
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)

Andrew Gordon Wilson ANDREWGW@CS.CMU.EDU

Carnegie Mellon University

Hannes Nickisch HANNES@NICKISCH.ORG

Philips Research Hamburg

Abstract
We introduce a new structured kernel inter-
polation (SKI) framework, which generalises
and unifies inducing point methods for scal-
able Gaussian processes (GPs). SKI methods
produce kernel approximations for fast compu-
tations through kernel interpolation. The SKI
framework clarifies how the quality of an induc-
ing point approach depends on the number of
inducing (aka interpolation) points, interpolation
strategy, and GP covariance kernel. SKI also pro-
vides a mechanism to create new scalable ker-
nel methods, through choosing different kernel
interpolation strategies. Using SKI, with local
cubic kernel interpolation, we introduce KISS-
GP, which is 1) more scalable than inducing point
alternatives, 2) naturally enables Kronecker and
Toeplitz algebra for substantial additional gains
in scalability, without requiring any grid data,
and 3) can be used for fast and expressive kernel
learning. KISS-GP costs O(n) time and storage
for GP inference. We evaluate KISS-GP for ker-
nel matrix approximation, kernel learning, and
natural sound modelling.

1. Introduction
Gaussian processes (GPs) are exactly the types of models
we want to apply to big data: flexible function approxima-
tors, capable of using the information in large datasets to
learn intricate structure through interpretable and expres-
sive covariance kernels. However, their O(n3) computa-
tion and O(n2) storage requirements limit GPs to all but
the smallest datasets, containing at most a few thousand
training points n. Their impressive empirical successes
thus far are only a glimpse of what might be possible, if
only we could overcome these computational limitations
(Rasmussen, 1996).

Inducing point methods (Snelson & Ghahramani, 2006;

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

Hensman et al., 2013; Quiñonero-Candela & Rasmussen,
2005; Silverman, 1985) have been introduced to scale up
GPs to larger datasizes. These methods costO(m2n+m3)
computations and O(mn + m2) storage, for m inducing
points, and n training data points. Inducing methods are
popular for their general purpose “out of the box” applica-
bility, without requiring any special structure in the data.
However, these methods are limited by requiring a small
m � n number of inducing inputs, which can cause a de-
terioration in predictive performance, and the inability to
perform expressive kernel learning (Wilson et al., 2014).

Structure exploiting approaches for scalability, such as
Kronecker (Saatchi, 2011) or Toeplitz (Cunningham et al.,
2008) methods, have orthogonal advantages to inducing
point methods. These methods exploit the existing struc-
ture in the covariance kernel for highly accurate and scal-
able inference, and can be used for flexible kernel learn-
ing on large datasets (Wilson et al., 2014). However, Kro-
necker methods require that inputs (predictors) are on a
multidimensional lattice (a Cartesian product grid), which
makes them inapplicable to most datasets. Although Wil-
son et al. (2014) has extended Kronecker methods for par-
tial grid structure, these extensions do not apply to arbitrar-
ily located inputs. Likewise, the Kronecker based approach
in Luo & Duraiswami (2013) is not generally applicable for
arbitrarily located inputs, and involves costly rank-1 up-
dates. Toeplitz methods are similarly restrictive, requiring
that the data are on a regularly spaced 1D grid.

It is tempting to assume we could place inducing points on
a grid, and then take advantage of Kronecker or Toeplitz
structure for further gains in scalability. However, this
naive approach only helps reduce the m3 complexity term
in inducing point methods, and not the more critical m2n
term, which arises from a matrix of cross covariances be-
tween training and inducing inputs.

In this paper, we introduce a new unifying framework for
inducing point methods, called structured kernel interpo-
lation (SKI). This framework improves the scalability and
accuracy of fast kernel methods, and naturally combines
the advantages of inducing point and structure exploiting
approaches. In particular,

Structured Kernel Interpolation

• We show how current inducing point methods perform
a global GP interpolation on a true underlying kernel
to create an approximate kernel for scalable computa-
tions, as part of a more general family of structured
kernel interpolation methods.

• The SKI framework helps one understand how the ac-
curacy and efficiency of an inducing point method is
affected by the number of inducing points m, kernel
choice, and the choice of interpolation method. More-
over, by choosing different interpolation strategies for
SKI, we can create new inducing point methods.

• We introduce a new inducing point method, KISS-GP,
which uses local cubic and inverse distance weight-
ing interpolation strategies to create a sparse approx-
imation to the cross covariance matrix between the
inducing points and original training points. This
method can naturally be combined with Kronecker
and Toeplitz algebra to allow for m � n inducing
points, and further gains in scalability. When ex-
ploiting Toeplitz structure KISS-GP requires O(n +
m logm) computations andO(n+m) storage. When
exploiting Kronecker structure, KISS-GP requires
O(n+Pm1+1/P) computations andO(n+Pm2/P)
storage, for P > 1 dimensional inputs.

• KISS-GP can be viewed as lifting the grid restrictions
in Toeplitz and Kronecker methods, so that one can
use arbitrarily located inputs.

• We show that the ability for KISS-GP to efficiently
use a large number of inducing points enables expres-
sive kernel learning, and orders of magnitude greater
accuracy and efficiency over popular alternatives such
as FITC (Snelson & Ghahramani, 2006).

• We have implemented code as an extension to the
GPML toolbox (Rasmussen & Nickisch, 2010). For
updates and demos, see
http://www.cs.cmu.edu/˜andrewgw/pattern

• Overall, the simplicity and generality of the SKI
framework makes it easy to design new scalable GPs.

We start in section 2 with background on GPs (section 2.1),
inducing point methods (section 2.2), and structure exploit-
ing methods (section 2.3). We then introduce the structured
kernel interpolation (SKI) framework, and the KISS-GP
method, in section 3. In section 4 we conduct experiments
on kernel matrix reconstruction, kernel learning, and natu-
ral sound modelling. We conclude in section 5.

2. Background
2.1. Gaussian Processes

We provide a brief review of Gaussian processes (Ras-
mussen & Williams, 2006), and the associated computa-

tional requirements for inference and learning. Throughout
we assume we have a dataset D of n input (predictor) vec-
torsX = {x1, . . . ,xn}, each of dimensionD, correspond-
ing to a n× 1 vector of targets y = (y(x1), . . . , y(xn))>.

A Gaussian process (GP) is a collection of random vari-
ables, any finite number of which have a joint Gaussian
distribution. Using a GP, we can define a distribution over
functions f(x) ∼ GP(µ, k), meaning that any collection
of function values f has a joint Gaussian distribution:

f = f(X) = [f(x1), . . . , f(xn)]> ∼ N (µ,K) . (1)

The n × 1 mean vector µi = µ(xi), and n × n covari-
ance matrix Kij = k(xi,xj), are defined by the user spec-
ified mean function µ(x) = E[f(x)] and covariance kernel
k(x,x′) = cov(f(x), f(x′)) of the Gaussian process. The
smoothness and generalisation properties of the GP are en-
coded by the covariance kernel and its hyperparameters θ.
For example, the popular RBF covariance function, with
length-scale hyperparameter `, has the form

kRBF(x,x′) = exp(−0.5||x− x′||2/`2) . (2)

If the targets y(x) are modelled by a GP with additive
Gaussian noise, e.g., y(x)|f(x) ∼ N (y(x); f(x), σ2), the
predictive distribution at n∗ test points X∗ is given by

f∗|X∗,X,y,θ, σ2 ∼ N (f̄∗, cov(f∗)) , (3)

f̄∗ = µX∗
+KX∗,X [KX,X + σ2I]−1y ,

cov(f∗) = KX∗,X∗ −KX∗,X [KX,X + σ2I]−1KX,X∗ .

KX∗,X , for example, denotes the n∗ × n matrix of covari-
ances between the GP evaluated at X∗ and X . µX∗

is the
n∗×1 mean vector, and KX,X is the n×n covariance ma-
trix evaluated at training inputs X . All covariance matrices
implicitly depend on the kernel hyperparameters θ.

We can analytically marginalise the Gaussian process f(x)
to obtain the marginal likelihood of the data, conditioned
only on the covariance hyperparameters θ:

log p(y|θ) ∝ −[

model fit︷ ︸︸ ︷
y>(Kθ + σ2I)−1y+

complexity penalty︷ ︸︸ ︷
log |Kθ + σ2I|] .

(4)
Eq. (4) separates into automatically calibrated model fit and
complexity terms (Rasmussen & Ghahramani, 2001), and
can be optimized to learn the kernel hyperparameters θ, or
used to integrate out θ via MCMC (Rasmussen, 1996).

The computational bottleneck in using Gaussian processes
is solving a linear system (K + σ2I)−1y (for inference),
and log |K + σ2I| (for hyperparameter learning). For this
purpose, standard procedure is to compute the Cholesky de-
composition of K, requiring O(n3) operations and O(n2)
storage. Afterwards, the predictive mean and variance re-
spectively cost O(n) and O(n2) for a single test point x∗.

http://www.cs.cmu.edu/~andrewgw/pattern

Structured Kernel Interpolation

2.2. Inducing Point Methods
Many popular approaches to scaling up GP inference be-
long to a family of inducing point methods (Quiñonero-
Candela & Rasmussen, 2005). These methods can be
viewed as replacing the exact kernel k(x, z) by an approx-
imation k̃(x, z) for fast computations.

For example, the prominent subset of regressors (SoR) (Sil-
verman, 1985) and fully independent training conditional
(FITC) (Snelson & Ghahramani, 2006) methods use the ap-
proximate kernels

k̃SoR(x, z) = Kx,UK
−1
U,UKU,z , (5)

k̃FITC(x, z) = k̃SoR + δxz

(
k(x, z)− k̃SoR

)
, (6)

for a set of m inducing points U = [ui]i=1...m. Kx,U ,
K−1U,U , andKU,z are the 1×n,m×m, and n×1 covariance
matrices generated from the exact kernel k(x, z). While
SoR yields an n × n covariance matrix KSoR of rank at
most m, corresponding to a degenerate (finite basis) Gaus-
sian process, FITC leads to a full rank covariance matrix
KFITC due to its diagonal correction. As a result, FITC is
a more faithful approximation and is preferred in practice.
Note that the exact user-specified kernel, k(x, z), will be
parametrized by θ, and therefore kernel learning in an in-
ducing point method takes place by, e.g., optimizing the
SoR or FITC marginal likelihoods with respect to θ.

These approximate kernels give rise toO(m2n+m3) com-
putations and O(mn + m2) storage for GP inference and
learning (Quiñonero-Candela & Rasmussen, 2005), after
which the GP predictive mean and variance costO(m) and
O(m2) per test case. To see practical efficiency gains over
standard inference procedures, one is constrained to choose
m � n, which often leads to a severe deterioration in pre-
dictive performance, and an inability to perform expressive
kernel learning (Wilson et al., 2014).

2.3. Fast Structure Exploiting Inference

Kronecker and Toeplitz methods exploit the existing struc-
ture of the GP covariance matrix K to scale up inference
and learning without approximations. A full introduction
to Kronecker methods is provided in chapter 5 of Saatchi
(2011). Chapter 2 of Wilson (2014) discusses Toeplitz
methods in more detail.

2.3.1. KRONECKER METHODS

If we have multidimensional inputs on a Cartesian grid,
x ∈ X1 × · · · × XP , and a product kernel across grid di-
mensions, k(xi,xj) =

∏P
p=1 k(x

(p)
i ,x

(p)
j), then them×m

covariance matrixK can be expressed as a Kronecker prod-
uct K = K1 ⊗ · · · ⊗ KP (the number of grid points
m =

∏P
i=1 np is a product of the number of points np

per grid dimension). It follows that we can efficiently find
the eigendecomposition of K = QV Q> by separately

computing the eigendecomposition of each ofK1, . . . ,KP .
One can similarly exploit Kronecker structure for fast ma-
trix vector products (Wilson et al., 2014).

Fast eigendecompositions and matrix vector products of
Kronecker matrices allow us to efficiently evaluate (K +
σ2I)−1y and log |K+σ2I| for scalable and exact inference
and learning with GPs. Specifically, given an eigendecom-
position of K as QV Q>, we can write (K + σ2I)−1y =
(QV Q>+σ2I)−1y = Q(V +σ2I)−1Q>y, and log |K+
σ2I| =

∑
i log(Vii + σ2). V is a diagonal matrix of eigen-

values, so inversion is trivial. Q, an orthogonal matrix
of eigenvectors, also decomposes as a Kronecker product,
which enables fast matrix vector products. Overall, infer-
ence and learning costO(Pm1+ 1

P) operations (for P > 1)
andO(Pm

2
P) storage (Saatchi, 2011; Wilson et al., 2014).

While product kernels can be easily constructed, and pop-
ular kernels such as the RBF kernel already have prod-
uct structure, requiring a multidimensional input grid can
be a severe constraint. Wilson et al. (2014) extend Kro-
necker methods to datasets with only partial grid structure
– e.g., images with random missing pixels, or spatiotem-
poral grids with missing data due to water. They complete
a partial grid with virtual observations, and use a diago-
nal noise covariance matrix A which ignores the effects of
these virtual observations: K(n)+σ2I → K(m)+A, where
K(n) is an n × n covariance matrix formed from the orig-
inal dataset with n datapoints, and K(m) is the covariance
matrix after augmentation from virtual inputs. Although
we cannot efficiently eigendecompose K(m) + A, we can
take matrix vector products (K(m) + A)y(m) efficiently,
since K(m) is Kronecker and A is diagonal. We can thus
compute (K(m) + A)−1y(m) = (K(n) + σ2I)−1y(n) to
within machine precision, and perform efficient inference,
using iterative methods such as linear conjugate gradients,
which only involve matrix vector products.

To evaluate the marginal likelihood for kernel learning, we
must also compute log |K(n)+σ2I|, whereK(n) is an n×n
covariance matrix formed from the original dataset with n
datapoints. Wilson et al. (2014) propose to approximate the
eigenvalues λ(n)i ofK(n) using the largest n eigenvalues λi
ofK(m), the Kronecker covariance matrix formed from the
completed grid, which can be eigendecomposed efficiently.
In particular,

log |K(n) + σ2I| =
n∑

i=1

log(λ
(n)
i + σ2) ≈

n∑
i=1

log(
n

m
λi + σ2) .

Theorem 3.4 of Baker (1977) proves this eigenvalue ap-
proximation is asymptotically consistent (e.g., converges
in the limit of large n), so long as the observed inputs are
bounded by the complete grid. Williams & Shawe-Taylor
(2003) also show that one can bound the true eigenval-
ues by their approximation using PCA. Notably, only the
log determinant (complexity penalty) term in the marginal

Structured Kernel Interpolation

likelihood undergoes a small approximation. Wilson et al.
(2014) show that, in practice, this approximation can be
highly effective for fast and expressive kernel learning.

However, the extensions in Wilson et al. (2014) are only
efficient if the input space has partial grid structure, and do
not apply in general settings.

2.3.2. TOEPLITZ METHODS

Toeplitz and Kronecker methods are complementary. K
is a Toeplitz covariance matrix if it is generated from
a stationary covariance kernel, k(x,x′) = k(x − x′),
with inputs x on a regularly spaced one dimensional
grid. Toeplitz matrices are constant along their diagonals:
Ki,j = Ki+1,j+1 = k(xi − xj).

One can embed Toeplitz matrices into circulant matrices,
to perform fast matrix vector products using fast Fourier
transforms (e.g., Wilson, 2014). One can then use linear
conjugate gradients to solve linear systems (K + σ2I)−1y
in O(m logm) operations and O(m) storage, for m grid
datapoints. Turner (2010) and Cunningham et al. (2008)
contain examples of Toeplitz methods applied to GPs.

3. Structured Kernel Interpolation
We wish to ease the large O(n3) computations and O(n2)
storage associated with Gaussian processes, while retaining
model flexibility and generality.

Inducing point approaches (section 2.2) to scalability are
popular because they can be applied “out of the box”, with-
out requiring special structure in the data. However, with
a small number of inducing points, these methods suf-
fer from a major deterioration in predictive accuracy, and
the inability to perform expressive kernel learning (Wilson
et al., 2014), which will be most valuable on large datasets.
On the other hand, structure exploiting approaches (section
2.3) are compelling because they provide incredible gains
in scalability, with essentially no losses in predictive ac-
curacy. But the requirement of an input grid makes these
methods inapplicable to most problems.

Looking at equations (5) and (6), it is tempting to try plac-
ing the locations of the inducing points U on a grid, in the
SoR or FITC methods, and then exploit either Kronecker
or Toeplitz algebra to efficiently solve linear systems in-
volving K−1U,U . While this naive approach would reduce
theO(m3) complexity associated withK−1U,U , the dominant
O(m2n) computations are associated with KX,U .

We observe, however, that we can approximate the n ×m
matrix KX,U of cross covariances for the kernel evaluated
at the training and inducing inputs X and U , by interpo-
lating on the m × m covariance matrix KU,U . For ex-
ample, if we wish to estimate k(xi,uj), for input point
xi and inducing point uj , we can start by finding the two
inducing points ua and ub which most closely bound xi:

ua ≤ xi ≤ ub (initially assuming D = 1 and a Toeplitz
KU,U from a regular grid U , for simplicity). We can then
form k̃(xi,uj) = wik(ua,uj) + (1 − wi)k(ub,uj), with
linear interpolation weights wi and (1 − wi), which rep-
resent the relative distances from xi to points ua and ub.
More generally, we form

KX,U ≈WKU,U , (7)

where W is an n ×m matrix of interpolation weights that
can be extremely sparse. For local linear interpolation, W
contains only c = 2 non-zero entries per row – the inter-
polation weights – which sum to 1. For greater accuracy,
we can use local cubic interpolation (Keys, 1981) on equi-
spaced grids, in which case W has c = 4 non-zero entries
per row. For general rectilinear grids U (without regular
spacing), we can use inverse distance weighting (Shepard,
1968) with c = 2 non-zero weights per row of W .

Substituting our expression for K̃X,U in Eq. (7) into the
SoR approximation for KX,X , we find:

KX,X
SoR
≈ KX,UK

−1
U,UKU,X

Eq. (7)
≈ WKU,UK

−1
U,UKU,UW

>

= WKU,UW
> = KSKI . (8)

We name this general approach to approximating GP kernel
functions structured kernel interpolation (SKI). Although
we have made use of the SoR approximation as an exam-
ple, SKI can be applied to essentially any inducing point
method, such as FITC.1

We can compute fast matrix vector products KSKIy. If we
do not exploit Toeplitz or Kronecker structure in KU,U , a
matrix vector product with KSKI costs O(n+m2) compu-
tations andO(n+m2) storage, for sparseW . If we exploit
Kronecker structure, we only require O(Pm1+1/P) com-
putations andO(n+Pm

2
P) storage. If we exploit Toeplitz

structure, we require O(n + m logm) computations and
O(n+m) storage.

Inference proceeds by solving K−1SKIy through linear conju-
gate gradients, which only requires matrix vector products
and a small number j � n of iterations for convergence
to within machine precision. To compute log |KSKI|, for
the marginal likelihood evaluations used in kernel learning,
one can follow the approximation of Wilson et al. (2014),
described in section 2.3.1, where KU,U takes the role of
K(m), and virtual observations are not required. Alterna-
tively, we can use the ability to take fast matrix vector prod-
ucts with KSKI in standard eigenvalue solvers to efficiently
compute the log determinant exactly. We can also form an
approximation selectively computing the largest and small-
est eigenvalues. This alternative approach is not possible

1We later discuss the logistics of combining with FITC.
Combining with the SoR approximation, one can naively use
kSKI(x, z) = w>

xKU,Uwz , where wx,wz ∈ Rm; however,
when wx 6= wz , it makes most sense to perform local interpo-
lation on KU,z directly.

Structured Kernel Interpolation

in Wilson et al. (2014), where one cannot take fast matrix
vector products with K(n). Overall, the computional com-
plexity for learning is no greater than for inference.

In short, even if we choose not to exploit potential Kro-
necker or Toeplitz structure in KU,U , inference and learn-
ing in SKI are accelerated over standard inducing point ap-
proaches. However, unlike with the data inputs, X , which
are fixed, we are free to choose the locations of the latent
inducing points U , and therefore we can easily create (e.g.,
Toeplitz or Kronecker) structure in KU,U which might not
exist in KX,X . In the SKI formalism, we can uniquely
exploit this structure for substantial additional gains in ef-
ficiency, and the ability to use an unprecedented number of
inducing points, while lifting any grid requirements on X .

Although here we have made use of the SoR approxima-
tion in Eq. (8), we could trivially apply the FITC diagonal
correction (section 2.2), or combine with other approaches.
However, within the SKI framework, the diagonal correc-
tion of FITC does not have as much value: KSKI can easily
be full rank and still have major computational benefits, us-
ing m > n. In conventional inducing approximations, one
would never set m > n, since this would be less efficient
than exact Gaussian process inference.

Finally, we can understand all inducing approaches as part
of a general structured kernel interpolation (SKI) frame-
work. The predictive mean f̄∗ of a noise-free, zero mean
GP (σ = 0, µ(x) ≡ 0) is linear in two ways: on the one
hand, as a wX(x∗) = K−1X,XKX,x∗ weighted sum of the
observations y, and on the other hand as an α = K−1X,Xy
weighted sum of training-test cross-covariances KX,x∗ :

f̄∗ = y>wX(x∗) = α>KX,x∗ . (9)

If we are to perform a noise free zero-mean GP re-
gression on the kernel itself, such that we have data
D = (ui, k(ui,x))mi=1, then we recover the SoR kernel
k̃SoR(x, z) of equation (5) as the predictive mean of the GP
at test point x∗ = z. This finding provides a new unify-
ing perspective on inducing point approaches: all conven-
tional inducing point methods, such as SoR and FITC, can
be re-derived as performing a zero-mean Gaussian process
interpolation on the true kernel. Indeed, we could write in-
terpolation points instead of inducing points. The n × m
interpolation weight matrix W , in all conventional cases,
will have all non-zero entries, which incurs great computa-
tional expenses. Moreover, the zero-mean global GP kernel
interpolation corresponding to conventional methods can
hurt accuracy in addition to computational efficiency – un-
derestimating covariances in the typically simple, smooth,
strictly positive exponential forms given by most kernels.

The SKI interpretation of inducing point methods provides
a mechanism to create new inducing point approaches. By
replacing global GP kernel interpolation with local inverse
distance weighting or cubic interpolation, as part of our

SKI framework, we make W extremely sparse. We illus-
trate the differences between local and global kernel inter-
polation in Figure 1 of the supplement. In addition to the
sparsity in W , this interpolation perspective naturally en-
ables us to exploit (e.g., Toeplitz or Kronecker) structure in
the kernel for further gains in scalability, without requiring
that the inputs X (which index the targets y) are on a grid.

This unifying perspective of inducing methods as kernel
interpolation also clarifies when these approaches will per-
form best. The key assumption, in all of these approaches,
is smoothness in the true underlying kernel k. We can ex-
pect interpolation approaches to work well on popular ker-
nels, such as the RBF kernel, which is a simple exponen-
tial function. More expressive kernels, such as the spectral
mixture kernel (Wilson & Adams, 2013), will require more
inducing (interpolation) points for a good approximation,
due to their quasi-periodic nature. It is our contention that
the potential loss in accuracy going from, e.g., global GP
kernel interpolation to local cubic kernel interpolation is
more than recovered by the subsequent ability to greatly
increase the number of inducing points. Moreover, we be-
lieve the structure of most popular kernel functions is con-
ducive to local versus global interpolation, resulting in a
strong approximation with greatly improved scalability.

When combining SKI with i) GPs, ii) sparse (e.g. cubic)
interpolation, and iii) Kronecker or Toeplitz algebra, we
name the resulting method KISS-GP.

4. Experiments
We evaluate SKI for kernel matrix approximation (section
4.1), kernel learning (section 4.2), and natural sound mod-
elling (section 4.3).

We particularly compare with FITC (Snelson & Ghahra-
mani, 2006), because 1) FITC is the most popular induc-
ing point approach, 2) FITC has been shown to have supe-
rior predictive performance and similar efficiency to other
inducing methods, and is generally recommended (Naish-
Guzman & Holden, 2007; Quinonero-Candela et al., 2007),
and 3) FITC is well understood, and thus FITC compar-
isons help elucidate the fundamental properties of SKI,
which is our primary goal. However, we also provide com-
parisons with SoR, and SSGPR (Lázaro-Gredilla et al.,
2010), a recent state of the art scalable GP method based
on random projections with O(m2n) computations and
O(m2) storage for m basis functions and n training points
(see also Rahimi & Recht, 2007; Le et al., 2013; Lu et al.,
2014; Yang et al., 2015).

Furthermore, we focus on the ability for SKI to allow a
relaxation of Kronecker and Toeplitz methods to arbitrarily
located inputs. Since Toeplitz methods are restricted to 1D
inputs, and Kronecker methods can only be used for low
dimensional (e.g., D < 5) input spaces (Saatchi, 2011),
we consider lower dimensional problems.

Structured Kernel Interpolation

All experiments were performed on a 2011 MacBook Pro,
with an Intel i5 2.3 GHz processor and 4 GB of RAM.

4.1. Covariance Matrix Reconstruction

Accurate inference and learning depends on the GP covari-
ance matrix K, which is used to form the predictive distri-
bution and marginal likelihood of a Gaussian process. We
evaluate the SKI approximation to K, in Eq. (8), as a func-
tion of number of inducing points m, inducing point loca-
tions, and sparse interpolation strategy.

We generate a 1000 × 1000 covariance matrix K from an
RBF kernel evaluated at (sorted) inputs X randomly sam-
pled from N (0, 25), shown in Figure 1(a). Note that the
inputs have no grid structure. The approximate K pro-
duced by SKI using local cubic interpolation and only 40
interpolation points, shown in Figure 1(b), is almost indis-
tinguishable from the original K. Figure 1(c) illustrates
|K −KSKI, m=40|, the absolute difference between the ma-
trices in Figures 1(a) and 1(b). The approximation is gen-
erally accurate, with greatest precision near the diagonals
and outer edges of K.

In Figure 1(d), we show how reconstruction error varies
as a function of inducing points and interpolation strategy.
Local cubic and linear interpolation, using regular grids,
are shown in blue and purple, respectively. Cubic interpo-
lation is significantly more accurate for small m. In black,
we also show the accuracy of using k-means on the data in-
puts X to choose inducing point locations. In this case, we
use local inverse distance weighting interpolation, a type of
linear interpolation which applies to irregular grids. This k-
means strategy improves upon standard linear interpolation
on a regular grid by choosing the inducing points which
will be closest to the original inputs. However, the value
of using k-means decreases when we are allowed more in-
terpolation points, since the precise locations of these in-
terpolation points then becomes less critical, so long as we
have general coverage of the input domain. Indeed, except
for small m, cubic interpolation on a regular grid gener-
ally outperforms inverse distance weighting with k-means.
Unsurprisingly, SKI with global GP kernel interpolation
(shown in red), which corresponds to the SoR approxima-
tion, is much more accurate than the other interpolation
strategies for very small m� n.

However, global GP kernel interpolation is much less effi-
cient than local cubic kernel interpolation, and these accu-
racy differences quickly shrink with increases inm. Indeed
in Figures 1(e) and 1(f) we see both reconstruction errors
are similarly small form = 150, but qualitatively different.
The error in the SoR reconstruction is concentrated near the
diagonal, whereas the error in SKI with cubic interpolation
never reaches the top errors in SoR, and is more accurate
than SoR near the diagonal, but is also more diffuse; thus
combining these approaches could improve accuracy.

200 400 600 800 1000

200

400

600

800

1000

0.2

0.4

0.6

0.8

1

(a) Ktrue

200 400 600 800 1000

200

400

600

800

1000

0.2

0.4

0.6

0.8

1

(b) KSKI (m = 40)

200 400 600 800 1000

200

400

600

800

1000

5

10

15

x 10
−5

(c) |Ktrue −KSKI, 40|

10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

m

E
rr

or

equi−linear
kmeans−linear
equi−GP
equi−cubic

(d) Interpolation Strategies

200 400 600 800 1000

200

400

600

800

1000

1

2

3

4

x 10
−8

(e) |Ktrue −KSKI, 150|

200 400 600 800 1000

200

400

600

800

1000

2

4

6

8

10

12

14
x 10

−8

(f) |Ktrue −KSoR, 150|

0 0.1 0.2 0.3 0.4
10

−10

10
−8

10
−6

10
−4

Runtime (s)

E
rr

or

SKI (linear)
SoR
FITC
SKI (cubic)

(g) Error vs Runtime

Figure 1. Reconstructing a covariance matrix. a) True 1000 ×
1000 RBF covariance matrix K. b) KSKI reconstruction using lo-
cal cubic interpolation and m = 40 interpolation points. c) SKI
absolute reconstruction error, for m = 40. d) Average absolute
error for reconstructing each entry of K (the average of entries
in (c)) as a function of m, using a regular grid with linear, cu-
bic and GP interpolation (purple, blue, and red, respectively), and
an irregular grid formed through k-means, with inverse distance
weighting interpolation (black). e)-f) SKI (cubic) and SoR abso-
lute reconstruction error, for m = 150. g) Average absolute (log
scale) error vs runtime, for m ∈ [500, 2000].

Ultimately, however, the important question is not which
approximation is most accurate for a given m, but
which approximation is most accurate for a given runtime
(Chalupka et al., 2013). In Figure 1(g) we compare the ac-
curacies and runtimes for SoR, FITC, and SKI with local
linear and local cubic interpolation, for m ∈ [500, 2000] at
m = 150 unit increments. m is sufficiently large that the

Structured Kernel Interpolation

differences in accuracy between SoR and FITC are negli-
gible. In general, the difference in going from SKI with
global GP interpolation (e.g., SoR or FITC) to SKI with lo-
cal cubic interpolation (KISS-GP) is much more profound
than the differences between SoR and FITC. Moreover,
moving from local linear interpolation to local cubic in-
terpolation provides a great boost in accuracy without no-
ticeably affecting runtime. We also see that SKI with local
interpolation quickly picks up accuracy with increases in
m, with local cubic interpolation actually surpassing SoR
and FITC in accuracy for a given m. Most importantly, for
any given runtime, SKI with cubic interpolation is more
accurate than the alternatives.

In this experiment we are testing the error and runtime for
constructing an approximate covariance matrix, but we are
not yet performing inference with that covariance matrix,
which is typically much more expensive, and where SKI
will help the most. Moreover, we are not yet using Kro-
necker or Toeplitz structure to accelerate SKI.

4.2. Kernel Learning

We now test the ability for SKI to learn kernels from data
using Gaussian processes. Indeed, SKI is intended to scale
GPs to large datasets – and large datasets provide an oppor-
tunity for expressive kernel learning.

Popular inducing point methods, such as FITC, improve the
scalability of Gaussian processes. However, Wilson et al.
(2014) showed that these methods cannot typically be used
for expressive kernel learning, and are most suited to sim-
ple smoothing kernels. In other words, scalable GP meth-
ods often miss out on structure learning, one of the greatest
motivations for considering large datasets in the first place.
This limitation arises because popular inducing methods
require that the number of inducing points m � n, for
computational tractability, which deprives us of the neces-
sary information to learn intricate kernels. SKI does not
suffer from this problem, since we are free to choose large
m; in fact, m can be greater than n, while retaining signifi-
cant efficiency gains over standard GPs.

To test SKI and FITC for kernel learning, we sample data
from a GP which uses a known ground truth kernel, and
then attempt to learn this kernel from the data. In particular,
we sample n = 10, 000 datapoints y from a Gaussian pro-
cess with an intricate product kernel ktrue = k1k2 queried
at inputs x ∈ R2 drawn from N (0, 4I) (the inputs have no
grid structure). Each component kernel in the product op-
erates on a separate input dimension, as shown in green in
Figure 2. Incidentally, n = 104 points is about the upper
limit of what we can sample from a multivariate Gaussian
distribution with a non-trivial covariance matrix. Even a
single sample from a GP with this many datapoints together
with this sophisticated kernel is computationally intensive,
taking 1030 seconds in this instance. On the other hand,

SKI can enable one to efficiently sample from extremely
high dimensional (n > 1010) non-trivial multivariate Gaus-
sian distributions, which could be generally useful.2

To learn the kernel underlying the data, we optimize the
SKI and FITC marginal likelihoods of a Gaussian process
p(y|θ) with respect to the hyperparameters θ of a spectral
mixture kernel, using non-linear conjugate gradients. In
detail, SKI and FITC kernels approximate a user specified
(e.g., spectral mixture) kernel which is parametrized by θ.
To perform kernel learning, we wish to learn θ from the
data. Spectral mixture kernels (Wilson & Adams, 2013)
form a basis for all stationary covariance kernels, and are
well-equipped for kernel learning. For SKI, we use cubic
interpolation and a 100 × 100 inducing point grid, equis-
paced in each input dimension. That is, we have as many
inducing points m = 10, 000 as we have training data-
points. We use the same θ initialisation for each approach.

0 0.5 1
−0.5

0

0.5

1

τ

C
or

re
la

tio
n

True
FITC
SKI

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

τ

C
or

re
la

tio
n

Figure 2. Kernel Learning. A product of two kernels (shown in
green) was used to sample 10, 000 datapoints from a GP. From
this data, we performed kernel learning using SKI (cubic) and
FITC, with the results shown in blue and red, respectively. All
kernels are a function of τ = x− x′ and are scaled by k(0).

The results are shown in Figures 2(a) and 2(b). The true
kernels are in green, the SKI reconstructions in blue, and
the FITC reconstructions in red. SKI provides a strong ap-
proximation, whereas FITC is unable to come near to re-
constructing the true kernel. In this multidimensional ex-
ample, SKI leverages Kronecker structure for efficiency,
and has a runtime of 2400 seconds (0.67 hours), using
m = 10, 000 inducing points. FITC, on the other hand,
has a runtime of 2.6 × 104 seconds (7.2 hours), with only
m = 100 inducing points. More inducing points with FITC
breaks computational tractibility.

Even though the locations of the training points are ran-
domly sampled, in SKI we exploited the Kronecker struc-
ture in the covariance matrixKU,U over the inducing points
U , to reduce the cost of using 10, 000 inducing points to
less than the cost of using 100 inducing points with FITC.
FITC, and alternative inducing point methods, cannot ef-
fectively exploit Kronecker structure, because the non-
sparse cross-covariance matrices KX,U and KU,X limit
scaling to at best O(m2n), as discussed in section 3.

2Sampling would proceed, e.g., via WSKI[chol(K1) ⊗ · · · ⊗
chol(Kp)]ν, ν ∼ N (0, I).

Structured Kernel Interpolation

4.3. Natural Sound Modelling
In section 4.2 we exploited multidimensional Kronecker
structure in the SKI covariance matrix KU,U for scalabil-
ity. Here we exploit Toeplitz structure.

0 1 2 3

−0.2

−0.1

0

0.1

0.2

Time (s)

In
te

ns
ity

(a) Natural Sound

2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

m

R
un

tim
e

(s
)

FITC
SKI (cubic)

(b) Runtime vs m

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Runtime (s)

S
M

A
E

(c) Error vs Runtime

Figure 3. Natural Sound Modelling. We reconstruct contiguous
missing regions of a natural sound from n = 59, 306 observa-
tions. a) The observed data. b) Runtime for SKI and FITC (log
scale) as a function of the number of inducing points m. c) Test-
ing SMAE error as a function of (log scale) runtime.

GPs have been successfully applied to natural sound mod-
elling, with a view towards automatic speech recognition,
and a deeper understanding of auditory processing in the
brain (Turner, 2010). We use SKI to model the natural
sound time series in Fig 3(a), considered in a different con-
text by Turner (2010). We trained a full GP on a subset of
the data, learning the hyperparameters of an RBF kernel,
for use with both FITC and SKI. We then used each of these
methods to reconstruct large contiguous missing regions in
the signal. This time series does not have grid structure
due to the high number of large arbitrarily located missing
regions, and therefore direct Toeplitz methods cannot be
applied. In total, there are 59, 306 training points and 691
testing points. We place all inducing points on a regular
grid, and exploit Toeplitz structure in SKI for scalability.

Figure 3(b) shows empirical runtimes (on a log scale) as a
function of inducing points m in both methods, and Figure
3(c) shows the standardised mean absolute error (SMAE)
on test points as a function of runtime (log scale) for each
method.3 For m ∈ [2500, 5000] the runtime for SKI is
essentially unaffected by increases in m, and hundreds of
times faster than FITC, which does noticeably increase in
runtime with m. Moreover, Figure 3(c) confirms our in-

3SMAEmethod = MAEmethod / MAEempirical, so the trivial solution
of predicting with the empirical mean gives an SMAE of 1, and
lower values correspond to better fits.

tuition that, for a given runtime, accuracy losses in going
from GP kernel interpolation in FITC to the more simple
cubic kernel interpolation in the KISS-GP variant of SKI
can be more than recovered by the gain in accuracy en-
abled through more inducing points. SKI has less than half
of the error at less than 1% the runtime cost of FITC. SKI
is generally able to infer the correct curvature in the func-
tion, while FITC, unable to use as many inducing points for
any given runtime, tends to over-smooth the data. We also
test SSGPR (Lázaro-Gredilla et al., 2010), a recent state
of the art approach to scalable GP modelling. For a range
of m ∈ [250, 1250], SSGPR has SMAE ∈ [1.12, 1.23] and
runtimes ∈ [310, 8400] seconds. Overall, SKI provides the
best reconstruction of the signal at the lowest runtime.

5. Discussion
We introduced a new structured kernel interpolation (SKI)
framework, which generalises and unifies inducing point
methods for scalable Gaussian process inference. In partic-
ular, we showed how standard inducing point methods cor-
respond to kernel approximations formed through global
Gaussian process kernel interpolation. By changing to
local cubic kernel interpolation, we introduced KISS-GP,
a highly scalable inducing point method, which naturally
combines with Kronecker and Toeplitz algebra for addi-
tional gains in scalability. Indeed we can view KISS-GP as
relaxing the stringent grid assumptions in Kronecker and
Toeplitz methods to arbitrarily located inputs. We showed
that the ability for KISS-GP to efficiently handle a large
number of inducing points enabled expressive kernel learn-
ing and improved predictive accuracy, in addition to im-
proved runtimes, over popular alternatives. In particular,
for any given runtime, KISS-GP is orders of magnitude
more accurate than the alternatives. Overall, simplicity and
generality are major strengths of the SKI framework.

We have only begun to explore what could be done with
this new framework. Structured kernel interpolation opens
the doors to a multitude of substantial new research direc-
tions. For example, one can create entirely new scalable GP
models by changing interpolation strategies. These mod-
els could have remarkably different properties and applica-
tions. And we can use the perspective given by structured
kernel interpolation to better understand the properties of
any inducing point approach – e.g., which kernels are best
approximated by a given approach, and how many induc-
ing points will be needed for good performance. We can
also combine new models generated from SKI with the or-
thogonal benefits of recent stochastic variational inference
based GPs. Moreover, the decomposition of the SKI co-
variance matrix into a Kronecker product of Toeplitz ma-
trices provides motivation to unify scalable Kronecker and
Toeplitz approaches. We hope that SKI will inspire many
new models and unifying perspectives, and an improved
understanding of scalable Gaussian process methods.

Structured Kernel Interpolation

References
Baker, Christopher TH. The numerical treatment of inte-

gral equations. Clarendon Press, 1977.

Chalupka, Krzysztof, Williams, Christopher KI, and Mur-
ray, Iain. A framework for evaluating approximation
methods for Gaussian process regression. The Journal
of Machine Learning Research, 14(1):333–350, 2013.

Cunningham, John P, Shenoy, Krishna V, and Sahani, Ma-
neesh. Fast Gaussian process methods for point process
intensity estimation. In International Conference on Ma-
chine Learning, 2008.

Hensman, J, Fusi, N, and Lawrence, N.D. Gaussian pro-
cesses for big data. In Uncertainty in Artificial Intelli-
gence (UAI). AUAI Press, 2013.

Keys, Robert G. Cubic convolution interpolation for digi-
tal image processing. IEEE Transactions on Acoustics,
Speech and Signal Processing, 29(6):1153–1160, 1981.

Lázaro-Gredilla, M., Quiñonero-Candela, J., Rasmussen,
C.E., and Figueiras-Vidal, A.R. Sparse spectrum Gaus-
sian process regression. The Journal of Machine Learn-
ing Research, 11:1865–1881, 2010.

Le, Q., Sarlos, T., and Smola, A. Fastfood-computing
Hilbert space expansions in loglinear time. In Proceed-
ings of the 30th International Conference on Machine
Learning, pp. 244–252, 2013.

Lu, Z., May, M., Liu, K., Garakani, A.B., D., Guo, Bel-
let, A., Fan, L., Collins, M., Kingsbury, B., Picheny, M.,
and Sha, F. How to scale up kernel methods to be as
good as deep neural nets. Technical Report 1411.4000,
arXiv, November 2014. http://arxiv.org/abs/
1411.4000.

Luo, Yuancheng and Duraiswami, Ramani. Fast near-
GRID Gaussian process regression. In Proceedings of
the Sixteenth International Conference on Artificial In-
telligence and Statistics, pp. 424–432, 2013.

Naish-Guzman, A and Holden, S. The generalized fitc ap-
proximation. In Advances in Neural Information Pro-
cessing Systems, pp. 1057–1064, 2007.

Quiñonero-Candela, Joaquin and Rasmussen, Carl Ed-
ward. A unifying view of sparse approximate Gaussian
process regression. Journal of Machine Learning Re-
search (JMLR), 6:1939–1959, 2005.

Quinonero-Candela, Joaquin, Rasmussen, Carl Edward,
and Williams, Christopher KI. Approximation methods
for gaussian process regression. Large-scale kernel ma-
chines, pp. 203–223, 2007.

Rahimi, A and Recht, B. Random features for large-scale
kernel machines. In Neural Information Processing Sys-
tems, 2007.

Rasmussen, C. E. and Williams, C. K. I. Gaussian pro-
cesses for Machine Learning. The MIT Press, 2006.

Rasmussen, Carl Edward. Evaluation of Gaussian Pro-
cesses and Other Methods for Non-linear Regression.
PhD thesis, University of Toronto, 1996.

Rasmussen, Carl Edward and Ghahramani, Zoubin. Oc-
cam’s razor. In Neural Information Processing Systems
(NIPS), 2001.

Rasmussen, Carl Edward and Nickisch, Hannes. Gaussian
processes for machine learning (GPML) toolbox. Jour-
nal of Machine Learning Research (JMLR), 11:3011–
3015, Nov 2010.

Saatchi, Yunus. Scalable Inference for Structured Gaussian
Process Models. PhD thesis, University of Cambridge,
2011.

Seeger, Matthias. Bayesian Gaussian process models:
PAC-Bayesian generalisation error bounds and sparse
approximations. PhD thesis, University of Edinburgh,
2005.

Shepard, Donald. A two-dimensional interpolation func-
tion for irregularly-spaced data. In Proceedings of the
1968 ACM National Conference, pp. 517–524, 1968.

Silverman, Bernhard W. Some aspects of the spline
smoothing approach to non-parametric regression curve
fitting. Journal of the Royal Statistical SocietyB, 47(1):
1–52, 1985.

Snelson, Edward and Ghahramani, Zoubin. Sparse Gaus-
sian processes using pseudo-inputs. In Advances in neu-
ral information processing systems (NIPS), volume 18,
pp. 1257. MIT Press, 2006.

Turner, Richard E. Statistical Models for Natural Sounds.
PhD thesis, University College London, 2010.

Williams, CKI and Shawe-Taylor, J. The stability of ker-
nel principal components analysis and its relation to the
process eigenspectrum. Advances in neural information
processing systems, 15:383, 2003.

Wilson, Andrew Gordon. A process over all stationary ker-
nels. Technical report, University of Cambridge, 2012.

Wilson, Andrew Gordon. Covariance kernels for fast auto-
matic pattern discovery and extrapolation with Gaussian
processes. PhD thesis, University of Cambridge, 2014.

http://arxiv.org/abs/1411.4000
http://arxiv.org/abs/1411.4000

Structured Kernel Interpolation

Wilson, Andrew Gordon and Adams, Ryan Prescott. Gaus-
sian process kernels for pattern discovery and extrapo-
lation. International Conference on Machine Learning
(ICML), 2013.

Wilson, Andrew Gordon, Gilboa, Elad, Nehorai, Arye, and
Cunningham, John P. Fast kernel learning for multidi-
mensional pattern extrapolation. In Advances in Neural
Information Processing Systems, 2014.

Yang, Zichao, Smola, Alexander J, Song, Le, and Wilson,
Andrew Gordon. A la carte - learning fast kernels. Arti-
ficial Intelligence and Statistics, 2015.

