
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Figure 8. GPatt on a particularly large multidimensional dataset. a) Training region (383400 points), b) GPatt-10 reconstruction of the
missing region.

Figure 9. Using GPatt to recover 5 consecutive slices from a movie. All slices are missing from training data (e.g., these are not 1 step
ahead forecasts). Top row: true slices take from the middle of the movie. Bottom row: inferred slices using GPatt-20.


