Gibson Env: Real-World Perception for Embodied Agents
Supplementary Material

Fei Xiai] Amir R. Zamiri, Zhiyang Hej

! Stanford University

Alexander Sax;

Jitendra Malik, Silvio Savarese;

2 University of California, Berkeley

http://gibson.vision/

Abstract

The following items are provided in the supplementary
material:

1. Details of point cloud interpolation and view selection
in view synthesis, and details of network architecture
and hyper parameters.

2. More information about semantic modality in our en-
vironment.

3. Additional view synthesis qualitative results.

4. RL training details and additional RL results in our
environment.

1. View Synthesis Details
1.1. Details of Point Cloud Rendering

Here we provide more details about the point cloud in-
terpolation and view selection part of view synthesis. For a
view v; that we want to synthesis, we get the rendered point
cloud from the nearest k views v;1, vj2,. .., ;i based on
Euclidean distance. Denote the reprojected point clouds as
Dj1,Pj2,- - -, Djk- Assuming the target resolution is w X h,
each point cloud is a set of projected points {(z,y)}, with
0<z<wand0 <y < h. We do two operations on each
project point cloud. First, we run a kernel density estimator
on the point cloud with a Gaussian kernel. This provides
information about the density of points from a certain view
at a certain region. Second, for each grid point in z, y-plane
we query the nearest 4 points and did a bilinear sampling
in an irregular polygon. Denote the density of point cloud
image of view k as d;j; € RV*". The weight for view k is
wjr = dji/(D_,; dj;). Denote the interpolated image from
source view k as I € Rw*hx3 then the final output of
view selection and interpolation is I; = Y. wj; o I;;. We
implement these steps in CUDA and thus they have small
effects on point cloud rendering speed. The benefit of the

* Authors contributed equally.

point cloud interpolation and view selection is that they cre-
ate a smooth transition across point clouds from different
source views, making the imperfection easier to fix by Neu-
ral Network Filler f.

1.2. Details of Training Neural Network Filler

Network Architecture. The details of the network ar-
chitecture are shown in Table 1. We use a combination
of convolutional layers, deconvolutional layers and dilated
convolutional layers. Batch normalization is applied to each
output feature map of all types of convolutional layers. We
use leaky ReLLU with slope 0.1 as activation function for all
layers.

Identity initialization. For image processing or filter-
ing, [11] advocates using adaptive normalization for iden-
tity initialization, where they also design kernels to force
identity mapping. Empirically, we find that using a stochas-
tic version that ensures an overall identity function but pre-
serves the diversity of Gaussian random initialization works
better and achieves faster convergence. We initialize half of
the weight with Gaussian random and freeze them and opti-
mize the rest with back propagation so the network outputs
the same input image. After convergence, the weights are
our stochastic identity initialization.

Hyperparameter setting. For the network architecture,
the number of kernels of the network is configurable with
a parameter ny. In the experiments, we use two settings
where n is either 24 or 128. For domain adaptation and
view synthesis experiments we use ny = 128. For RL
training we use ny = 24 to reduce RL training time. For
the loss, there are two hyperparameters to tune. The first is
A;, which is the coefficient for each layer of VGG feature
map. We normalize it the number of elements in the feature
map, i.e. A; = 1/n;. The second parameter is the coeffi-
cient for color match loss v. We set it to 0.05 across the
experiments.

http://gibson.vision/

Figure 1: Additional view synthesis results. We provide additional view synthesis and domain adaptation results. The format is similar to Fig. 6 in the
main paper. The results have high resolution and are very rich in details, so we encourage readers to zoom in to see details.

2. Details about Semantic Modality

Some models in our system are semantically annotated.
For those models, we are able to output a semantic seg-
mented frame. Examples are shown in Fig. 2. We provide
semantic labels for 13 classes, including floor, ceiling, wall,
beam, window, column, door, table, chair, bookcase, sofa,
board, and clutter.

3. Additional Experiments

3.1. Additional View Synthesis Results

We provide additional view synthesis results to provide a
more thorough understanding of the qualitative results. The
results are shown in Fig. 1.

Type Kernel Dilation Stride Output
conv. 5x5 1 1x1 6
conv. 5% 5H 1 2x2 ny
conv. 3x3 1 1x1 mny
conv. 5x5 1 2x2 dng
dilated conv. 3 x 3 1 1x1 4ng
dilated conv. 3 x3 1 1x1 4ng
dilated conv. 3 x3 2 1x1 4ng
dilated conv. 3 x3 4 1x1 4ng
dilated conv. 3 x3 8 1x1 4dng
dilated conv. 3 x 3 16 1x1 4ng
dilated conv. 3 x 3 32 1x1 4ng
dilated conv. 3 x3 1 1x1 4ng
dilated conv. 3 x3 1 1x1 4ng
deconv. 4 x4 1 2x2 ny
conv. 3x3 1 1x1 mny
deconv. 4 x4 1 2x2 6
conv. 3x3 1 1x1 6
conv. 3x3 1 1x1 3

Table 1: Network Architecture. The network architecture is detailed in
this table. We use three types of layers: convolutional layers(conv.), dilated
convolutional layers(dilated conv.) and deconvolutional layers(deconv.).
The network size is configurable with parameter n .

B sofa
. floor

B bookcase [l chair clutter B door
. wall ceiling . table

Figure 2: Sample frames with semantic annotation. Top: NN filled
images; Bottom: Corresponding semantic labels of pixels.

3.2. Additional RL Experiment Setup

We used Gibson environment with default physical set-
tings (gravity = 9.8m?/s2, friction coefficient = 0.7) for
our experiments. In Visual Obstacle Avoidance and Vi-
sual Navigation we used default discrete action space in
Gibson for Husky robot, which translates four dimensional
(left/right/forward/backward) control signal to four sets of
predefined torques. In Visuomotor Control we used default
continuous action space for Ant robot, which accepts eight
real value torque signals.

At every time step, the nonviz sensor output received by
the agent includes robot position, orientation, velocity, and
distance and angle towards target. In Visuomotor Control
experiment, this also includes the number of feed the Ant
robot has in contact with the ground.

In Visual Obstacle Avoidance, Navigation and Visuomo-
tor Control tasks, our primary reward for the agent is the
change in potential (negative distance towards the target),
specifically —%. In visual obstacle avoidance we
added another distance term ¢ * L,cqrest; Where Ly carest
is the length of the beam coming out from the front of
the robot. This mimics the effect of front LiDAR and en-
courages the agent to move in unobstructed directions. We
didn’t use any additional term in our reward: alive score,
collision, contact, etc. The agent learns to utilize it’s DoF,
minimize collisions and maximize its lifespan to reach the
highest score.

3.3. Additional RL Experiment Results

Network Architecture and Training Details In order
to account for the different input modalities of inputs, we
use different Neural Network policies. For sensor-only RL
agents, we used a policy with two identical networks for
value and policy function: MLP with two hidden layers
using tanh activation. For perceptual agents, we used a
sensor-vision policy that has the same MLP structure to pro-
cess sensor input, and another CNN with two hidden layers
using relu activation to process camera input. We use a
densely connected layer to combine MLP and CNN at the
end. The implementations are based on OpenAl baselines.

We used Proximal Policy Optimization for training our
RL policies. We used linearly decreasing learning rate,
gamma of 0.99 and optimization batch size of 64. Our aver-
age episode length is 400 for Navigation and 60 for Visuo-
motor Control. We set time step per actor batch for these
two tasks as 3000 and 2000. Since there is no ending con-
dition for Obstacle Avoidance task, we set its time step per
batch as 1024. Our reward curves for Obstacle Avoidance,
Navigation, and Visuomotor Control stabilize after 100K,
600K and 700K time steps.

Visuomotor Control Results During training, we mod-
ified the ant robot’s size and body shape to be reasonable
based on the size of stairs in real life. We initialize the ant
at random location at the midpoint of the stairs and train it to
reach the bottom of the stairs using the sensor-only network,
and sensor-vision fusion network with depth as perceptual
input. Both agents know their relative location towards the
target. To prevent the agent from learning suboptimal poli-
cies (e.g. rolling down the stairs), we terminate the agent
when its leaning angle is more than 90 degrees.

Within the same amount of clock time, we trained the
sensor-only agent for 4M frames, and perceptual agent for
900K frames, due to longer CNN processing time in fusion

— Nanwiz Sensor
—— Depth Sensor
% Nonwiz-Sensor {Test)
% Depth Sensor (Test)

0 100000 200000 300000 400000 500000 600000 700000
Timesteps

Figure 3: Ant climbing downstairs tasks reward curve. Left: ending
position of sensor-only (red) and perceptual (green) agent. Right: reward
curves and test score. Here we plot the reward curve over the first 700K
frames when the agent starts to acquire stair climbing ability.

network. Sensor-only agent reached a final score of 34 and
perceptual agent reached a final score of 25.6.

To evaluate how robust our learned visuomotor control
policies are, we modified the target positions in test time. In
Fig. 3 the target (light red cube) is moved from the bottom
of stairs to behind the corner by 0.5m. In order to reach
it, the agent needs to first climb the stairs and then walk
towards the target. Red and green small cubes show the
death/finish locations of sensor-only and perceptual agents.
Performance of sensor only agent drops significantly from
34.0 to 22.7 (-11.3), while the perceptual agent’s perfor-
mance slightly drops from 25.6 to 23.3. Failure cases for
the sensor-only robot are: (1) being obstructed by the wall,
(2) not approaching the target after going downstairs. This
shows that policy learned by the sensor-only robot is limited
in either only knowing to move in target direction, or only
knowing to climb downstairs.

