Cascading 2.2 User Guide

Concurrent, Inc.

cascading

Copyright © 2007-2013 Concurrent, Inc.
Publication date August 2013

Table of Contents

N oo 0| 0= o=] oo PP UPPR PN 1
1.1, WhaL 1S CaSCaING? ... ettt ettt ettt ettt et a e e et et e e e e aaa e e eaaans 1

A U oIS = g7 14 0P 1

WHY USE CBSCAOINGT ... ettt ettt ettt et et e e et e e et e e et e e et e e et e e e b e eanaaenes 1

WHO @I The USEIS? ...ttt e e e e e e e e et e e et e e e e e et e e eanaeeenaes 1

1.3. What iS APaChe Hat00P?vuiii e e e e e e e e e s e et e et e e et e e eeanns 2

2 1Y/ oo 1 o PP PPRRN 3
R DL - B (0o oo PSP 6
G350 R 1= 1 411 oo o 1Y/ 6

3.2, PIPE ASSEMDIIES ...t ettt et e e e e e aenas 6

Pipe ASSEMBIY WOTKFIOW ...t eeens 6

COMMON SEEAM PEIEIMSeeeviieieii e e e e s 7

(D el o (0TS 1o o PSR PPT 8

K A o 101 S PSPPI 8

B0 130 1 o= P 9

The EaCh @and EVEIY PIPES . ..uniii ittt e e et e e e ean s 11

1= (o[PSRRI 14

L0 0] Y 14

(600 €7 (01| o IR 16

[= 1S 00 o 19

Setting CUStOM PIPE PrOPEITIES .. .cuuiiii i e e e e e e e e e e e e e e e e ean e eees 20

I e I 10 1 10 ST PP PPPPTT 21

3.5. SOUMCE AN SINK TAPS ... eeetieeeiit ettt ettt ettt ettt e e et et e e et e e e e aa e eaaans 22
SCNEIMIES ..ttt ettt e et e e e e reenn 22

LI oL TSSO UP PO TUUPPPPPRTTIN 23

3 S T 2 10 o == 25

R R T= [0 S = £ TSP SSPPPPPPTIN 26

TS T [1L T UPPTRPPP 29
Creating FIOWS from Pipe ASSEMDIIESuiiiii e 30

100011 To 8T 0T TN 1011 32

SKIPPING FIOWS .ottt e et et e e e e e et e e et e e ean s 32

Creating FIOWS from @ JODCONTuiiiiii e 33

Creating CUSLOM FIOWSuiiiiiciie e e e e e e e e e e e et e et e e e e e et r e e e e ean s 33

3.0, CBSCAUES ..ottt ettt ettt e s 33

4. Executing ProCeSSES ON HAOOOPceetuuiiiii ettt ettt e et b e e et e eeeaaa s 35
I T 0110 [F ot (o PP PTT PSPPI 35

ST 11 o] oo PSPPI 35

R ©o o 1To 141 oo [P TPPT 35
= U] o 37

T BT o 0o] oo PP 37

5. Using and DeVElOPiNg OPEIEIIONSccuuuueeiitiiee it e ettt e ettt e e eett e e e e et e e e eete e e e eete e e e eeba e eeeateaeaeees 39
ST 111 70 [0 oi Lo o [PPSR 39

5.2, FUNCLIONS ...ttt ettt e et e et et e e ettt r e et e b r e e e e e e e 40

ST T 1 1 P 44

Cascading Cascading 2.2 User Guide ii

Cascading 2.2 User Guide

S o o | (= o = (o PP PP 45

TSI =1 1= S PSPPSR 49

5.6. Operation and BaseOPEIationc.. ettt e et et 52

6. CUSLOM TaPRS 8NA SCREIMIES ... ettt et e ettt ettt e ettt e e e e et e et ee b e e e eataneeeene 53
20 O [oo [0 1o o PP 53

O 0 (o 0 B - o TP PSPPI 53

LI O U1 o 4 o 1< 1 1S P 54

A S 1= Lo I o haTe J= 1o I I8 o X @< o o] o [56
A T o I Y] 1 oo TP PPP 56

7.2, TYPE COBICION .ottt ettt e e et e et e e et et e et et e e ettt e et e b e e e e et e e e eban s 57

L A0 V7 g Tor= o I = oo o P 59
8.1, SUDASSEMDIIES ...eeeieii e e 59

8.2, SHEAM ASSEITIONS ... ittt ettt et ettt e e et e et e e e aaa s 61

TG 1 LU = N 1 = 63

S o T= ot oo] 1] oo PP PTRUPP 65

8.5. Restarting a Checkpointed FIOWuiiiiii e e 67

8.6. Flow and Cascade Event HandlinNgooeuniiiiiiii i e e e e e e eannee e 67

8.7, TOMPIAE TADS ... et ettt ettt et et e e e e e e ae 68

8.8. Partial Aggregation instead of COMDINEISiiiiiiiiiei e 68

L = 101 @ o7 = 4 o 1 70
9.1, 1dENtity FUNCLION ...t ettt et e et e e et e e et e e e e ean s 70

9.2, DEDUG FUNCLION ...ttt et e ettt e e et et e e et et e e e eebaneeeenbnneeees 72

9.3. Sample and Limit FUNCHIONSiiei e e e e s e e e e e e e e e e e eeanas 72

9.4, INSENT FUNCLION ...ttt et et et e e et e e et e e et e e e e een s 73

S = (A U 1o o T 73

9.6. Regular EXPression OPEratioNScc.uueeruieeiiieeiseeeeeeetseees e et aeeat e eean e e et eeanseean e retnaeeanaeernaes 74

9.7. Java EXPression OPEIELIONSuiuuu it et tat et et e et e e et et e e e et e e et e e et e e ete e eaneeea e eetnaeennaees 76

9.8, XML OPEIBLIONS ... eeeetieeeeet ettt ettt e et e et e et et e e et et e e e e et e e et et e e e eaa s 77

9.9, ASSEITIONS ...evueeeeti ettt ettt ettt a et e e e 77

9.10. LOQICAl FlLEr OPEIEIOIS ... eeeeeei ettt et et et e et e et e e et e e et e eaa e ean s 79

S R0 T T 1 T PP 80

10. BUIE-IN ASSEMDIIES «.ceee e e e et e e a e e aae 81
JO.1. AQOrEgALEBYceiiiiie e 8l
AVEIAOEBY ..o e 8l

L0 11 82

S 1001 SO 82

1= PP 83
OO0 = o/ PSP UPP PP 83

L0 =" o PSP 83
O o 0= T PP 84
L0 ST == - T PSPPSR 84
JO.6. UNIQUE .ottt ettt ettt et et e et et e ettt et b e e et e et e et e et et eh e et a et et e e e e eaes 84

T TS A o o= PP 86
0 T U o A 1= o 86

I o o TV 1 = 86

11.3. SUDASSEMDBIIES, NOt FACIOMESueeieii e e e ans 86
Cascading Cascading 2.2 User Guide iii

Cascading 2.2 User Guide

11.4. Logical Responsibilities for SUDASSEMDIIESuiiiiiiii 87
11.5. Java Operators in FIEld NAIMESiiiiicii e e e e e e e e et e e eanas 87
11.6. Debugging Planner FaillUrEScoeuniiii e e e et 87
11.7. OPUMIZING JOINS ...ttt ettt ettt e e et e e et e e e et e e e et et e e e e et e e e enaa s 87
IR 1= o 11T (o1 S = 87
11.9. Handling GO0d and Bad Daacieuuiiiiiiiiee ettt e e e e e ea e 88
11.10. Maintaining State iN OPEIALIONScceutuueeiiti ettt ettt e et e e et e e et eaeran s 88
I I O G o I8/ == 88
11,12, FEIAS CONSLANESeeeeiii ettt ettt ettt et e et e et et e e e e nn e e eeneas 88
11.13. Checking the SOUICE COUEuuueiiiii ettt ettt e et et e e e ebt e e eena e eeees 89
R 1= o [o T = o o T 20
N S o] o 1] o PP 90
12.2. Custom TYPeS and SErialiZaliONcoeuuuiiiiiii et 90
12.3. Custom Comparators and HaShiNGoceuuiiiiiiiii e e e e e e e e e e e e e eanaeee 91
13, COOKDOOK ...t 92
131 TUPIES BNA FEIASceeeeeeee ettt 92
TS 1 = 3 T T 92
13.3. COMIMON OPEIELIONSceetueeeieete ettt e et et e et e et e e et et et e e et e e et e e e aa e e e e eat e eeaneaeennns 94
S (= 1 O 0 =] oo PO OPPPTR 94
L35, AP USAOE ...ttt 95
T4, HOW T WWOTKS ...ttt ettt ettt e et et et e e et e e et e e e e e e e e e na s 98
14.1. MapREAUCE JOD PIANNEYttt et et ettt e eeaa e eaaas 98
14.2. The Cascade Topological SChedUlercooviiii i 98

Cascading Cascading 2.2 User Guide iv

1. About Cascading
1.1 What is Cascading?

Cascading is a data processing APl and processing query planner used for defining, sharing, and executing data-
processing workflows on a single computing node or distributed computing cluster. On a single node, Cascading's
"local mode" can be used to efficiently test code and process local files before being deployed on a cluster. On a
distributed computing cluster using Apache Hadoop platform, Cascading adds an abstraction layer over the Hadoop
AP, greatly simplifying Hadoop application development, job creation, and job scheduling.

1.2 Usage Scenarios

Why use Cascading?

Cascading was devel oped to allow organi zationsto rapidly develop complex dataprocessing applicationswith Hadoop.
The need for Cascading is typically driven by one of two cases:

I ncreasing data size exceeds the processing capacity of asingle computing system. In response, devel opers may adopt
Apache Hadoop as the base computing infrastructure, but discover that developing useful applications on Hadoop is
not trivial. Cascading eases the burden on these devel opers and allowsthem to rapidly create, refactor, test, and execute
complex applications that scale linearly across a cluster of computers.

I ncreasing process complexity in data center s resultsin one-off data-processing applications sprawling haphazardly
onto any available disk space or CPU. Apache Hadoop solves the problem with its Global Namespace file system,
which providesasinglereliable storage framework. In this scenario, Cascading easesthelearning curve for devel opers
as they convert their existing applications for execution on a Hadoop cluster for its reliability and scalability. In
addition, it lets devel opers create reusable libraries and applications for use by analysts, who use them to extract data
from the Hadoop file system.

Since Cascading's creation, a number of Domain Specific Languages (DSLs) have emerged as query languages that
wrap the Cascading APIs, allowing developers and analysts to create ad-hoc queries for data mining and exploration.
These DSL s coupled with Cascading local-mode allow usersto rapidly query and analyze reasonably large datasets on
their local systems before executing them at scale in aproduction environment. See the section on DSL sfor references.

Who are the users?

Cascading userstypically fall into threeroles:

The application Executor is a person (e.g., a developer or analyst) or process (e.g., a cron job) that runs a data
processing application on agiven cluster. Thisistypically doneviathe command line, using aprepackaged Java Jar file
compiled against the Apache Hadoop and Cascading libraries. The application may accept command-line parameters
to customize it for a given execution, and generally outputs a data set to be exported from the Hadoop file system
for some specific purpose.

The process Assembler isa person who assembles data processing workflows into unique applications. Thiswork is
generally adevel opment task that involves chaining together operationsto act on one or moreinput data sets, producing

Cascading Cascading 2.2 User Guide 1

About Cascading

one or more output data sets. This can be done with the raw Java Cascading API, or with a scripting language such as
Scala, Clojure, Groovy, JRuby, or Jython (or by one of the DSL s implemented in these languages).

The operation Developer is a person who writes individual functions or operations (typicaly in Java) or reusable
subassemblies that act on the data that passes through the data processing workflow. A simple example would be a
parser that takes a string and converts it to an Integer. Operations are equivalent to Java functions in the sense that
they take input arguments and return data. And they can execute at any granularity, from simply parsing a string to
performing complex procedures on the argument data using third-party libraries.

All threeroles can befilled by adevel oper, but because Cascading supports aclean separation of these responsibilities,
some organizations may choose to use non-devel opers to run ad-hoc applications or build production processes on
aHadoop cluster.

1.3 What is Apache Hadoop?

From the Hadoop website, it “is a software platform that lets one easily write and run applications that process vast
amounts of data’. Hadoop does this by providing a storage layer that holds vast amounts of data, and an execution
layer that runs an application in parallel across the cluster, using coordinated subsets of the stored data.

The storage layer, called the Hadoop File System (HDFS), looks like asingle storage volume that has been optimized
for many concurrent serialized reads of large data files - where "large" might be measured in gigabytes or petabytes.
However, it does have limitations. For example, random accessto the datais not really possiblein an efficient manner.
And Hadoop only supports asingle writer for output. But this limit hel ps make Hadoop very performant and reliable,
in part because it allows for the data to be replicated across the cluster, reducing the chance of dataloss.

The execution layer, called MapReduce, relies on a divide-and-conquer strategy to manage massive data sets and
computing processes. Explaining MapReduce is beyond the scope of this document, but its complexity, and the
difficulty of creating real-world applications against it, are the chief driving force behind the creation of Cascading.

Hadoop, according to its documentation, can be configured to run in three modes: standalone mode (i.e., on the local
computer, useful for testing and debugging), pseudo-distributed mode (i.e., on an emulated "cluster”" of one computer,
useful for testing), and fully-distributed mode (on afull cluster, for production purposes). The pseudo-distributed mode
does not add value for most purposes, and will not be discussed further. Cascading itself can run locally or on the
Hadoop platform, where Hadoop itself may be in standalone or distributed mode. The primary difference between
these two platforms is that, when Cascading is running locally, it makes no use of Hadoop APIs and performs all of
its work in memory, alowing it to be very fast - but consequently not as robust or scalable as when it is running on
the Hadoop platform.

Apache Hadoop is an Open Source Apache project and is freely available. It can be downloaded from the Hadoop
website: http://hadoop.apache.org/core/.

Cascading Cascading 2.2 User Guide 2

http://hadoop.apache.org/core/

2. Diving In
The most common example presented to new Hadoop (and M apReduce) devel opersisan application that countswords.

It isthe Hadoop equivalent to a"Hello World" application.

In the word-counting application, a document is parsed into individual words and the frequency of each word is
counted. In the last paragraph, for example, "is" appears twice and "equivalent" appears once.

The following code example uses Cascading to read each line of text from our document file, parseit into words, then
count the number of times each word appears.

Cascading Cascading 2.2 User Guide 3

Diving In

/1 define source and si nk Taps.
Scheme sourceSchenme = new TextLine(new Fields("line"));
Tap source = new Hf s(sourceSchene, inputPath);

Schene si nkSchene = new TextLi ne(new Fields("word", "count"));
Tap sink = new Hf s(sinkSchenme, outputPath, SinkMdde. REPLACE);

/1 the 'head'" of the pipe assenbly
Pi pe assenbly = new Pi pe("wordcount");

/1 For each input Tuple

/1 parse out each word into a new Tuple with the field nane "word"

/1 regul ar expressions are optional in Cascading

String regex = "(?2<!\\pL) (?=\\pL) [~]*(?<=\\pL) (?!'\\pL)";

Function function = new RegexGenerator(new Fields("word"), regex);
assenbly = new Each(assenbly, new Fields("line"), function);

/1 group the Tuple stream by the "word" val ue
assenbly = new G oupBy(assenbly, new Fields("word"));

/1 For every Tuple group

/1 count the nunmber of occurrences of "word" and store result in
/l a field named "count"”

Aggr egat or count = new Count(new Fields("count"));

assenbly = new Every(assenbly, count);

/1 initialize app properties, tell Hadoop which jar file to use
Properties properties = new Properties();
AppPr ops. set Appl i cati onJarC ass(properties, Miin.class);

/1 plan a new Flow fromthe assenbly using the source and si nk Taps

/1 with the above properties

Fl onConnect or fl owConnector = new HadoopFl owConnect or (properties);

Fl ow fl ow = fl owConnect or.connect("word-count”, source, sink, assenbly);

/1 execute the flow, block until conplete
flow conpl ete();

Example 2.1 Word Counting
Several features of this example are worth highlighting.

First, notice that the pipe assembly is not coupled to the data (i.e., the Tap instances) until the last moment before
execution. File paths or references are not embedded in the pipe assembly; instead, the pipe assembly is specified
independent of data inputs and outputs. The only dependency is the data scheme, i.e., the field names. In Cascading,
every input or output file has field names associated with it, and every processing element of the pipe assembly either
expects the specified fields or creates them. This allows developersto easily self-document their code, and alows the

Cascading Cascading 2.2 User Guide 4

Diving In

Cascading planner to "fail fast”" if an expected dependency between elementsisn't satisfied - for instance, if a needed
field name ismissing or incorrect. (If more information is desired on the planner, see MapReduce Job Planner.)

Also noticethat pipe assemblies are assembled through constructor chaining. This may seem odd, but it isdonefor two
reasons. First, it keeps the code more concise. Second, it prevents devel opers from creating "cycles® (i.e., recursive
loops) in the resulting pipe assembly. Pipe assemblies are intended to be Directed Acyclic Graphs (DAG's), and in
keeping with this, the Cascading planner is not designed to handle processes that feed themselves. (If desired, there
are safer approaches to achieving this result.

Finally, notice that the very first Pi pe instance hasaname. That instance is the head of this particular pipe assembly.
Pipe assemblies can have any number of heads, and any number of tails. Although the tail in this example does not
have a name, in amore complex assembly it would. In general, heads and tails of pipe assemblies are assigned names
to disambiguate them. One reason is that names are used to bind sources and sinks to pipes during planning. (The
example above is an exception, because there is only one head and one tail - and consequently only one source and
one sink - so the binding is unmistakable.) Another reason is that the naming of pipes contributes to self-documention
of pipe assemblies, especially where there are splits, joins, and mergesin the assembly.

To sum up, the example word-counting application will:
* Read each line of text from afile and giveit the field name "line"
» parseeach"line" intowordswiththeRegexGener at or object, which returnseach word inthefield named "word"

* sort and group all the tuples on the "word" field, using the G oupBy object

count the number of elementsin each group, using the Count object, and store this value in the "count” field

» and write out the "word" and "count" fields.

Cascading Cascading 2.2 User Guide 5

3. Data Processing

3.1 Terminology

The Cascading processing model is based on a metaphor of pipes (data streams) and filters (data operations). Thus
the Cascading API alows the developer to assemble pipe assemblies that split, merge, group, or join streams of data
while applying operations to each data record or groups of records.

In Cascading, we call adatarecord atuple, asimple chain of pipeswithout forks or merges abranch, an interconnected
set of pipe branches a pipe assembly, and a series of tuples passing through a pipe branch or assembly atuple stream.

Pipe assemblies are specified independently of the data source they are to process. So before a pipe assembly can be
executed, it must be bound to taps, i.e., data sources and sinks. The result of binding one or more pipe assemblies to
tapsisaflow, which is executed on a computer or cluster using the Hadoop framework.

Multiple flows can be grouped together and executed as a single process. In this context, if one flow depends on the
output of another, it isnot executed until all of its data dependencies are satisfied. Such a collection of flowsis called
acascade.

3.2 Pipe Assemblies

Pipe assemblies define what work should be done against tuple streams, which are read from tap sources and written
to tap sinks. The work performed on the data stream may include actions such as filtering, transforming, organizing,
and calculating. Pipe assemblies may use multiple sources and multiple sinks, and may define splits, merges, and joins
to manipulate the tuple streams.

Pipe Assembly Workflow

Pipe assemblies are created by chaining cascadi ng. pi pe. Pi pe classes and subclasses together. Chaining is
accomplished by passing the previous Pi pe instances to the constructor of the next Pi pe instance.

The following example demonstrates this type of chaining. It creates two pipes - a"left-hand side” (Ihs) and a"'right-
hand side" (rhs) - and performs some processing on them both, using the Each pipe. Thenit joinsthe two pipesinto one,
using the CoGroup pipe, and performs several operations on the joined pipe using Every and GroupBY. The specific
operations performed are not important in the example; the point is to show the general flow of the data streams. The
diagram after the example gives avisual representation of the workflow.

Cascading Cascading 2.2 User Guide 6

Data Processing

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("lhs");

| hs new Each(| hs, new SonmeFunction());
| hs = new Each(| hs, new SoneFilter());

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SoneFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|lhs, rhs);

join new Every(join, new SoneAggregator());

join = new GroupBy(join);

join = new Every(join, new SonmeAggregator());

/1 the tail of the assenbly
join = new Each(join, new SoneFunction());

Example 3.1 Chaining Pipes

The following diagram is avisual representation of the example above.

©00eeee
oFs .

Common Stream Patterns

As data moves through the pipe, streams may be separated or combined for various purposes. Here are the three basic
patterns:

Split
A split takes a single stream and sends it down multiple paths - that is, it feeds a single Pi pe instance into two
or more subsequent separate Pi pe instances with unique branch names.

Cascading Cascading 2.2 User Guide 7

Data Processing

Merge
A merge combines two or more streams that have identical fields into a single stream. This is done by passing
two or more Pi pe instancesto aMer ge or G oupBy pipe.

Join
A join combines data from two or more streams that have different fields, based on common field values
(analogous to a SQL join.) Thisis done by passing two or more Pi pe instances to aHashJoi n or CoG oup
pipe. The code sequence and diagram above give an example.

Data Processing

In addition to directing thetupl e streams - using splits, merges, and joins- pipe assemblies can examine, filter, organize,
and transform the tuple data as the streams move through the pipe assemblies. To facilitate this, the valuesin the tuple
aretypically given field names, just as database columns are given names, so that they may be referenced or selected.
The following terminology is used:

Operation
Operations(cascadi ng. oper ati on. Qper at i on) accept aninput argument Tuple, and output zero or more
result tuples. Thereare afew sub-typesof operations defined bel ow. Cascading hasanumber of generic Operations
that can be used, or devel opers can create their own custom Operations.

Tuple
In Cascading, datais processed as a stream of Tuples (cascadi ng. t upl e. Tupl e), which are composed of
fields, much like a database record or row. A Tuple is effectively an array of (field) values, where each value
canbeany j ava. | ang. Obj ect Javatype (or byt e[] array). For information on supporting non-primitive
types, see Custom Types.

Fields
Fields (cascadi ng. t upl e. Fi el ds) are used either to declare the field names for fields in a Tuple, or
reference field valuesin a Tuple. They can either be strings (such as "firstname" or "birthdate"), integers (for the
field position, starting at O for the first position, or starting at - 1 for the last position), or one of the predefined
Fields sets (such as Fi el ds. ALL, which selects all valuesin the Tuple, like an asterisk in SQL). For more on
Fields sets, see Field Algebra).

3.3 Pipes

The codefor the sampl e pi pe assembly above, Chaining Pipes, consistsalmost entirely of aseriesof Pi pe constructors.
Thissection describesthevariousPi pe classesindetail. Thebaseclasscascadi ng. pi pe. Pi pe anditssubclasses
are shown in the diagram below.

Cascading Cascading 2.2 User Guide 8

Data Processing

0660666

—————g————

SEEETS

ThePi pe class isused to instantiate and name a pipe. Pipe hames are used by the planner to bind taps to the pipe as
sourcesor sinks. (A third option isto bind atap to the pipe branch asatrap, discussed el sewhere as an advanced topic.)

Types of Pipes

The SubAssenbl y subclass is a specia type of pipe. It is used to nest re-usable pipe assemblies within a Pi pe
classfor inclusion in alarger pipe assembly. For more information on this, see the section on SubAssemblies.

The other six types of pipes are used to perform operations on the tuple streams as they pass through the pipe
assemblies. This may involve operating on the individual tuples (e.g., transform or filter), on groups of related tuples
(e.g., count or subtotal), or on entire streams (e.g., split, combine, group, or sort). These six pipe types are briefly
introduced here, then explored in detail further below.

Each
These pipes perform operations based on the data contents of tuples - analyze, transform, or filter. The Each pipe
operates on individual tuples in the stream, applying functions or filters such as conditionally replacing certain
field values, removing tuples that have values outside a target range, etc.

You can aso use Each to split or branch a stream, simply by routing the output of an Each into a different
pipe or sink.

Note that with Each, as with other types of pipe, you can specify alist of fields to output, thereby removing
unwanted fields from a stream.

Mer ge
Just as Each can be used to split one stream into two, Mer ge can be used to combine two or more streams into
one, as long as they have the same fields.

Cascading Cascading 2.2 User Guide 9

Data Processing

A Mer ge accepts two or more streams that have identical fields, and emits a single stream of tuples (in arbitrary
order) that contains all the tuples from all the specified input streams. Thus a Merge is just a mingling of al the
tuples from the input streams, as if shuffling multiple card decksinto one.

Use Mer ge when no grouping is required (i.e., no aggregator or buffer operations will be performed). Mer ge is
much faster than Gr oupBy (see below) for merging.

To combine streams that have different fields, based on one or more common values, use CoGr oup or
HashJoi n.

G oupBy
Gr oupBYy groups the tuples of a stream based on common valuesin a specified field.

If passed multiple streams as inputs, it performs a merge before the grouping. As with Mer ge, a G- oupBy
requires that multiple input streams share the same field structure.

The purpose of grouping is typically to prepare a stream for processing by the Every pipe, which performs
aggregator and buffer operations on the groups, such as counting, totalling, or averaging values within that group.

It should be clear that "grouping” here essentially means sorting all the tuples into groups based on the value of
aparticular field. However, within a given group, the tuples are in arbitrary order unless you specify a secondary
sort key. For most purposes, a secondary sort is not required and only increases the execution time.

Every
The Ever y pipe operates on a tuple stream that has been grouped (by G- oupBy or CoGr oup) on the values
of a particular field, such as timestamp or zipcode. It's used to apply aggregator or buffer operations such as
counting, totaling, or averaging field values within each group. Thusthe Ever y classisonly for use on the output
of Gr oupBy or CoGr oup, and cannot be used with the output of Each, Mer ge, or HashJoi n.

An Every instance may follow another Ever y instance, so Aggr egat or operations can be chained. Thisis
not true for Buf f er operations.

CoG oup
CoGr oup performs ajoin on two or more streams, similar to a SQL join, and groups the single resulting output
stream on the value of a specified field. As with SQL, the join can be inner, outer, |eft, or right. Self-joins are
permitted, as well as mixed joins (for three or more streams) and custom joins. Null fields in the input streams
become corresponding null fields in the output stream.

The resulting output stream contains fields from all the input streams. If the streams contain any field namesin
common, they must be renamed to avoid duplicate field names in the resulting tuples.

HashJoi n
HashJoi n performsajoin on two or more streams, similar to a SQL join, and emits asingle stream in arbitrary
order. As with SQL, the join can be inner, outer, left, or right. Self-joins are permitted, as well as mixed joins
(for three or more streams) and custom joins. Null fields in the input streams become corresponding null fields
in the output stream.

For applications that do not require grouping, HashJoi n provides faster execution than CoGr oup, but only
within certain prescribed cases. It is optimized for joining one or more small streams to no more than one

Cascading Cascading 2.2 User Guide 10

Data Processing

large stream. Developers should thoroughly understand the limitations of this class, as described below, before
attempting to use it.

The following table summarizes the different types of pipes.

Table 3.1. Comparison of pipe types

Pipe type Purpose Input Output

Pi pe instantiate a pipe; create or | name a (named) pipe
name a branch

SubAssenbl y create nested subassemblies

Each apply afilter or function, or | tuplestream (grouped or not) | a tuple stream, optionally
branch a stream filtered or transformed

Mer ge merge two or more streams | two or more tuple streams | atuple stream, unsorted
with identical fields

G oupBy sort/group on field values; | one or more tuple streams|a single tuple stream,
optionaly merge two or | withidentical fields grouped on key field(s) with
more streams with identical optional secondary sort
fields

Every apply aggregator or buffer | grouped tuple stream a tuple stream plus new
operation fields with operation results

CoG oup join 1 or more streams on | one or moretuple streams | a single tuple stream, joined
matching field values on key field(s)

HashJoi n join 1 or more streams on | one or moretuplestreams | a tuple stream in arbitrary
matching field values order

The Each and Every Pipes

The Each and Every pipes perform operations on tuple data - for instance, perform a search-and-replace on tuple
contents, filter out some of the tuples based on their contents, or count the number of tuples in a stream that share
acommon field value.

Here is the syntax for these pipes:

new Each(previ ousPi pe, argunent Sel ector, operation, outputSelector)
new Every(previousPi pe, argunent Sel ector, operation, outputSelector)
Both types take four arguments:
» aPipeinstance
Cascading Cascading 2.2 User Guide 11

Data Processing

* an argument selector
 an Operation instance
 an output selector on the constructor (selectors here are Fields instances)

The key difference between Each and Every isthat the Each operates on individual tuples, and Ever y operates
on groups of tuples emitted by G- oupBy or CoG oup. This affects the kind of operations that these two pipes can
perform, and the kind of output they produce as a result.

The Each pipe applies operations that are subclasses of Funct i ons and Fi | t er s (described in the Javadoc). For
example, using Each you can parselinesfrom alogfileinto their constituent fields, filter out all lines except theHTTP
GET requests, and replace the timestring fields with date fields.

Similarly, since the Every pipe works on tuple groups (the output of a G oupBy or CoG oup pipe), it applies
operations that are subclasses of Aggr egat or s and Buf f er s. For example, you could use G oupBy to group the
output of the above Each pipe by date, then use an Ever y pipe to count the GET requests per date. The pipe would
then emit the operation results as the date and count for each group.

input output 4
:‘ Flelds :
'

(=g)
argument declared | input declared
Fields Fields é Fields X Fields /j
Y
argument argument result (i~ i_n;n_n_\v’_r_e;tﬁt_‘\\ output
! e
[Selector} [Tuple } »| Operation Tuple é Tuple g? Tuple ’J

| o o = a

In the syntax shown at the start of this section, the argument selector specifies fields from the input tuple to use as
input values. If the argument selector is not specified, thewholeinput tuple (Fi el ds. ALL) ispassed to the operation
as aset of argument values.

Most Oper at i on subclasses declare result fields (shown as "declared fields" in the diagram). The output selector
specifies the fields of the output Tupl e from the fields of the input Tupl e and the operation result. This new output
Tupl e becomes the input Tupl e to the next pipe in the pipe assembly. If the output selector isFi el ds. ALL, the
output istheinput Tupl e plus the operation result, merged into asingle Tupl e.

Note that it's possible for aFunct i on or Aggr egat or to return more than one output Tupl e perinput Tupl e. In
this case, the input tuple is duplicated as many times as necessary to create the necessary output tuples. Thisissimilar
to the reiteration of values that happens during ajoin. If afunction is designed to always emit three result tuples for
every input tuple, each of the three outgoing tuples will consist of the selected input tuple values plus one of the three
sets of function result values.

Cascading Cascading 2.2 User Guide 12

Data Processing

input output b

v v v

Tuple
'"'T-;___'__“__'__“__'___'__"__'__"__'___"'“"""""""""“'l
|
i Pipe .
I (S s AR
| default: y value declared I default:
|\Fie|dS.ALL/I | Fields @ Fields | |\FIe|dS.RESULT?

e N/ N/ s IN L

argument

Selector

If the result selector is not specified for an Each pipe performing aFunct i ons operation, the operation results are
returned by default (Fi el ds. RESULTS), discarding the input tuple values in the tuple stream. (Thisis not true of
Fi | t er s, which either discard the input tuple or return it intact, and thus do not use an output selector.)

Fields
Vo

Tuple
i e i S e |
'Pipe !
pmmm s . (=== === N .
: Adefault:) Il group Y declared \I | <default: |
\fl_elfis.él__l_) | Fields Fields /| |\ Fields.ALL /I

7 \ /N
&

: v :
argument C’_g;r;l:p_ e r_e;tﬁt_ ‘\\ OUI)Ut
| no_
. E==c=Eaieeee 2
|

For the Ever y pipe, the Aggregator results are appended to the input Tuple (Fi el ds. ALL) by default.

Note that the Ever y pipe associates Aggr egat or results with the current group Tupl e (the unique keys currently
being grouped on). For example, if you are grouping on the field "department" and counting the number of "names’

grouped by that department, the resulting output Fields will be ["department”,"num_employees'].

If you are also adding up the salaries associated with each "name" in each "department”, the output Fields will be
["department”,"num_employees","total_salaries'].

This is only true for chains of Aggr egat or Operations - you are not allowed to chain Buf f er operations, as
explained below.

Cascading Cascading 2.2 User Guide 13

Data Processing

..... v
” (e)
. . (_Felds X Pelds) NI

5 v
¥ eV
argument 1 value @ result [- output
Selector ' Tuple X Tuple [Selector
Nooooood oooooc v
|
|

WhentheEvery pipeisusedwithaBuf f er operation, instead of an Aggr egat or , thebehavior isdifferent. Instead
of being associated with the current grouping tuple, the operation results are associated with the current values tuple.
This is analogous to how an Each pipe works with a Funct i on. This approach may seem dlightly unintuitive, but
provides much moreflexibility. To put it another way, the results of the buffer operation are not appended to the current
keys being grouped on. It is up to the buffer to emit them if they are relevant. It is aso possible for a Buffer to emit
more than one result Tuple per unique grouping. That is, a Buffer may or may not emulate an Aggregator, where an
Aggregator isjust aspecia optimized case of a Buffer.

For more information on how operations process fields, see Operations and Field-processing .

Merge
The Mer ge pipeisvery simple. It accepts two or more streams that have the same fields, and emits a single stream
containing all the tuples from all the input streams. Thus a merge is just a mingling of all the tuples from the input

streams, asif shuffling multiple card decks into one. Note that the output of Mer ge isin arbitrary order.

Pi pe nerge = new Merge(| hs, rhs);

Example 3.2 Merging Two Tuple Streams

The example above simply combines all the tuples from two existing streams ("lhs' and "rhs") into a new tuple stream
("merge").

GroupBy

Gr oupBy groups the tuples of a stream based on common values in a specified field. If passed multiple streams as
inputs, it performs a merge before the grouping. As with Mer ge, a Gr oupBYy requires that multiple input streams
share the same field structure.

The output of G oupBYy is suitable for the Ever y pipe, which performs Aggr egat or and Buf f er operations,
such as counting, totalling, or averaging groups of tuples that have a common vaue (e.g., the same date). By defaullt,

Cascading Cascading 2.2 User Guide 14

Data Processing

GroupBy performs no secondary sort, so within each group the tuples are in arbitrary order. For instance, when
grouping on "lastname”, the tuples[doe, j ohn] and[doe, j ane] end up inthe same group, but in arbitrary
sequence.

Secondary sorting

If multi-level sorting is desired, the names of the sort fields on must be specified to the G- oupBy instance, as
seen below. In this example, val uel and val ue2 will arrive in their natural sort order (assuming they are
j ava. | ang. Conpar abl e).

Fi el ds groupFi el ds = new Fi el ds("groupl", "group2");
Fiel ds sortFields = new Fields("val uel", "value2");
Pi pe groupBy = new G oupBy(assenbly, groupFields, sortFields);

Example 3.3 Secondary Sorting
If we don't care about the order of val ue2, we can leaveit out of thesor t Fi el ds Fi el ds constructor.

In the next example, we reverse the order of val uel while keeping the natural order of val ue2.

Fi el ds groupFi el ds = new Fields("groupl", "group2");
Fiel ds sortFields = new Fields("val uel", "value2");

sortFi el ds. set Conpar ator("val uel", Collections.reverseOder());

Pi pe groupBy = new G oupBy(assenbly, groupFields, sortFields);

Example 3.4 Reversing Secondary Sort Order

Whenever there is an implied sort during grouping or secondary sorting, acustomj ava. uti | . Conpar at or can
optionally be supplied to the grouping Fi el ds or secondary sort Fi el ds. This allows the developer to use the
Fi el ds. set Conpar at or () call to control the sort.

To sort or group on non-Java-comparable classes, consider creating a custom Conpar at or .

Below isamore practical example, where we group by the "day of the year", but want to reverse the order of thetuples
within that grouping by "time of day".

Cascading Cascading 2.2 User Guide 15

Data Processing

Fi el ds groupFields = new Fields("year", "nonth", "day");
Fields sortFields = new Fields("hour", "mnute", "second");

sort Fi el ds. set Conpar at or s(
Col I ections.reverseOrder (), /1 hour
Col I ections. reverseOrder (), /1 mnute
Col l ections.reverseOrder()); // second

Pi pe groupBy = new GroupBy(assenbly, groupFields, sortFields);

Example 3.5 Reverse Order by Time

CoGroup

The CoGr oup pipeissimilar to G- oupBy, but instead of a merge, performs ajoin. That is, CoGr oup accepts two
or more input streams and groups them on one or more specified keys, and performs a join operation on equal key
values, similar to a SQL join.

The output stream contains all the fields from all the input streams.

Aswith SQL, the join can be inner, outer, left, or right. Self-joins are permitted, as well as mixed joins (for three or
more streams) and custom joins. Null fieldsin theinput streams become corresponding null fieldsin the output stream.

Since the output is grouped, it issuitable for the Ever y pipe, which performs Aggr egat or and Buf f er operations
- such as counting, totalling, or averaging groups of tuples that have a common value (e.g., the same date).

The output stream is sorted by the natural order of the grouping fields. To control this order, at least the first
gr oupi ngFi el ds value given should be an instance of Fi el ds containing Conpar at or instances for the
appropriate fields. This allows fine-grained control of the sort grouping order.

Field names

In ajoin operation, all the field names used in any of the input tuples must be unique; duplicate field names are not
allowed. If the names overlap there is a collision, as shown in the following diagram.

["url" I "word" I "count"] ["url" I"sentence'I "count”]

|

|

|
\Y

["url" I "word" I "count" I "url" I"sentence"I "count"]

Cascading Cascading 2.2 User Guide 16

Data Processing

In thisfigure, two streams are to be joined on the "url" field, resulting in anew Tuple that contains fields from the two
input tuples. However, the resulting tuple would include two fields with the same name ("url"), which is unworkable.
To handle the conflict, developers can use the decl ar edFi el ds argument (described in the Javadoc) to declare
unique field names for the output tuple, as in the following example.

Fiel ds common = new Fields("url");
Fi el ds decl ared = new Fi el ds(
"urll", "word", "wd_count", "url2", "sentence", "snt_count"
)
Pipe join =
new CoG oup(|hs, conmon, rhs, common, declared, new I nnerJoin());

Example 3.6 Joining Two Tuple Sreams with Duplicate Field Names

["url" I "word" I "count"] ["url" I"sentence'I "count”]

\Y
["urll" I "word" I‘Wd_count"I "url2" I‘sentence"I‘snt_count"]

This revised figure demonstrates the use of declared field names to prevent a planning failure.

It might seem preferable for Cascading to automatically recognize the duplication and simply merge the identically-
named fields, saving effort for the devel oper. However, consider the case of an outer type join in which one field (or
set of fields used for the join) for agiven join side happensto be nul | . Discarding one of the duplicate fields would
lose thisinformation.

Further, the internal implementation relies on field position, not field names, when reading tuples; the field names are
adevice for the developer. This approach allows the behavior of the CoGr oup to be deterministic and predictable.

The Joiner class

In the example above, we explicitly specified a Joiner class (InnerJoin) to perform ajoin on our data. There are five
Joiner subclasses, as shown in this diagram.

Cascading Cascading 2.2 User Guide 17

Data Processing

SEEEE

In CoGr oup, thejoin is performed after all the input streams are first co-grouped by their common keys. Cascading
must create a "bag" of datafor every grouping in the input streams, consisting of all the Tupl e instances associated
with that grouping.

lhs rhs
Y Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
Y Y A Y Y A
"url" I "word" I "count" j "url" I"sentence"I "count" j

It's already been mentioned that joins in Cascading are analogous to joinsin SQL. The most commonly-used type of
joinistheinner join, the default in CoGr oup. Aninner join tries to match each Tuple on the "lhs' with every Tuple
onthe"rhs", based on matching field values. With an inner join, if either side has no tuplesfor agiven value, no tuples
are joined. An outer join, conversely, alows for either side to be empty and simply substitutes a Tupl e containing
nul | valuesfor the non-existent tuple.

This sample datais used in the discussion below to explain and compare the different types of join:

LHS
RHS

[0,a] [1,b] [2,c]
[0,A] [2,CQ [3,D

In each join type below, the values are joined on the first tuple position (the join key), a numeric value. Note that,
when Cascading joins tuples, the resulting Tupl e contains al the incoming values from in incoming tuple streams,
and does not discard the duplicate key fields. As mentioned above, on outer joins where there is no equivalent key in
the alternate stream, nul | values are used.

For exampl e using the data above, the result Tuple of an "inner" join with join key value of 2 would be[2, c, 2, C] .
Theresult Tuple of an "outer" join with join key value of 1 wouldbe[1, b, nul |, nul 1] .

InnerJoin
Aninner join only returnsajoined Tupl e if neither bag for the join key is empty.

Cascading Cascading 2.2 User Guide 18

Data Processing

[0,a,0,A [2,c,2,(C

OuterJoin
An outer join performs ajoin if one bag (Ieft or right) for the join key is empty, or if neither bag is empty.

[0,a,0,A [1,b,null,null] [2,c,2,C [null,null,3,D

Leftdoin
A left join can also be stated as a left inner and right outer join, where it is acceptable for the right bag to be
empty (but not the left).

[0,a,0,A] [1,b,null,null] [2 ¢, 2 C

RightJoin
A right join can aso be stated as a left outer and right inner join, where it is acceptable for the left bag to be
empty (but not the right).

[0,a,0,A [2,¢c,2,C [null,null,3,D

MixedJoin
A mixed join iswhere 3 or more tuple streams are joined, using asmall Boolean array to specify each of the join
types to use. For more information, seethe cascadi ng. pi pe. cogr oup. M xedJoi n classin the Javadoc.

Custom
Developers can subclassthe cascadi ng. pi pe. cogr oup. Joi ner classto create custom join operations.

Scaling

CoG oup attemptsto store the entire current unique keystuple "bag" from the right-hand stream in memory for rapid
joining to the left-hand stream. If the bag is very large, it may exceed a configurable threshold and be spilled to disk,
reducing performance and potentially causing a memory error (if the threshold value is too large). Thus it's usually
best to put the stream with the largest groupings on the left-hand side and, if necessary, adjust the spill threshold as
described in the Javadoc.

HashJoin

HashJoi n performsajoin (similar to a SQL join) on two or more streams, and emits a stream of tuples that contain
fields from al of the input streams. With a join, the tuples in the different input streams do not typically contain the
same set of fields.

Aswith CoG oup, the field names must all be unique, including the names of the key fields, to avoid duplicate
field namesin the emitted Tupl e. If necessary, usethedecl ar edFi el ds argument to specify unique field names
for the output.

Aninner join is performed by default, but you can choose inner, outer, |eft, right, or mixed (three or more streams).
Self-joins are permitted. Devel opers can a so create custom Joinersif desired. For more information on types of joins,
refer to the section called “ The Joiner class’ or the Javadoc.

Cascading Cascading 2.2 User Guide 19

Data Processing

Fields | hsFields = new Fields("fieldA", "fieldB");
Fi el ds rhsFi el ds new Fields("fieldC', "fieldD");
Pipe join =
new HashJoin(I hs, |hsFields, rhs, rhsFields, new InnerJoin());

Example 3.7 Joining Two Tuple Sreams

The example above performs an inner join on two streams ("lhs' and "rhs"), based on common values in two fields.
The field names that are specifiedin| hsFi el ds and r hsFi el ds are among the field names previously declared
for the two input streams.

Scaling

For joins that do not require grouping, HashJoi n provides faster execution than CoGr oup, but it operates within
stricter limitations. It is optimized for joining one or more small streams to no more than one large stream.

Unlike CoGr oup, HashJoi n attemptsto keep the entire right-hand stream in memory for rapid comparison (not just
the current grouping, as no grouping is performed for aHashJoi n). Thusavery large tuple stream in the right-hand
stream may exceed a configurable spill-to-disk threshold, reducing performance and potentially causing a memory
error. For this reason, it's advisable to use the smaller stream on the right-hand side. Additionally, it may be helpful
to adjust the spill threshold as described in the Javadoc.

Due to the potentia difficulties of using HashJoi n (as compared to the slower but much more reliable CoG- oup),
developers should thoroughly understand this class before attempting to useiit.

Frequently the HashJoi n is fed afiltered down stream of Tuples from what was originally a very large file. To
prevent the large file from being replicated throughout a cluster, when running in Hadoop mode, use aCheckpoi nt
pipe at the point where the data has been filtered down to its smallest before it is streamed into a HashJoi n. This
will force the Tuple stream to be persisted to disk and new FI owSt ep (MapReduce job) to be created to read the
smaller data size more efficiently.

Setting Custom Pipe Properties

By default, the properties passed to a FlowConnector subclass become the defaultsfor every Flow instance created by
that FlowConnector. In the past, if some of the Flow instances needed different properties, it was necessary to create
additional FlowConnectors to set those properties. However, it is now possible to set properties at the Pipe scope and
at the process FlowStep scope.

Setting properties at the Pipe scope lets you set a property that is only visible to a given Pipe instance (and its child
Operation). This allows Operations such as custom Functions to be dynamically configured.

More importantly, setting properties at the process FlowStep scope alows you to set properties on a Pipe that are
inherited by the underlying process during runtime. When running on the Apache Hadoop platform (i.e., when using
the HadoopFlowConnector), a FlowStep is the current MapReduce job. Thus a Hadoop-specific property can be set on
aPipe, such asaCoGroup. During runtime, the FlowStep (M apReduce job) that the CoGroup executesin is configured
with the given property - for example, a spill threshold, or the number of reducer tasks for Hadoop to deploy.

The following code samples demonstrates the basic form for both the Pipe scope and the process FlowStep scope.

Cascading Cascading 2.2 User Guide 20

Data Processing

Pipe join =
new HashJoi n(| hs, common, rhs, common, declared, new InnerJoin());

Spi | | abl eProps props = Spill abl eProps. spillabl eProps()
.set ConpressSpill (true)
.set MapSpi | | Threshol d(50 * 1000);

props. set Properties(join.getConfigDef(), ConfigDef.Mde. REPLACE);
Example 3.8 Pipe Scope

Pipe join =
new HashJoi n(| hs, common, rhs, conmon, declared, new |l nnerJoin());

Spi | | abl eProps props = Spill abl eProps. spill abl eProps()
.set ConpressSpill (true)
. set MapSpi | | Threshol d(50 * 1000);

props. set Properties(join.getStepConfigDef(), ConfigDef.Mde. DEFAULT);

Example 3.9 Step Scope

Asof Cascading 2.2, SubAssemblies can now be configured via the ConfigDef method.

3.4 Platforms

Cascading supports pluggable planners that allow it to execute on differing platforms. Planners are invoked by an
associated FI owConnect or subclass. Currently, only two planners are provided, as described below:

L ocal FlowConnector
The cascadi ng. fl ow. | ocal . Local Fl owConnect or provides a "loca" mode planner for running
Cascading completely in memory on the current computer. This allows for fast execution of Flows against local
files or any other compatible custom Tap and Schene classes.

The local mode planner and platform were not designed to scale beyond available memory, CPU, or disk on the
current machine. Thus any memory-intensive processes that use G oupBy, CoGr oup, or HashJoi n arelikely
to fail against moderately largefiles.

Local mode is useful for devel opment, testing, and interactive data exploration against sample sets.

HadoopFl owConnector
The cascadi ng. f| ow. hadoop. HadoopFl owConnect or provides a planner for running Cascading on
an Apache Hadoop cluster. This allows Cascading to execute against extremely large data sets over a cluster of
computing nodes.
Cascading's support for pluggable planners allows a pipe assembly to be executed on an arbitrary platform, using
platform-specific Tap and Scheme classes that hide the platform-related 1/O details from the devel oper. For example,
Hadoop uses or g. apache. hadoop. napr ed. | nput For mat to read data, but local mode is happy with a

Cascading Cascading 2.2 User Guide 21

Data Processing

java.io. FilelnputStream This detail is hidden from developers unless they are creating custom Tap and
Scheme classes.

3.5 Source and Sink Taps

All input data comes in from, and all output data goes out to, some instance of cascadi ng. t ap. Tap. A tap
represents a data resource - such as afile on the local file system, on a Hadoop distributed file system, or on Amazon
S3. A tap can be read from, which makes it a source, or written to, which makes it a sink. Or, more commonly, taps
act as both sinks and sources when shared between flows.

The platform on which your application is running (Cascading local or Hadoop) determines which specific classes
you can use. Details are provided in the sections below.

Schemes

If the Tap is about where the data is and how to access it, the Scheme is about what the data is and how to read it.
Every Tap must have a Scheme that describes the data. Cascading provides four Scheme classes:

TextLine
Text Li ne reads and writes raw text files and returns tuples which, by default, contain two fields specific to the
platform used. The first field is either the byte offset or line number, and the second field is the actual line of
text. When written to, all Tuple values are converted to Strings delimited with the TAB character (\t). A TextLine
scheme s provided for both the local and Hadoop modes.

By default TextLine usesthe UTF-8 character set. Thiscan be overridden on the appropriate TextLine constructor.

TextDelimited
Text Del i m t ed readsand writes character-delimited filesin standard formats such as CSV (comma-separated
variables), TSV (tab-separated variables), and so on. When written to, al Tuple values are converted to Strings
and joined with the specified character delimiter. This Scheme can optionally handle quoted values with custom
guote characters. Further, TextDelimited can coerce each value to a primitive type when reading a text file. A
TextDelimited scheme is provided for both the local and Hadoop modes.

By default TextDelimited uses the UTF-8 character set. This can be overridden on appropriate the TextDelimited
constructor.

SequenceFile
SequenceFi | e isbased on the Hadoop Sequence file, which is abinary format. When written to or read from,
all Tuplevalues are saved in their native binary form. Thisisthe most efficient file format - but be aware that the
resulting files are binary and can only be read by Hadoop applications running on the Hadoop platform.

WritableSequenceFile
Like the SequenceFi | e Scheme, Wi t abl eSequenceFi | e is based on the Hadoop Sequence file, but it
was designed to read and write key and/or value Hadoop W i t abl e objects directly. Thisis very useful if you
have sequence files created by other applications. During writing (sinking), specified key and/or value fields are
serialized directly into the sequence file. During reading (sourcing), the key and/or value objects are deserialized
and wrapped in a Cascading Tuple object and passed to the downstream pipe assembly. Thisclassisonly available
when running on the Hadoop platform.

Cascading Cascading 2.2 User Guide 22

Data Processing

There'sakey difference betweenthe Text Li ne and SequenceFi | e schemes. Withthe SequenceFi | e scheme,
data is stored as binary tuples, which can be read without having to be parsed. But with the Text Li ne option,
Cascading must parse each lineinto a Tupl e before processing it, causing a performance hit.

Platform-specific implementation details

Depending on which platform you use (Cascading local or Hadoop), the classes you use to specify schemes will vary.
Platform-specific details for each standard scheme are shown below.

Table 3.2. Platform-specific tap scheme classes

Description Cascading local platform Hadoop platform

Package Name cascadi ng. schene. | ocal cascadi ng. schene. hadoop
Read lines of text Text Li ne Text Li ne

Read delimited text (CSV, TSV, etc) TextDel i mi t ed TextDelimted

Cascading proprietary efficient SequenceFi |l e

binary

External Hadoop application binary Wit abl eSequenceFil e

(custom W i t abl e type)

Sequence File Compression

For best performance when running on the Hadoop platform, enable Sequence File Compression in the Hadoop
property settings - either block or record-based compression. Refer to the Hadoop documentation for the available
properties and compression types.

Taps

The following sample code creates a new Hadoop FileSystem Tap that can read and write raw text files. Since only
onefield nameis provided, the "offset" field is discarded, resulting in an input tuple stream with only "line" values.

Tap tap = new Hf s(new TextLine(new Fields("line")), path);

Example 3.10 Creating a new tap
Here are the most commonly-used tap types:

FileTap
Thecascadi ng. tap. | ocal . Fi | eTap tap is used with the Cascading local platform to access files on the
local file system.

Hfs
The cascadi ng. t ap. hadoop. Hf s tap uses the current Hadoop default file system, when running on the
Hadoop platform.

Cascading Cascading 2.2 User Guide 23

Data Processing

If Hadoop is configured for "Hadoop local mode" (not to be confused with Cascading local mode), its default file
system isthe local file system. If configured for distributed mode, its default file system is typically the Hadoop
distributed file system.

Note that Hadoop can be forced to use an external file system by specifying a prefix to the URL passed into anew
Hfstap. For instance, using "s3://somebucket/path” tells Hadoop to use the S3 Fi | eSyst emimplementation to
access filesin an Amazon S3 bucket. More information on this can be found in the Javadoc.

Also provided are four utility taps:

MultiSourceTap
Thecascadi ng. t ap. Mul ti Sour ceTap is used to tie multiple tap instances into asingle tap for use as an
input source. The only restriction is that all the tap instances passed to a new MultiSourceTap share the same
Scheme classes (not necessarily the same Scheme instance).

MultiSinkTap
Thecascadi ng. tap. Mul ti Si nkTap isused to tie multiple tap instances into a single tap for use as output
sinks. At runtime, for every Tuple output by the pipe assembly, each child tap to the MultiSinkTap will sink the
Tuple.

TemplateTap
Thecascadi ng. t ap. hadoop. Tenpl at eTap andcascadi ng. t ap. | ocal . Tenpl at eTap areused
to sink tuplesinto directory paths based on the valuesin the Tuple. More can be read below in Template Taps.

GlobHfs
Thecascadi ng. t ap. hadoop. @ obHf s tap accepts Hadoop style "file globbing" expression patterns. This
alows for multiple paths to be used as a single source, where all paths match the given pattern. Thistap is only
available when running on the Hadoop platform.

Platform-specific implementation details

Depending on which platform you use (Cascading local or Hadoop), the classes you use to specify file systems will
vary. Platform-specific details for each standard tap type are shown below.

Table 3.3. Platform-specific details for setting file system

Description Either platform Cascading local platform Hadoop platform
Package Name cascadi ng.tap cascadi ng.tap.local cascading.tap. hadoop
File access Fil eTap Hf s

Multiple Tapsas | Mul ti Sour ceTap
single source

MultipleTapsas | Mul ti Si nkTap
single sink

Bin/Partition data Tenpl at eTap Tenpl at eTap
into multiple files

Cascading Cascading 2.2 User Guide 24

Data Processing

Pattern match d obHf s
multiple files/dirs

3.6 Sink modes

Tap tap =
new Hf s(new TextLine(new Fields("line")), path, SinkMde. REPLACE);

Example 3.11 Overwriting An Existing Resource

All applications created with Cascading read data from one or more sources, processit, then write data to one or more
sinks. This is done via the various Tap classes, where each class abstracts different types of back-end systems that
store data as files, tables, blobs, and so on. But in order to sink data, some systems require that the resource (e.g., a
file) not exist before processing thus must be removed (deleted) before the processing can begin. Other systems may
allow for appending or updating of aresource (typica with database tables).

When creating a new Tap instance, a Si nkiMbde may be provided so that the Tap will know how to handle any
existing resources. Note that not all Taps support all Si nkMode values - for example, Hadoop does not support
appends (updates) from a MapReduce job.

The available SinkModes are:

Si nkMbde. KEEP
Thisisthe default behavior. If the resource exists, attempting to write over it will fail.

Si nkMode. REPLACE
This allows Cascading to delete the file immediately after the Flow is started.

Si nkMode. UPDATE
Allows for new tap types that can update or append - for example, to update or add records in a database. Each
tap may implement this functionality in its own way. Cascading recognizes this update mode, and if a resource
exists, will not fail or attempt to delete it.

Notethat Cascading itself only usestheselabelsinternally to know whento automatically call del et eResour ce()
on the Tap or to leave the Tap aone. It is up the the Tap implementation to actually perform a write or update
when processing starts. Thus, when start () or conpl ete() is called on a Fl ow, any sink Tap labeled
Si nkMode. REPLACE will haveitsdel et eResour ce() method called.

Conversaly, if a Fl ow is in a Cascade and the Tap is set to Si nkiMbde. KEEP or Si nkibde. REPLACE,
del et eResour ce() will becaledif andonly if thesink isstale(i.e., older thanthe source). ThisallowsaCascade
to behave like a"make" or "ant" build file, only running Flows that should be run. For more information, see Skipping
Flows.

It's also important to understand how Hadoop deals with directories. By default, Hadoop cannot source data from
directories with nested sub-directories, and it cannot write to directories that already exist. However, the good news
isthat you can simply point the Hf s tap to adirectory of datafiles, and they are all used as input - there's no need to
enumerate each individual fileintoaMul t i Sour ceTap. If there are nested directories, use G obHf s.

Cascading Cascading 2.2 User Guide 25

Data Processing

3.7 Fields Sets

Cascading applications can perform complex manipulation or "field algebra’ on thefields stored in tuples, using Fields
sets, afeature of the Fi el ds classthat provides a sort of wildcard tool for referencing sets of field values.

These predefined Fields sets are constant values on the Fi el ds class. They can be used in many places where the
Fi el ds classisexpected. They are:

FieldsALL
Thecascadi ng. t upl e. Fi el ds. ALL constant isawildcard that represents al the current available fields.

/1 incoming -> first, last, age

String expression = "first + \" \" + last";
Fields fields = new Fields("full");

Expr essi onFunction full =

new Expressi onFunction(fields, expression, String.class);

assenbly =
new Each(assenbly, new Fields("first", "last"), full, Fields.ALL);

/1 outgoing -> first, last, age, full

FieldsRESULTS
The cascadi ng. t upl e. Fi el ds. RESULTS constant is used to represent the field names of the current

operations return values. This Fields set may only be used as an output selector on a pipe, causing the pipe to
output a tuple containing the operation results.

/1 incoming -> first, |last, age

String expression = "first + \" \" + |ast";
Fields fields = new Fields("full");
Expr essi onFunction full =
new Expressi onFunction(fields, expression, String.class);

Fields firstLast = new Fields("first", "last");
assenmbly =

new Each(assenbly, firstLast, full, Fields. RESULTS);
/1l outgoing -> full

Fields REPLACE
The cascadi ng. t upl e. Fi el ds. REPLACE constant is used as an output selector to inline-replace values
in the incoming tuple with the results of an operation. This convenient Fields set allows operations to overwrite
the value stored in the specified field. The current operation must either specify the identical argument selector
field names used by the pipe, or use the ARGS Fields set.

Cascading Cascading 2.2 User Guide 26

Data Processing

/1 incoming -> first, last, age

/1 coerce to int
Identity function = new Identity(Fields. ARGS, Integer.class);

Fi el ds age = new Fi el ds("age");
assenbly = new Each(assenbly, age, function, Fields. REPLACE);

/1 outgoing -> first, |last, age

Fields. SWAP
The cascadi ng. t upl e. Fi el ds. SWAP constant is used as an output selector to swap the operation
arguments with its results. Neither the argument and result field names, nor the size, need to be the same. This

is useful for when the operation arguments are no longer necessary and the result Fields and values should be
appended to the remainder of the input field names and Tuple.

[/l incoming -> first, last, age
String expression = "first + \" \" + |last";
Fields fields = new Fields("full");

Expr essi onFunction full =
new Expressi onFunction(fields, expression, String.class);

Fields firstLast = new Fields("first", "last");
assenbly = new Each(assenbly, firstlLast, full, Fields.SWAP);

/1 outgoing -> age, full

Fields ARGS
Thecascadi ng. t upl e. Fi el ds. ARGS constant is used to let agiven operation inherit the field names of its
argument Tuple. ThisFields set isaconvenience and is typically used when the Pipe output selector isRESULTS
or REPLACE. Itisspecifically used by the Identity Function when coercing valuesfrom Stringsto primitive types.

/[l incoming -> first, last, age

/] coerce to int
Identity function = new ldentity(Fields. ARGS, Integer.class);

Fi el ds age = new Fields("age");
assenbly = new Each(assenbly, age, function, Fields. REPLACE);

/1 outgoing -> first, last, age

Fields. GROUP

Thecascadi ng. t upl e. Fi el ds. GROUP constant represents all the fields used as grouping key in the most
recent grouping. If no previous grouping existsin the pipe assembly, GROUP representsall the current field names.

Cascading Cascading 2.2 User Guide 27

Data Processing

/1 incoming -> first, last, age
assenbly = new G oupBy(assenbly, new Fields("first", "last"));
Fi el dJoiner full = new FieldJoiner(new Fields("full"™), " ");

assenbly = new Each(assenbly, Fields. GROUP, full, Fields.ALL);

/1 outgoing -> first, last, age, full

FieldsVALUES
Thecascadi ng. t upl e. Fi el ds. VALUES constant represents all the fields not used as grouping fieldsin a

previous Group. That is, if you have fields "a", "b", and "c", and group on "a', Fi el ds. VALUES will resolve
to"b" and "c".

/! incomng -> first, |last, age

assenbly = new G oupBy(assenbly, new Fields("age"));

Fi el dJoiner full = new FieldJoiner(new Fields("full"), " ");

assenbly = new Each(assenbly, Fields.VALUES, full, Fields.ALL);
/1 outgoing -> first, l|last, age, full

Fields.UNKNOWN

The cascadi ng. t upl e. Fi el ds. UNKNOMN constant is used when Fields must be declared, but it's not
known how many fields or what their names are. This allows for processing tuples of arbitrary length from an
input source or some operation. Use this Fields set with caution.

/1l incomng -> |ine

RegexSplitter function = new RegexSplitter(Fields. UNKNOMN, "\t");

Fields fields = new Fields("line");
assenbly =

new Each(assenbly, fields, function, Fields. RESULTS);

/] outgoing -> unknown

Fields.NONE

Thecascadi ng. t upl e. Fi el ds. NONE constant is used to specify no fields. Typically used as an argument
selector for Operations that do not process any Tuples, likecascadi ng. operati on. I nsert.

/! incoming -> first, |last, age

Cascading Cascading 2.2 User Guide 28

Data Processing

I nsert const ant

assenbly =

/1 outgoing -> first,

new Each(assenbly,

| ast,

age,

zip

Fi el ds. NONE,

new Insert(new Fields("zip"),

const ant

"77373");

Fi el ds. ALL

)

The chart below shows common ways to merge input and result fields for the desired output fields. A few minutes
with this chart may help clarify the discussion of fields, tuples, and pipes. Also see Each and Every Pipesfor detailson
the different columns and their relationshipsto the Each and Ever y pipes and Functions, Aggregators, and Buffers.

Input Fields Argument Selector Declared Fields Result Fields Output Selector Output Fields Comments
------ ~ TN
)) ‘)
i o I n s “
I\ _____ ,V I\ _____ /l
------ ~
))
n s “
|\ _____ /l
s | ——~ | N | - ~
1)))
| At : n n i A : mn
‘\ _____ - ‘_—_——
CTTTTTY)
“line" “time" : ALL ! "time"
| —— /'
P U e e T e P
)))) ‘ ’))
tOALL ! 1 UNKNOWN ! | UNKNOWN! ! RESULTS | | UNKNOWN!
‘\ _____ /' ‘\ _____ /' N ” ‘\ _____ /' N ”
------------- N et P TN R
[}) i 1}) i 1})
voAL T UNKNOWN! | UNKNOWN! tOALL ! | UNKNOWN!
‘\ _____ ’ ‘\ _____ /' R — /I ‘\ _____ /' R /I
T \ CTTTTTY \
“time" |"status" “status” | ARGS ! “status” | RESULTS ! “status”
| — /' | —— /'
------ ~ P TN
))))
i ARes I | FEPLACE “m
|\ _____ /l |\ _____ /l
o Y SWAPwill swap in
“m m : swe : [month)| argument fie fd s for
Neoooo - result
AR AR Y Output selAklow
n : RS : o : Al cause duplicate fie |
So—— - - Se———- - names.
------ ~ P TN P TN
)) i 1))
nm i A I i ARes) T “m
‘\ _____ /' ‘\ _____ - ‘\ _____ /'
F Y o Y o Y Output selAclow
“m@ : e : : AReS n@ : A : e cause duplicate fie |
(O - (O . (O . names.
------ ~ Y
))))
nm : ARes I : REPLACE : “m
(O . (O .
------ ~
))
@m m i Swae) St

3.8 Flows

When pipe assemblies are bound to source and sink taps, aFl owiscreated. Flowsare executablein the sensethat, once
they are created, they can be started and will execute on the specified platform. If the Hadoop platform is specified,
the Flow will execute on a Hadoop cluster.

Cascading

Cascading 2.2 User Guide

29

Data Processing

A Flow isessentially adata processing pipeline that reads data from sources, processes the data as defined by the pipe
assembly, and writes data to the sinks. Input source data does not need to exist at the time the Flow is created, but it
must exist by the time the Flow is executed (unlessit is executed as part of a Cascade - see Cascades for more on this).

The most common pattern isto create a Flow from an existing pipe assembly. But there are cases where aMapReduce
job (if running on Hadoop) has aready been created, and it makes senseto encapsulateit in aFlow class so that it may
participatein aCas cade and be scheduled with other Fl owinstances. Alternatively, viathe Riffle [http://github.com/
cwensel/riffle] annotations, third-party applications can participatein aCascade, and complex algorithms that result
in iterative Flow executions can be encapsulated as a single Flow. All patterns are covered here.

Creating Flows from Pipe Assemblies

HadoopFl owConnect or fl owConnect or = new HadoopFl owConnect or () ;

Flow fl ow =
f I owConnect or. connect ("fl ow nanme", source, sink, pipe);

Example 3.12 Creating a new Flow

To create aFlow, it must be planned though one of the FlowConnector subclass objects. In Cascading, each platform
(i.e., local and Hadoop) hasits own connectors. Theconnect () method is used to create new Flow instances based
on aset of sink taps, sourcetaps, and apipe assembly. Aboveisatrivial examplethat usesthe Hadoop mode connector.

Cascading Cascading 2.2 User Guide 30

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("lhs");

| hs
| hs

new Each(| hs, new SonmeFunction());
new Each(| hs, new SonmeFilter());

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SoneFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|lhs, rhs);

join = new Every(join, new SonmeAggregator());
Pi pe groupBy = new GroupBy(join);
groupBy = new Every(groupBy, new SoneAggregator());

/1 the tail of the assenbly
groupBy = new Each(groupBy, new SoneFunction());

Tap | hsSour ce
Tap rhsSource

new Hf s(new TextLine(), "lhs.txt");
new Hf s(new TextLine(), "rhs.txt");

Tap sink = new Hf s(new TextLine(), "output");

Fl owDef fl owDef = new Fl owDef ()
.set Name("fl ow nane")
.addSource(rhs, rhsSource)
.addSource(| hs, | hsSource)
.addTai | Si nk(groupBy, sink);

Fl ow fl ow = new HadoopFl owConnect or (). connect (fl owDef);

Example 3.13 Binding tapsin a Flow

The example above expands on our previous pipe assembly example by creating multiple source and sink taps and
planning a Flow. Note there are two branches in the pipe assembly - one named "lhs" and the other named "rhs".
Internally Cascading uses those names to bind the source taps to the pipe assembly. New in 2.0, a FlowDef can be
created to manage the names and taps that must be passed to a FlowConnector.

Cascading Cascading 2.2 User Guide 31

Data Processing

Configuring Flows

The FlowConnector constructor accepts the java.util.Property object so that default Cascading
and any platform-specific properties can be passed down through the planner to the platform at
runtime. In the case of Hadoop, any relevant Hadoop hadoop-defaul t.xm properties may be
added. For instance, it's very common to add mapred. map.tasks. specul ative. executi on,
mapr ed. reduce. t asks. specul ati ve. executi on, or mapred. chil d.java. opts.

One of the two properties that must always be set for production applications is the application Jar class or Jar path.

Properties properties = new Properties();

/1 pass in the class nane of your application

[/ this will find the parent jar at runtinme
AppProps. set Appl i cati onJar Cl ass(properties, Min.class);
/1 ALTERNATI VELY ...

/1 pass in the path to the parent jar

AppPr ops. set Appl i cati onJar Pat h(properties, pathToJdar);

/! pass properties to the connector
Fl onConnect or fl owConnect or = new HadoopFl owConnect or (properties);

Example 3.14 Configuring the Application Jar
More information on packaging production applications can be found in Executing Processes.

Note the pattern of using a static property-setter method
(cascadi ng. property. AppProps. set Appl i cati onJar Pat h).

Since the FI owConnect or can be reused, any properties passed on the constructor will be handed to all the Flows
it is used to create. If Flows need to be created with different default properties, a new FlowConnector will need to
be instantiated with those properties, or properties will need to be set on agiven Pi pe or Tap instance directly - via
theget Conf i gDef () or get St epConf i gDef () methods.

Skipping Flows

When a Fl ow participates in a Cascade, the Fl ow. i sSki pFl ow() method is consulted before calling
Fl ow. st art () ontheflow. Theresultisbased onthe Flow'sskip strategy. By default,i sSki pFl ow() returnstrue
if any of thesinksare stale- i.e., the sinks don't exist or the resources are older than the sources. However, the strategy
can be changed via the Fl ow. set FI owSki pStrat egy() and Cascade. set Fl owSki pStrat egy()
method, which can be called before or after a particular FI owinstance has been created.

Cascading provides a choice of two standard skip strategies:

Cascading Cascading 2.2 User Guide 32

Data Processing

FlowSkiplfSinkNotStale
This strategy - cascadi ng. f | ow. FI owSki pl f Si nkNot St al e - isthe default. Sinks are treated as stale
if they don't exist or the sink resources are older than the sources. If the SinkMode for the sink tap is REPLACE,
then the tap is treated as stale.

FlowSkiplf SinkExists
Thecascadi ng. f| ow. Fl owSki pl f Si nkExi st s strategy skipsthe Flow if the sink tap exists, regardless
of age. If the Si nkiMbde for the sink tap is REPLACE, then the tap is treated as stale.

Additionally, you can implement custom skip strategies by usng the interface
cascadi ng. f | ow. Fl owSki pSt r at egy.

Notethat FI ow. st art () doesnot consult thei sSki pFl ow() method, and consequently always triesto start the
Flow if called. It is up to the user code to call i sSki pFl ow() to determine whether the current strategy indicates
that the Flow should be skipped.

Creating Flows from a JobConf

If a MapReduce job aready exists and needs to be managed by a Cascade, then the
cascadi ng. f| ow. hadoop. MapReduceFl ow class should be used. To do this, after creating a Hadoop
JobConf instance ssimply pass it into the MapReduceF| ow constructor. The resulting FI ow instance can be used
like any other Flow.

Creating Custom Flows

Any custom Class can be treated as a Flow if given the correct Riffle [http://github.com/cwensel/riffle] annotations.
Riffle is a set of Java annotations that identify specific methods on a class as providing specific life-cycle and
dependency functionality. For more information, seethe Riffle documentation and examples. To usewith Cascading, a
Riffle-annotated instance must be passed tothecascadi ng. f| ow. hadoop. Pr ocessFl owconstructor method.
Theresulting Pr ocessFl owinstance can be used like any other Flow instance.

Since many agorithms need to perform multiple passes over a given data set, a Riffle-annotated Class can be written
that internally creates Cascading Flows and executes them until no more passes are needed. Thisislike nesting Flows
or Cascades in a parent Flow, which in turn can participate in a Cascade.

3.9 Cascades

|Cascade |

Cascading Cascading 2.2 User Guide 33

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle

Data Processing

A Cascade alows multiple Flow instances to be executed as a single logical unit. If there are dependencies between
the Flows, they are executed in the correct order. Further, Cascades act like Ant builds or Unix make files - that is,
a Cascade only executes Flows that have stale sinks (i.e., output data that is older than the input data). For more on
this, see Skipping Flows.

CascadeConnect or connector = new CascadeConnector();
Cascade cascade = connector.connect(flowFirst, flowSecond, flowThird);

Example 3.15 Creating a new Cascade

When passing Flowsto the CascadeConnector, order is not important. The CascadeConnector automatically identifies
the dependencies between the given Flows and creates a scheduler that starts each Flow as its data sources become
available. If two or more Flow instances have no interdependencies, they are submitted together so that they can
execute in paralel.

For more information, see the section on Topological Scheduling.

If an instance of cascadi ng. fl ow. Fl owSki pStrategy is given to a Cascade instance (via the
Cascade. set Fl owSki pSt r at egy() method), itisconsulted for every Flow instance managed by that Cascade,
and all skip strategies onthose Flow instancesareignored. For moreinformation on skip strategies, see Skipping Flows.

Cascading Cascading 2.2 User Guide 34

4. Executing Processes on Hadoop

4.1 Introduction

This section covers some of the operational mechanics of running an application that uses Cascading with the Hadoop
platform, including building the application jar file and configuring the operating mode.

To use the HadoopF| owConnect or (i.e., to run in Hadoop mode), Cascading requires that Apache Hadoop be
installed and correctly configured. Hadoop is an Open Source Apache project, freely available for download from the
Hadoop website, http://hadoop.apache.org/core/.

4.2 Building

Cascading ships with several jars and dependencies in the download archive. Alternatively, Cascading is available
over Maven and Ivy through the Conjars repository, along with a number of other Cascading-related projects. See
http://conjars.org [http://conjars.org/] for more information.

The core Cascading artifacts include the following:

cascading-core-2.2.x.jar
Thisjar contains the Cascading Core classfiles. It should be packaged with | i b/ *. j ar when using Hadoop.

cascading-local-2.2.x.jar
Thisjar contains the Cascading local mode classfiles. It is not needed when using Hadoop.

cascading-hadoop-2.2.x.jar
This jar contains the Cascading Hadoop specific dependencies. It should be packaged with | i b/ *. j ar when
using Hadoop.

cascading-xml-2.2.x.jar
This jar contains Cascading XML module class files and is optional. It should be packaged with | i b/ xmi /
* . j ar when using Hadoop.

Cascading works with either of the Hadoop processing modes - the default local standal one mode and the distributed
cluster mode. As specified in the Hadoop documentation, running in cluster mode requires the creation of a Hadoop
job jar that includes the Cascading jars, plus any needed third-party jars, inits| i b directory. Thisis true regardless
of whether they are Cascading Hadoop-mode applications or raw Hadoop MapReduce applications.

4.3 Configuring

During runtime, Hadoop must be told which application jar file should be pushed to the cluster. Typically, thisis done
viathe Hadoop APl JobConf object.

Cascading offers a shorthand for configuring this parameter, demonstrated here:

Properties properties = new Properties();

Cascading Cascading 2.2 User Guide 35

http://hadoop.apache.org/core/
http://conjars.org/
http://conjars.org/

Executing Processes on Hadoop

/1 pass in the class nane of your application
/1l this will find the parent jar at runtinme
AppProps. set Appl i cati onJarCl ass(properties, Min.class);

/1 ALTERNATI VELY ...

/1 pass in the path to the parent jar
AppPr ops. set Appl i cati onJar Pat h(properties, pathToJdar);

/! pass properties to the connector
Fl owConnect or fl owConnector = new HadoopFl owConnect or (properties);

Above we see two ways to set the same property - viathe set Appl i cati onJar C ass() method, and via the
set Appl i cati onJar Pat h() method. Oneis based on a Class name, and the other is based on aliteral path.

The first method takes a Class object that owns the "main" function for this application. The assumption here is that
Mai n. cl ass isnot located in a Java Jar that is stored in the | i b folder of the application Jar. If it is, that Jar is
pushed to the cluster, not the parent application jar.

The second method simply sets the path to the parent Class as a property.

In your application, only one of these methods needsto be called, but one of them must be called to properly configure
Hadoop.

JobConf jobConf = new JobConf();

/1 pass in the class nane of your application
/1 this will find the parent jar at runtine
j obConf . set Jar ByCl ass(Mai n. cl ass);

/1 ALTERNATI VELY ...

/1 pass in the path to the parent jar
j obConf . setJar (pat hToJdar);

/1 build the properties object using jobConf as defaults
Properties properties = AppProps. appProps()

. set Name("sanpl e- app")

.setVersion("1.2.3")

. bui | dProperties(jobConf);

/| pass properties to the connector
Fl owConnect or fl owConnector = new HadoopFl owConnect or (properties);

Example 4.1 Configuring the Application Jar with a JobConf

Cascading Cascading 2.2 User Guide 36

Executing Processes on Hadoop

Above we are starting with an existing Hadoop JobConf instance and building a Properties object with it as the
default.

4.4 Executing

Running a Cascading application is the same as running any Hadoop application. After packaging your application
into asinglejar (see Building), you must use bi n/ hadoop to submit the application to the cluster.

For example, to execute an application stuffed into your - appl i cati on. j ar, cal the Hadoop shell script:
$HADOOP_HQOVE/ bi n/ hadoop j ar your-application.jar [some parans]

Example 4.2 Running a Cascading Application

If the configuration scriptsin $HADOOP_CONF_ DI R are configured to use a cluster, the Jar is pushed into the cluster
for execution.

Cascading does not rely on any environment variables like $HADOOP_HOVE or $HADOOP_CONF_DI R, only bi n/
hadoop does.

It should be noted that eventhoughyour - appl i cati on. j ar ispassed onthecommandlinetobi n/ hadoop, this
in no way configures Hadoop to push thisjar into the cluster. Y ou must still call one of the property setters mentioned
above to set the proper path to the application jar. If misconfigured, it's likely that one of the internal libraries (found
in the lib folder) will be pushed to the cluster instead, and "Class Not Found" exceptions will be thrown.

4.5 Debugging

Debugging and testing in Cascading local mode, unlike Cascading Hadoop mode, is trivia as al the work and
processing happens in the local VM and in local memory. This dramatically simplifies the use of an IDE and
Debugger.Thus the very first recommendation for debugging Cascading applications on Hadoop is to first write tests
that run in Cascading local mode.

Along with the use of an IDE Debugger, Cascading provides two tools to help sort out runtime issues. First is the
use of the Debug filter.

It is abest practice to sprinkle Debug operators (see Debug Function) in the pipe assembly and rely on the planner
to remove them at runtime by setting a DebugLevel . Debug can only print to the local console via std out or std
error, thus making it harder for use on Hadoop, as Operations do not execute locally but on the cluster side. Debug
can optionally print the current field names, and a prefix can be set to hel p distingui sh between instances of the Debug
operation.

Additionally, the actual execution plan for a given Flow can be written out (and visualized) viathe Flow.writeDOT()
method. DOT files are simply text representation of graph data and can be read by tools like GraphViz and Omni
Graffle.

In Cascading local mode, these execution plans are exactly as the pipe assemblies were coded, except the sub-
assemblies are unwound and the field names across the Flow are resolved by the loca mode planner. That is,
Fi el ds. ALL and other wild cards are converted the actual field names or ordinals.

Cascading Cascading 2.2 User Guide 37

Executing Processes on Hadoop

In the case of Hadoop mode, using the HadoopFl owConnect or, the DOT files also contain the intermediate
Tap instances created to join MapReduce jobs together. Thus the branches between Tap instances are effectively
MapReduce jobs. See the Fl ow. wri t eSt epsDOT() method to write out al the MapReduce jobs that will be
scheduled.

This information can also be miseading to what is actually happening per Map or Reduce task cluster side.
For a more detailed view of the data pipeline actually executing on a given Map or Reduce task, set the
"cascading.stream.dotfile.path" property onthe Fl owConnect or . Thiswill write, cluster side, aDOT representation
of the current data pipeline path the current Map or Reduce task is handling which is a function of which file(s) the
Map or Reduce task are reading and processing. And if multiple files, which files are being read to which HashJoi n
instances. It is recommended to use arelative path like st epPl an/ .

If the connect () method on the current FI owConnect or fails, the resulting Pl anner Excepti on has a
wr i t eDOT() method that shows the progress of the current planner.

If Cascading is failing with an unknown internal runtime exception during Map or Reduce task startup, setting the
"cascading.stream.error.dotfile’ property will tell Cascading where to write a DOT representation of the pipeline it
was attempting to build, if any. Thisfile will allow the Cascading community to better identify and resolve issues.

Cascading Cascading 2.2 User Guide 38

5. Using and Developing Operations

5.1 Introduction

So far we've talked about setting up sources and sinks, shaping the data streams, referencing the datafields, and so on.
Within this Pipe framework, Operations are used to act upon the data - e.g., alter it, filter it, analyzeit, or transformiit.
Y ou can use the standard Operations in the Cascading library to create powerful and robust applications by combining
them in chains (much like Unix operations such as sed, grep, sort, uniq, and awk). And if you want to go further, it's
also very simple to develop custom Operations in Cascading.

There are four kinds of Operations: Functi on, Fi | t er, Aggr egat or, and Buf f er.

Operation

‘ ‘ W

Operations typically require an input argument Tuple to act on. And all Operations can return zero or more Tuple
object results - except Fi | t er , which simply returns a Boolean indicating whether to discard the current Tuple. A
Funct i on, for instance, can parse a string passed by an argument Tuple and return a new Tuple for every value
parsed (i.e., one Tuple for each "word"), or it may create asingle Tuple with every parsed value included as an element
in one Tuple object (e.g., one Tuple with "first-name" and "last-name" fields).

In theory, a Functi on can beused asa Fi | t er by not emitting a Tuple result. However, the Fi | t er typeis
optimized for filtering, and can be combined with logical Operations such as Not , And, O, etc.

During runtime, Operations actually receive arguments as one or more instances of the Tupl eEnt r y object. The
TupleEntry object holds the current Tupl e and a Fi el ds object that defines field names for positions within the
Tuple.

Except for Fi | t er, all Operations must declare result Fields, and if the actual output does not match the declaration,
the processwill fail. For example, consider aFunct i on written to parse words out of a String and return anew Tuple
for each word. If it declaresthat itsintended output isa Tuple with asingle field named "word", and then returns more
valuesin the Tuple beyond that single "word", processing will halt. However, Operations designed to return arbitrary
numbers of valuesin aresult Tuple may declare Fi el ds. UNKNOAN.

The Cascading planner always attemptsto "fail fast" where possible by checking the field name dependencies between
Pipes and Operations, but there may be some cases the planner can't account for.

All Operations must be wrapped by either an Each or an Ever y pipe instance. The pipe is responsible for passing
in an argument Tuple and accepting the resulting output Tuple.

Cascading Cascading 2.2 User Guide 39

Using and Developing Operations

Operations by default are assumed by the Cascading planner to be "safe". A safe Operation is idempotent; it can
safely execute multiple times on the exact same record or Tuple; it has no side-effects. If a custom Operation is not
idempotent, the method i sSaf e() must return f al se. This value influences how the Cascading planner renders
the Flow under certain circumstances.

5.2 Functions

A Funct i on expects a stream of individual argument Tuples, and returns zero or more result Tuples for each of
them. LikeaFi | t er,aFunct i on isused with an Each pipe, which may follow any pipe type.

To create a custom Funct i on, subclass the class cascadi ng. oper at i on. BaseOper at i on and implement
the interface cascadi ng. oper ati on. Functi on. Since the BaseOper ati on has been subclassed, the
oper at e method, as defined on the Funct i on interface, is the only method that must be implemented.

public class SoneFunction extends BaseOperation inplenments Function

{

public void operate(FlowProcess flowProcess, FunctionCall functionCall)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunments = functionCall.get Argunents();

/1l create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/1 insert sonme values into the result Tuple

/] return the result Tuple
functionCall.getQutputCollector().add(result);

}

Example 5.1 Custom Function

Whenever possible, functions should declare both the number of argument values they expect and the field names of
the Tuple they return. However, these declarations are optional, as explained below.

For input, functions must accept one or more values in a Tuple as arguments. If not specified, the default is to accept
any number of values (Oper at i on. ANY). Cascading verifies during planning that the number of arguments sel ected
matches the number of arguments expected.

For output, it's a good practice to declare the field names that a function returns. If not specified, the default is
Fi el ds. UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,
either by passing default values to the super constructor, or by accepting the values from the user via a constructor
implementation.

Cascading Cascading 2.2 User Guide 40

Using and Developing Operations

public class AddVal uesFuncti on extends BaseQperation inplenments Function

{
publ i ¢ AddVal uesFuncti on()

{

/1 expects 2 argunents, fail otherw se
super(2, new Fields("sunt));

}

publ i c AddVal uesFunction(Fields fieldDeclaration)
{

/1l expects 2 argunents, fail otherw se
super(2, fieldDeclaration);

}

public void operate(FlowProcess fl owProcess, FunctionCall functionCall)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunments = functionCall.get Argunents();

[/l create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/!l sumthe two argunents
int sum = argunments.getinteger(0) + argunents.getlnteger(1);

/! add the sumvalue to the result Tuple
result.add(sum);

/1 return the result Tuple
functionCall . getQutputCollector().add(result);

}

Example 5.2 Add Values Function

The example above implementsaFunct i on that acceptstwo vauesin the argument Tuple, adds them together, and
returns the result in anew Tuple.

The first constructor above assumes a default field name for the field that this Funct i on returns. In practice, it's
good to give the user the option of overriding the declared field names, alowing them to prevent possible field name
collisions that might cause the planner to fail.

Thislineis especially important:

int sum= argunents.getlinteger(0) +
argunents.getlnteger(1);

Cascading Cascading 2.2 User Guide 41

Using and Developing Operations

Note that ordinal numbers, not field names, are used here to get argument values. If field names had been used, the
AddV aluesFunction would have been coupled to the incoming stream.

Cascading Cascading 2.2 User Guide 42

Using and Developing Operations

public class Efficient AddVal uesFuncti on

ext ends BaseQOper ati on<Tupl e> i npl ements Functi on<Tupl e>

{
public Efficient AddVal uesFuncti on()

{

/1 expects 2 argunents, fail otherw se
super(2, new Fields("sum'));

}

public Efficient AddVal uesFunction(Fields fieldDeclaration)

{

/1 expects 2 argunents, fail otherw se
super(2, fieldDeclaration);

}

@verride

public void prepare(FlowProcess fl owProcess, OperationCall<Tuple> call)
{
/1l create a reusable Tuple of size 1
call.setContext(Tuple.size(1));
}

public void operate(FlowProcess fl owProcess, FunctionCall <Tuple> call)
{
/1 get the argunments Tupl eEntry
Tupl eEntry argunments = cal |l . get Argunent s();
/1 get our previously created Tuple
Tuple result = call.getContext();
/!l sumthe two argunents
int sum = argunents.getinteger(0) + argunents.getlnteger(1);
/1l set the sumvalue on the result Tuple
result.set(O, sum);
/1 return the result Tuple
cal |l . get Qut put Col | ector().add(result);
}

@verride

public void cleanup(Fl owProcess fl owProcess, OperationCall<Tuple> call)
{
call.setContext(null);
}

Examble 5.3 Add Values Function and Context
Cascading Cascading 2.2 User Guide 43

Using and Developing Operations

This example, a minor variation on the previous one, introduces the use of a "context" object and pr epar e() and
cl eanup() methods.

All Operations alow for a context object, simply a user-defined object that holds state between calls to the
oper at e() method. This alows for a given instance of the Operation to be thread safe on a platform that may use
multiple threads of execution versus multiple processes. It also allows deferring initialization of complex resources
until the Operation is engaged.

Thepr epare() andcl eanup() methods are invoked once per thread of execution, and in the case of the Hadoop
platform, only on the cluster side, never on the client.

In the above example, a Tupl e is used as the context; a more complex type isn't necessary. Also note
that the Tuple isn't storing state, but is re-used to reduce the number of new Object instances created.
In Cascading, it is perfectly safe to output the same Tuple instance from operate(). The method
functionCall.getQutputCollector().add(result) will notreturnuntil theresult Tupl e hasbeen
processed or persisted downstream.

5.3 Filter

A Fi | t er expectsastream of individual argument Tuples and returns a Boolean value for each one, stating whether
it should be discarded. LikeaFunct i on, aFi | t er isused with an Each pipe, which may follow any pipe type.

Tocreateacustom Fi | t er, subclassthe class cascadi ng. oper ati on. BaseQOper at i on and implement the
interface cascadi ng. operati on. Fi | t er. Because BaseQper at i on has been subclassed, thei sRenove
method, as defined onthe Fi | t er interface, isthe only method that must be implemented.

public class SoneFilter extends BaseOperation inplenents Filter

{

public bool ean i sRenove(Fl owProcess flowProcess, FilterCall call)

{
/1 get the argunments Tupl eEntry

Tupl eEntry argunments = call.get Argunents();

/] initialize the return result
bool ean i sRenbve = fal se;

[/l test the argunent values and set isRenove accordingly

return i sRenove;

}

Example 5.4 Custom Filter

Filters must accept one or more values in a Tuple as arguments, and should declare the number of argument values
they expect. If not specified, the default is to accept any number of values (Oper at i on. ANY). Cascading verifies
during planning that the number of arguments selected matches the number of arguments expected.

Cascading Cascading 2.2 User Guide 44

Using and Developing Operations

The number of arguments declaration must be done on the constructor, either by passing adefault valueto the super
constructor, or by accepting the value from the user via a constructor implementation.

public class StringlLengthFilter extends BaseOperation inplenments Filter

{
public StringLengthFilter()
{
/1 expects 2 argunents, fail otherw se
super(2);
}

publ i c bool ean i sRenove(Fl owProcess flowProcess, FilterCall call)
{
/1 get the argunments Tupl eEntry
Tupl eEntry argunents = call.get Argunents();

/] filter out the current Tuple if the first argunent length is greater
/1 than the second argunent integer val ue
return argunments.getString(O).length() > argunents.getlnteger(1);

}

Example 5.5 String Length Filter

The example above implements a Fi | t er that accepts two arguments and filters out the current Tuple if the first
argument, String length, is greater than the integer value of the second argument.

5.4 Aggregator

An Aggr egat or expects a stream of tuple groups (the output of a G- oupBy or CoGr oup pipe), and returns zero
or more result tuples for every group. An Aggr egat or may only be used with an Ever y pipe - which may follow
aG oupBy, aCoG oup, or another Ever y pipe, but not an Each.

Tocreateacustom Aggr egat or , subclasstheclasscascadi ng. oper at i on. BaseQper at i on andimplement
the interface cascadi ng. oper ati on. Aggr egat or . Because BaseOper at i on has been subclassed, the
start, aggr egat e, and conpl et e methods, as defined on the Aggr egat or interface, are the only methods
that must be implemented.

Cascading Cascading 2.2 User Guide 45

Using and Developing Operations

public class SoneAggregat or extends BaseQperati on<SoneAggr egat or . Cont ext >
i mpl enent s Aggr egat or <SonmeAggr egat or . Cont ext >

{

public static class Context
{
oj ect val ue;
}

public void start(Fl owProcess fl owProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{

/1 get the group values for the current grouping
Tupl eEntry group = aggregatorCall.get G oup();

/1 create a new custom context object
Cont ext context = new Context();

/1 optionally, populate the context object

/1 set the context object
aggregat or Cal | . set Cont ext (context);

}

public void aggregate(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{

/1 get the current argunent val ues
Tupl eEntry argunents = aggregatorCal|l.get Argunents();

/1 get the context for this grouping
Cont ext context = aggregatorCall.getContext();

/1 update the context object

}

public void conplete(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{
Cont ext context = aggregatorCall.getContext();

/! create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

/1 insert sonme values into the result Tuple based on the context

Example'3.6 CattanmAddnegat@sul t Tupl e
aggregat or Cal | . get Qut put Col | ector().add(result);

}

Using and Developing Operations

Whenever possible, Aggregators should declare both the number of argument values they expect and the field names
of the Tuple they return. However, these declarations are optional, as explained below.

For input, Aggregators must accept one or more valuesin aTuple asarguments. If not specified, the default isto accept
any number of values (Oper at i on. ANY). Cascading verifies during planning that the number of arguments selected
is the same as the number of arguments expected.

For output, it's good practice for Aggregators to declare the field names they return. If not specified, the default is
Fi el ds. UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,
either by passing default values to the super constructor, or by accepting the values from the user via a constructor
implementation.

Cascading Cascading 2.2 User Guide 47

Using and Developing Operations

public class AddTupl esAggr egat or
ext ends BaseQper at i on<AddTupl esAggr egat or . Cont ext >
i mpl ement s Aggr egat or <AddTupl esAggr egat or . Cont ext >

{

public static class Context
{
| ong val ue = 0;
}

publ i c AddTupl esAggr egat or ()
{
/1 expects 1 argunent, fail otherw se
super(1, new Fields("sum'));

}

publ i c AddTupl esAggregator(Fields fieldDeclaration)
{
/1 expects 1 argunent, fail otherw se
super(1, fieldDeclaration);

}

public void start(Fl owProcess fl owProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)
{
/1 set the context object, starting at zero
aggregatorCal | . set Context (new Context());

}

public void aggregate(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |l)
{
Tupl eEntry arguments = aggregatorCal |l . get Argunents();
Cont ext context = aggregatorCall.getContext();

/! add the current argunment value to the current sum
context.val ue += argunents. getlnteger(0);

}

public void conpl ete(FlowProcess flowProcess,
Aggr egat or Cal | <Cont ext > aggregatorCal |)

{
Cont ext context = aggregatorCall.getContext();

[/l create a Tuple to hold our result val ues
Tupl e result = new Tupl e();
Example 5.7 Add Tuples Aggregator
/1 set the sum
result.add(context.value);

/1 return the result Tuple
aggregat or Cal | . get Qut put Col | ector().add(result);

Using and Developing Operations

The example above implements an Aggr egat or that accepts a value in the argument Tuple, adds all the argument
tuplesin the current grouping, and returns the result as a new Tuple.

Thefirst constructor above assumes a default field name that this Aggr egat or returns. In practice, it's good to give
the user the option of overriding the declared field names, allowing them to prevent possible field name collisions that
might cause the planner to fail.

There are several constraints on the use of Aggregators that may not be self-evident. These are detailed in the Javadoc

5.5 Buffer

A Buf f er expects set of argument tuplesin the same grouping, and may return zero or more result tuples.

A Buf f er isvery similar to an Aggr egat or , except that it receives the current Grouping Tuple, and an iterator
of all the arguments it expects, for every value Tuple in the current grouping - al on the same method call. Thisis
very similar to the typical Reducer interface in MapReduce, and is best used for operations that need visibility to the
previous and next elementsin the stream - such as smoothing a series of time-stamps where there are missing values.

A Buf f er may only be used with an Ever y pipe, and it may only follow aGr oupBy or CoGr oup pipetype.

To create a custom Buf f er , subclass the classcascadi ng. oper at i on. BaseQper at i on and implement the
interface cascadi ng. oper ati on. Buf f er . Because BaseQper at i on has been subclassed, the oper at e
method, as defined on the Buf f er interface, isthe only method that must be implemented.

Cascading Cascading 2.2 User Guide 49

Using and Developing Operations

public class SoneBuffer extends BaseOperation inplenments Buffer

{
public void operate(FlowProcess flowProcess, BufferCall bufferCall)

{

/1 get the group values for the current grouping
Tupl eEntry group = bufferCall.getGoup();

/1 get all the current argunment values for this grouping
Iterator<Tupl eEntry> argunents = bufferCall.getArgunmentsiterator();

/Il create a Tuple to hold our result val ues
Tupl e result = new Tupl e();

whi | e(argunent s. hasNext ())
{

Tupl eEntry argunent = arguments. next ();

/1 insert sone values into the result Tuple based on the arguemmts

}

/] return the result Tuple
bufferCal |l . get Qut put Col | ector().add(result);

}

Example 5.8 Custom Buffer
Buffers should declare both the number of argument values they expect and the field names of the Tuple they return.

For input, Buffers must accept one or more values in a Tuple as arguments. If not specified, the default is to accept
any number of values (Operation.ANY). During the planning phase, Cascading verifies that the number of arguments
selected is the same as the number of arguments expected.

For output, it's good practice for Buffers to declare the field names they return. If not specified, the default is
Fi el ds. UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,
either by passing default values to the super constructor, or by accepting the values from the user via a constructor
implementation.

Cascading Cascading 2.2 User Guide 50

Using and Developing Operations

public class AverageBuffer extends BaseOperation inplenents Buffer

{

public AverageBuffer()
{

super(1, new Fields("average"));

}

public AverageBuffer(Fields fieldDeclaration)
{

super(1, fieldDeclaration);

}

public void operate(FlowProcess flowProcess, BufferCall bufferCall)
{
/1 init the count and sum
| ong count = O;
l ong sum = 0O;

/1 get all the current argunment values for this grouping
I'terator<Tupl eEntry> argunents = bufferCall.getArgunmentsiterator();

whi | e(argunent s. hasNext ())
{

count ++;
sum += argunents. next().getlnteger(0);

}

/! create a Tuple to hold our result val ues
Tupl e result = new Tuple(sum/ count);

/1 return the result Tuple
buf ferCal |l . get Qut put Col | ector().add(result);

}

Example 5.9 Average Buffer

The example above implements a buffer that accepts a value in the argument Tuple, adds all these argument tuplesin
the current grouping, and returns the result divided by the number of argument tuples counted in anew Tuple.

Thefirst constructor above assumes adefault field namefor the field that thisBuf f er returns. In practice, it'sgood to
give the user the option of overriding the declared field names, allowing them to prevent possiblefield name collisions
that might cause the planner to fail

Cascading Cascading 2.2 User Guide 51

Using and Developing Operations

Note that this example is somewhat artificial. In actual practice, an Aggr egat or would be a better way to compute
averages for an entire dataset. A Buf f er is better suited for calculating running averages across very large spans,
for example.

There are several constraints on the use of Buffers that may not be self-evident. These are detailed in the Javadoc.

As with the Functi on example above, a Buf f er may define a custom context object and implement the
prepare() andcl eanup() methodsto maintain state, or re-use outgoing Tupl e instances for efficiency.

5.6 Operation and BaseOperation

In al of the above sections, the cascadi ng. oper at i on. BaseQOper at i on class was subclassed. Thisclassis
an implementation of the cascadi ng. oper ati on. Oper ati on interface, and provides a few default method
implementations. It is not strictly required to extend BaseOper at i on when implementing this interface, but it is
very convenient to do so.

When devel oping custom operations, the devel oper may need to initialize and destroy aresource. For example, when
doing pattern matching, you might need to initialize aj ava. uti | . r egex. Mat cher and useit in a thread-safe
way. Or you might need to open, and eventually close, aremote connection. But for performance reasons, the operation
should not create or destroy the connection for each Tuple or every Tuple group that passes through.

For this reason, the interface Oper at i on declares two methods: pr epar e() and cl eanup() . In the case of
Hadoop and MapReduce, the pr epar e() and cl eanup() methods are called once per Map or Reduce task. The
pr epar e() methodis called before any argument Tupleis passed in, andthecl eanup() method iscalled after all
Tuple arguments have been operated on. Within each of these methods, the developer can initialize a" context™" object
that can hold an open socket connection or Mat cher instance. Thiscontext isuser defined, and isthe same mechanism
used by the Aggr egat or operation - except that the Aggr egat or is aso given the opportunity to initialize and
destroy its context, viathest art () and conpl et e() methods.

Note that if a "context” object is used, its type should be declared in the subclass class declaration using the Java
Generics notation.

Cascading Cascading 2.2 User Guide 52

6. Custom Taps and Schemes

6.1 Introduction

Cascading is designed to be easily configured and enhanced by developers. In addition to creating custom Operations,
developers can create custom Tap and Schene classes that et applications connect to external systems or read/write
datato proprietary formats.

A Tap represents something physical, like afile or adatabase table. Accordingly, Tap implementations are responsible
for life-cycle issues around the resource they represent, such as tests for resource existence, or to perform resource
deletion (dropping aremote SQL table).

A Scheme represents aformat or representation - such as atext format for afile, the columnsin atable, etc. Schemes
are used to convert between the source data's native format and acascadi ng. t upl e. Tupl e instance.

Creating custom taps and schemes can be an involved process. When using the Cascading Hadoop mode, it requires
some knowledge of Hadoop and the Hadoop FileSystem API. If aflow needs to support a new file system, passing
a fully-qualified URL to the Hf s constructor may be sufficient - the Hf s tap will look up a file system based on
the URL scheme via the Hadoop FileSystem API. If not, a new system is commonly constructed by subclassing the
cascadi ng. t ap. Hf s class.

Delegating to the Hadoop FileSystem APl is not a dtrict requirement. But if not using
it, the developer must implement Hadoop org. apache. hadoop. mapred. | nput For mat and/or
or g. apache. hadoop. mapr ed. Qut put For mat classes so that Hadoop knows how to split and handle the
incoming/outgoing data. The custom Schene is responsible for setting the | nput For mat and Cut put For nat
on the JobConf , viathesi nkConf | ni t and sour ceConf | ni t methods.

For examples of how to implement a custom tap and scheme, see the Cascading Modules [http://cascading.org/
modules.html] page.

6.2 Custom Taps

All custom Tap classesmust subclassthecascadi ng. t ap. Tap abstract class and implement the required methods.
The method get | denti fi er () must return a St ri ng that uniquely identifies the resource the Tap instance is
managing. Any two Tap instances with the same fully-qualified identifier value will be considered equal.

Every Tap is presented an opportunity to set any custom properties the underlying platform requires, viathe methods
sour ceConfl nit() (foraTuplesourcetap) and si nkConf I nit () (for aTuplesink tap). These two methods
may be called more than once with new configuration objects, and should be idempotent.

A Tap is aways sourced from the openFor Read() method via a Tupl eEntrylterator - i.e,
openFor Read() is aways caled in the same process that will read the data. It is up to the Tap to return a
Tupl eEntryl terat or that will iterate across the resource, returning a Tupl eEnt ry instance (and Tupl e
instance) for each "record" in the resource. Tupl eEntrylterator. cl ose() isaways called when no more
entries will be read. For more on thistopic, see Tupl eEnt r ySchenel t er at or in the Javadoc.

Cascading Cascading 2.2 User Guide 53

http://cascading.org/modules.html
http://cascading.org/modules.html
http://cascading.org/modules.html

Custom Taps and Schemes

On some platforms, openFor Read() is caled with a pre-instantiated Input type. Typically this Input type should
be used instead of instantiating a new instance of the appropriate type.

In the case of the Hadoop platform, a Recor dReader is created by Hadoop and passed to the Tap. This
Recor dReader isaready configured to read datafrom the current | nput Split.

Similarly, aTapisawaysusedtosink datafromtheopenFor Wi t e() methodviatheTupl eEnt ryCol | ect or.
Here again, openFor Wit e() isaways called in the process in which data will be written. It is up to the Tap to
returnaTupl eEnt ryCol | ect or that will accept and store any number of Tupl eEnt ry or Tupl e instances for
each record that is processed or created by a given Flow. Tupl eEnt ryCol | ect or. cl ose() is aways called
when no more entries will be written. See Tupl eEnt r yScheneCol | ect or in the Javadoc.

Again, on some platforms, openFor Wi t e() will be called with a pre-instantiated Output type. Typically this
Output type should be used instead of instantiating a new instance of the appropriate type.

In the case of the Hadoop platform, an Qut put Col | ect or is created by Hadoop and passed to the Tap. This
Qut put Col | ect or isaready configured to to write data to the current resource.

Both the Tupl eEnt rySchenel t er at or and Tupl eEnt r yScheneCol | ect or should be used to hold any
state or resources necessary to communicate with any remote services. For example, when connecting to a SQL
database, any JDBC drivers should be created on the constructor and cleaned up on cl ose() .

Note that the Tap is not responsible for reading or writing data to the Input or Output type. This is delegated to the
Schene passed on the constructor of the Tap. Consequently, the Scherre is responsible for configuring the Input
and Output typesit will be reading and writing.

6.3 Custom Schemes

All custom Scheme classes must subclass the cascadi ng. schene. Schene abstract class and implement the
required methods.

A Schene isultimately responsiblefor sourcing and sinking Tuples of data. Consequently it must know what Fi el ds
it presents during sourcing, and what Fi el ds it accepts during sinking. Thus the constructors on the base Schene
type must be set with the source and sink Fields.

A Scheme is alowed to source different Fields than it sinks. The Text Li ne Schene does just this. (The
Text Del i mi t ed Schene, on the other hand, forces the source and sink Fi el ds to be the same.)

Theretri eveSourceFi el ds() andretri eveSi nkFi el ds() methodsallow acustom Schene tofetchits
source and sink Fi el ds immediately before the planner is invoked - for example, from the header of afile, asis
the casewith Text Del i m t ed. Alsothepr esent Sour ceFi el ds() and pr esent Si nkFi el ds() methods
notify the Scheme of the Fi el ds that the planner expects the Scheme to handle - for example, to write the field
names as a header, asisthe case with Text Del i i t ed.

Every Schere is presented the opportunity to set any custom properties the underlying platform requires, via the
methods sour ceConf I ni t () (for a Tuple source tap) and si nkConf I ni t () (for a Tuple sink tap). These
methods may be called more than once with new configuration objects, and should be idempotent.

On the Hadoop platform, these methods should be wused to configure the appropriate
or g. apache. hadoop. mapr ed. | nput For nat and or g. apache. hadoop. mapr ed. Qut put For nat .

Cascading Cascading 2.2 User Guide 54

Custom Taps and Schemes

A Schemeis aways sourced viathe sour ce() method, and is always sunk to viathe si nk() method.

Prior toasour ce() orsi nk() cal, thesour cePrepare() andsi nkPrepar e() methods are called. After
all values have been read or written, the sour ceCl eanup() and si nkC eanup() methods are called.

The *Prepar e() methods allow a Scheme to initialize any state necessary - for example, to create a new
java. util.regex. Mat cher instancefor use against all record reads). Conversely, the* Cl eanup() methods
allow for clearing up any resources.

These methods are always called in the same process space as their associated sour ce() and si nk() calls. Inthe
case of the Hadoop platform, this will likely be on the cluster side, unlike callsto * Conf | ni t () which will likely
be on the client side.

Cascading Cascading 2.2 User Guide 55

7. Field Typing and Type Coercion
7.1 Field Typing

Asof Cascading 2.2, the Fields class can hold type information for each field, and the Cascading planner can propagate
that information from source Tap instances to downstream Operations through to sink Tap instances.

This allows for Tapsto read and store type information for external systems and applications, error detection during
joins (detecting non-comparable types), to enforce canonical representations within the Tuple (prevent a field from
switching arbitrarily between String and Integer types), and to allow for pluggable coercion from one type to another
type, even if either isn't a Java primitive.

To declaretypes, ssimply pass type information to the Fields instance either through the constructor or viaafluent API.

Fiel ds resultFields new Fields("count", Long.class); // null is ok
Example 7.1 Constructor

Fields resultFields = new Fields("count").applyTypes(long.class); // null

Example 7.2 Fluent

Note the first example uses Long. cl ass, and the second | ong. cl ass. Since Long is an object, we are letting
Cascading know that the null value can be set. If declared | ong (a primitive) then null becomes zero.

In practice, typed fields can only be used when they declare the results of an operation, for example:

Pi pe assembly = new Pi pe("assembly");

/1
Fi el ds groupi ngFi el ds = new Fi el ds("date");

/1 note we do not pass the parent assenbly Pipe in
Fi el ds val ueField = new Fields("size");
Fields sunField = new Fields("total -size", |ong.class);

SunBy sunBy = new SunBy(val ueField, sunField);

Fields countField = new Fields("numevents");
Count By count By = new CountBy(countField);

assenbly = new Aggr egat eBy(assenbly, groupingFields, sunBy, countBy);

Example 7.3 Declaring Typed Results

Cascading Cascading 2.2 User Guide 56

becones 0

Field Typing and Type Coercion

Here the type information servestwo roles. First, it allows adownstream consumer of the field value to know the type
maintained in the tuple. Second, the SumBY sub-assembly now has a simpler API and can get the type information it
needs internally to perform the aggregation directly from the Fields instance.

Note that the Text Del i mi t ed and other Schene classes should have any type information declared so it can be
maintained by the Cascading planner. Custom Schene types a so have the opportunity to read type information from
any field or data sources they represent so it can be handed to the planner during runtime.

7.2 Type Coercion

Type coercion is a means to convert one data type to another. For example, parsing the Java St ri ng "42" to the
I nt eger 42 would be coercion. Or more simply, converting a Long 42 to a Doubl e 42.0. Cascading supports
primitive type coercions natively through the cascadi ng. t upl e. coer ce. Coer ci ons class.

In practice, developers implicitly invoke coercions via the cascadi ng. t upl e. Tupl eEntry interface
by requesting a Long or String representation of a field, via Tupl eEntry. getlLong() or
Tupl eEntry. get String(), respectively.

OrwhendataissetonaTupl e viaTupl eEntry. set Long() or Tupl eEntry. set Stri ng() ,forexample. If
thefield wasdeclared asan | nt eger ,and Tupl eEntry. set Stri ng("someFi el d", "42") wascalled,
the value of "someFields" will be coerced into its canonical form, 42.

To create custom coercions, the cascadi ng. t upl e. t ype. Coer ci bl eType interface must be implemented,
andinstancesof Coer ci bl eType canbeused asthe Type accepted by the Fields APl asCoer ci bl eType extends
java.l ang. refl ect. Type.

Cascading providedacascadi ng. t upl e. t ype. Dat eType implementation to allow for coercions between date
strings and the Long canonical type. For example:

Cascading Cascading 2.2 User Guide 57

Field Typing and Type Coercion

Si npl eDat eFor mat dat eFor mat = new Si npl eDat eFor mat (" dd/ MW yyyy: HH: mnm ss: SSS Z");
Date firstDate = new Date();
String stringFirstDate = dateFormat.format(firstDate);

Coer ci bl eType coerci ble = new Dat eType("dd/ MW yyyy: HH nm ss: SSS Z", Ti neZone. get Def aul 1

/'l create the Fields, Tuple, and Tupl eEntry

Fields fields = new Fields("dateString", "dateValue").applyTypes(coercible, |ong.clas:
Tuple tuple = new Tuple(firstDate.getTine(), firstDate.getTine());

Tupl eEntry results = new Tupl eEntry(fields, tuple);

/] test the results

assert results.getoject("dateString").equals(firstDate.getTine());

assert results.getlLong("dateString") == firstDate.getTinme();

assert results.getString("dateString").equal s(stringFirstDate);

assert !results.getString("dateString").equals(results.getString("dateValue")); //

Dat e secondDate = new Date(firstDate.getTime() + (60 * 1000));
String stringSecondDate = dateFornat.format(secondDate);

results.setString("dateString", stringSecondDate);
results. setLong("dateVal ue", secondDate.getTine());

assert !results.getCbject("dateString").equals(firstDate.getTime()); // equals
assert results.getoject("dateString").equal s(secondDate.getTine()); // not equals

Example 7.4 Date Type

In this example we declare the "dateString” field to be aDat eType. Dat e Ty pe maintains the value of the field as
al ong internally, but if aSt ri ng is set or requested, it will be converted using the given Si npl eDat eFor nat
St ri ng against the given Ti neZone. In the case of a Text Del i ni t ed CSV file, where one column is a date
value, Dat eType can be used to declare its format allowing Text Del i mi t ed to read and write the value as a
St ri ng, but use the value internally (in the Tuple) asal ong, which is much more efficient.

Cascading Cascading 2.2 User Guide 58

8. Advanced Processing

8.1 SubAssemblies

In Cascading, SubAssemblies are reusable pipe assemblies that are linked into larger pipe assemblies. They function
much like subroutinesin alarger program. SubAssemblies are a good way to organize complex pipe assemblies, and
they allow for commonly-used pipe assemblies to be packaged into libraries for inclusion in other projects by other
USers.

To create a SubAssembly, subclassthe cascadi ng. pi pe. SubAssenbl y class.

public class SoneSubAssenbly extends SubAssenbly

{
publ i c SomeSubAssenbl y(Pipe | hs, Pipe rhs)

{
/1 must register incom ng pipes
setPrevious(|l hs, rhs);

/1 continue assenbling against |hs
| hs new Each(| hs, new SoneFunction());
| hs = new Each(| hs, new SoneFilter());

/1 continue assenbling against rhs
rhs = new Each(rhs, new SonmeFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|lhs, rhs);

join = new Every(join, new SonmeAggregator());
join = new G oupBy(join);
join = new Every(join, new SomeAggregator());

/1 the tail of the assenbly
join = new Each(join, new SoneFunction());

/1l nust register all assenbly tails

setTails(join);

}

Example 8.1 Creating a SubAssembly

Cascading Cascading 2.2 User Guide 59

Advanced Processing

In the example above, we pass in (as parameters via the constructor) the pipes that we wish to continue assembling
against, in the first line we register the incoming "previous" pipes, and in the last line we register the outgoing "join"
pipe as atail. This allows SubAssembliesto be nested within larger pipe assemblies or other SubAssemblies.

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("l hs");

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

/1 our custom SubAssenbly
Pi pe pi pe = new SoneSubAssenbly(| hs, rhs);

pi pe = new Each(pi pe, new SoneFunction());

Example 8.2 Using a SubAssembly
The example above demonstrates how to include a SubAssembly into a new pipe assembly.

Note that in a SubAssembly that represents a split - that is, a SubAssembly with two or more tails - you can use the
get Tai | s() method to accessthe array of tails set internally by theset Tai | s() method.

public class SplitSubAssenbly extends SubAssenbly
{
public SplitSubAssenbl y(Pipe pipe)
{
/1 must register inconing pipe
set Previ ous(pipe);

/1 continue assenbling agai nst pipe
pi pe = new Each(pi pe, new SoneFunction());

Pi pe I hs = new Pipe("l hs", pipe);
I hs = new Each(| hs, new SoneFunction());

Pi pe rhs = new Pipe("rhs", pipe);
rhs = new Each(rhs, new SoneFunction());

/1 must register all assenbly tails
setTails(Ihs, rhs);

}

Example 8.3 Creating a Split SubAssembly

Cascading Cascading 2.2 User Guide 60

Advanced Processing

/1 the "left hand side" assenbly head
Pi pe head = new Pi pe("head");

/1 our custom SubAssenbly
SubAssenbl y pi pe = new SplitSubAssenbl y(head);

/1 grab the split branches
Pi pe | hs = new Each(pipe.getTails()[0], new SoneFunction());
Pi pe rhs = new Each(pipe.getTails()[1], new SomeFunction());

Example 8.4 Using a Split SubAssembly

Torephrasg, if aSubAssenbl y does not split the incoming Tuple stream, the SubAssembly instance can be passed
directly to the next Pipe instance. But, if the SubAssenbl y splits the stream into multiple branches, handles will be
needed to accessthem. Thesolutionisto passeach branchtail totheset Tai | s() method, andcall theget Tai | s()
method to get handles for the desired branches, which can be passed to subsequent instances of Pi pe.

8.2 Stream Assertions

FIOW oo oo ‘

=
B

Source H@@
|
| |
| |
| o |

Stream assertions are simply amechanism for asserting that one or more valuesin atuple stream meet certain criteria.
Thisis similar to the Java language "assert" keyword, or a unit test. An example would be "assert not null" or "assert
matches'.

Assertions are treated like any other function or aggregator in Cascading. They are embedded directly into the pipe
assembly by the developer. By default, if an assertion fails, the processing fails. Asan aternative, an assertion failure
can be caught by afailure Trap.

Assertions may be more, or less, desirable in different contexts. For this reason, stream assertions can be treated as
either "strict” or "validating”. Strict assertions make sense when running tests against regression data - which should
be small, and should represent many of the edge cases that the processing assembly must robustly support. Validating

Cascading Cascading 2.2 User Guide 61

Advanced Processing

assertions, on the other hand, make more sense when running tests in staging, or when using data that may vary in

quality due to an unmanaged source.

And of course there are cases where assertions are unnecessary and only impede processing, and it would be best to

just bypass them altogether.

To handle all three of these situations, Cascading can be instructed to plan out (i.e., omit) strict assertions, validation
assertions, or both when building the Flow. To create optimal performance, Cascading implements this by actually
leaving the undesired assertions out of the final Flow (not merely switching them off).

/! incomng ->

ip*, "time", "method", "event",

Assert Not Nul I notNull = new AssertNot Nul | ();
assenbly = new Each(assenbly, AssertionLevel.STRI CT, notNull);

"status", "size"

Assert Si zeEqual s equal s = new Assert Si zeEqual s(6);
assenbly = new Each(assenbly, AssertionLevel.STRICT, equals);

Assert Mat chesAll mat chesAll = new Assert Mat chesAl | (" (GET| HEAD| PCST) ") ;
assenbly = new Each(assenbly, new Fields("method"),

AssertionLevel . STRICT, matchesAll);
/!l outgoing -> "ip", "time", "method", "event", "status", "size"

Example 8.5 Adding Assertions

Again, assertions are added to a pipe assembly like any other operation, except that the Asserti onLevel must be

set to tell the planner how to treat the assertion during planning.

/1 FlowDef is a fluent way to define a Fl ow

Fl owDef fl owDef = new Fl owDef ();

/1 bind the taps and pi pes
f 1 owDef

. addSour ce(assenbly. get Nane(), source)

. addSi nk(assenbly. get Name(), sink)
.addTai |l (assenbly);

// renoves all assertions fromthe Fl ow
f | owDef

.set AssertionLevel (AssertionLevel . NONE);

Fl ow fl ow = new HadoopFl owConnect or (). connect (fl owDef);

Example 8.6 Planning Out Assertions

To configure the planner to remove some or al

assertions,

a property can be set via the

Fl owConnect or Props. set Asserti onLevel () method or directly on the FI owDef instance, as shown

Cascading Cascading 2.2 User Guide

62

Advanced Processing

above. Setting Asserti onLevel . NONE removes all assertions. Asserti onLevel . VALI D keeps VALI D
assertions but removes STRI CT ones. And Asserti onLevel . STRI CT keeps all assertions - the planner default
value.

8.3 Failure Traps

The following diagram shows the use of Failure Traps in a pipe assembly.

Flow

Failure Traps are similar to tap sinks (as opposed to tap sources) in that they allow data to be stored. The difference
isthat Tap sinks are bound to a particular tail pipe in a pipe assembly and are the primary outlet of a branch in a pipe
assembly. Traps can be bound to intermediate pipe assembly branches - just like Stream Assertions - yet they only
capture data that causes an Operation to fail (throw an Exception).

Whenever an operation fails and throws an exception, if there is an associated trap, the offending Tupleis saved to the
resource specified by the trap Tap. This allows the job to continue processing without any data loss.

By design, clusters are hardware fault-tolerant - lose anode, and the cluster continues working. But fault tolerance for
software is alittle different. Failure Traps provide a means for the processing to continue without losing track of the
data that caused the fault. For high fidelity applications, this may not be very useful, since you likely will want any
errors during processing to cause the application to stop. But for low fidelity applications such as webpage indexing,
where skipping a page or two out of afew million is acceptable, this can dramatically improve processing reliability.

Cascading Cascading 2.2 User Guide 63

Advanced Processing

/1 ...sone useful pipes here

/1 nanme this pipe assenbly segment
assenbly = new Pi pe("assertions", assenbly);

Assert Not Nul | notNull = new Assert Not Null ();
assenbly = new Each(assenbly, AssertionLevel.STRICT, notNull);

Assert Si zeEqual s equal s = new Assert Si zeEqual s(6);
assenbly = new Each(assenbly, AssertionLevel.STRICT, equals);

Assert Mat chesAl |l mat chesAll = new Assert Mat chesAl | (" (GET| HEAD| PCST) ") ;
Fi el ds nethod = new Fi el ds("nethod");
assenbly =

new Each(assenbly, nethod, AssertionLevel.STRICT, matchesAll);
/1 ...sone nore useful pipes here
Fl owDef fl owDef = new Fl owDef ();

f | onwDef
.set Name("Il og- parser")
.addSource("logs", source)
.addTai | Si nk(assenbly, sink);

/'l set the trap on the "assertions" branch
f 1 owDef
.addTrap("assertions", trap);

Fl onConnect or fl owConnector = new HadoopFl owConnect or () ;
Fl ow fl ow =
f I owConnect or. connect (fl owDef);

Example 8.7 Setting Traps

The example above binds atrap tap to the pipe assembly segment named "assertions". Note how we can name branches
and segments by using asingle Pi pe instance, and that the naming appliesto all subsequent Pi pe instances.

Trapsarefor exceptional cases, in the sameway that Java Exception handling is. Traps are not intended for application
flow control, and not a means to filter some data into other locations. Applications that need to filter out bad data
should do so explicitly, using filters. For more on this, see Handling Good and Bad Data.

Cascading Cascading 2.2 User Guide 64

Advanced Processing

8.4 Checkpointing

New to Cascading 2, and only supported by the Hadoop planner, is the ability to "checkpoint" data within a Flow by
using the cascadi ng. pi pe. Checkpoi nt Pi pe. That is, a Tuple stream can be persisted to disk at most any
arbitrary point. Doing so forces a new FlowStep (MapReduce job when using Hadoop) after the checkpoint position.

By default the checkpoint is anonymous and is cleaned up immediately after the Flow completes. Thisfeatureisuseful
when used in conjunction with a HashJoin where the small side of the join starts out extremely large but is filtered
down to fit into memory before being read into the HashJoin. By forcing a checkpoint before the HashJoin, only the
small filtered version of the data is replicated over the cluster. Without the checkpoint, it is likely the full unfiltered
file will be replicated to every node the FlowStep is executing.

Alternatively, checkpointing is useful for debugging when used with a checkpoint Tap, where the Tap has specified
a TextDelimited Scheme without any declared Fields.

Cascading Cascading 2.2 User Guide 65

Advanced Processing

/1 the "left hand side" assenbly head
Pipe I hs = new Pipe("lhs");

| hs new Each(| hs, new SonmeFunction());
| hs = new Each(| hs, new SoneFilter());

/1 the "right hand side" assenbly head
Pi pe rhs = new Pipe("rhs");

rhs = new Each(rhs, new SoneFunction());

/1 joins the | hs and rhs
Pipe join = new CoGoup(|lhs, rhs);

join = new Every(join, new SonmeAggregator());

/1l we want to see the data passing through this point
Checkpoi nt checkpoi nt = new Checkpoi nt("checkpoint", join);

Pi pe groupBy = new G oupBy(checkpoint);
groupBy = new Every(groupBy, new SoneAggregator());

/1 the tail of the assenbly
groupBy = new Each(groupBy, new SoneFunction());

new Hf s(new TextLine(), "lhs.txt");
new Hf s(new TextLine(), "rhs.txt");

Tap | hsSour ce
Tap rhsSource

Tap sink = new Hf s(new TextLine(), "output");

// wite all data as a tab delimted file, with headers
Tap checkpoi nt Tap =
new Hf s(new TextDelimted(true, "\t"), "checkpoint");

Fl owDef fl owDef = new Fl owDef ()
.set Name("fl ow nane")
.addSource(rhs, rhsSource)
.addSource(| hs, | hsSource)
.addTai | Si nk(groupBy, sink)
. addCheckpoi nt (checkpoi nt, checkpointTap); // bind the checkpoint tap

Fl ow fl ow = new HadoopFl owConnect or (). connect (fl owDef);

Example 8.8 Adding a Checkpoint

Cascading Cascading 2.2 User Guide

66

Advanced Processing

As can be seen above, we instantiate a new Checkpoi nt tap by passing it the previous Every Pi pe. This will
be the point at which data is persisted. Since we wish to keep the data after the FI ow has completed, we create a
checkpoi nt Tap that savesthe dataasa TAB delimited text file. We al so specify that field names should be written
out into a header file on the Text Del i mi t ed constructor. Finally the Tap is bound to the Checkpoi nt Pi pe
using the FI owDef .

8.5 Restarting a Checkpointed Flow

When using Checkpoint pipesin a Flow and the Flow fails, afuture execution of the Flow can be restarted after the
last successful FlowStep writing to a checkpoint file. That is, a Flow will only restart from the last Checkpoint Pipe
location.

This feature requires that the failed Flow be planned with ar unl D set on the FlowDef, and the retry Flow use the
samer unl Dvalue. It goeswithout saying, the retry Flow should be (roughly) equivant to the previousfailed attempt.

Fl owDef fl owDef = new Fl owDef ()
.set Name("fl ow nane")
.addSource(rhs, rhsSource)
.addSource(| hs, | hsSource)
.addTai | Si nk(groupBy, sink)
. addCheckpoi nt (checkpoi nt, checkpoi nt Tap)
.set Runl D{ "sone-uni que-value"); // re-use this id to restart this flow

Fl ow fl ow = new HadoopFl owConnect or (). connect (fl owDef);

Example 8.9 Setting runlD

Caution should be used when using restarted checkpoint Flows. If the input data has changed, or the pipe assembly
has significantly been altered, the Flow may fail or there may be undetectable errors.

Note that when using ar unl D, all Flow instances must use aunique value unlessthey are intended as aretry attempt.
The runID value is used to scope the directories for the temporary checkpoint files to prevent file name collisions.

On successful completion of a Flow with aruniD, all temporary checkpoint fileswill be removed, if any.

8.6 Flow and Cascade Event Handling

Each Flow and Cascade has the ahility to execute callbacks viaan event listener. Thisability isuseful when an external
application needs to be notified that either a Flow or Cascade has started, halted, completed, or either has thrown an
exception.

For instance, at the completion of aflow that runs on an Amazon EC2 Hadoop cluster, an Amazon SQS message can
be sent to notify another application to fetch the job results from S3 or begin the shutdown of the cluster.

Flows support event listeners through the cascadi ng. f | ow. FI owLi st ener interface and Cascades support
event listeners through the cascadi ng. cascade. Cascadeli st ener , which supports four events:

Cascading Cascading 2.2 User Guide 67

Advanced Processing

onStarting
The onStarting event is fired when a Flow or Cascade instance receivesthe st ar t () message.

onStopping
The onStopping event is fired when a Flow or Cascade instance receivesthe st op() message.

onCompleted
The onCompleted event is fired when a Flow or Cascade instance has completed all work, regardless of success
or failure. If an exception was thrown, onThrowable will be fired before this event.

onThrowable
The onThrowable event is fired if any interna job client throws a Throwable type. This throwable is passed as
an argument to the event. onThrowable should return true if the given throwable was handled, and should not be
rethrown from the Fl ow. conpl et e() or Cascade. conpl et e() methods.

8.7 Template taps

The Tenpl at eTap Tap class provides a simple means to break large datasets into smaller sets based on data item
values. Thisis commonly called partitioning or binning the data, where each "bin" of data is named after some data
value(s) shared by the members of that bin. For example, thisisasimple way to organize log files by month and year.

TextDel i mted schenme =
new TextDelim ted(new Fields("year", "nmonth", "entry"), "\t");
Hf s tap = new Hf s(schene, path);

String tenplate = "%-%"; // dirs nanmed "year-nonth"
Tap nonths = new Tenpl ateTap(tap, tenplate, SinkMdde. REPLACE);

In the example above, we construct a parent Hf s t ap and pass it to the constructor of a Tenpl at et ap instance,
along with a String format "template”. Thisformat template is populated in the order in which values are declared via
the Schene class. If more complex path formatting is necessary, you may subclassthe Tenpl at et ap.

Notethat you can only create sub-directoriesto bin datainto. Hadoop must still write"part" filesinto each bin directory,
and there is no safe mechanism for manipulating part file names.

One last thing to keep in mind is whether binning happens during the Map phase or the Reduce phase. By doing a
Gr oupBy on the values used to populate the template, binning will happen during the Reduce phase, and will likely
scale much better in cases where there are a very large number of unique values used in the template resulting in a
large number of directories.

8.8 Partial Aggregation instead of Combiners

In Hadoop mode, Cascading does not support MapReduce " Combiners'. Combinersare asimple optimization allowing
some Reduce functions to run on the Map side of MapReduce. Combiners are very powerful in that they reduce the I/
O between the Mappers and Reducers - why send all of your Mapper data to Reducers when you can compute some
values on the Map side and combine them in the Reducer? But Combinersare limited to Associative and Commutative
functions only, such as "sum" and "max". And the process requires that the values emitted by the Map task must be

Cascading Cascading 2.2 User Guide 68

Advanced Processing

serialized, sorted (which involves deserialization and comparison), deserialized again, and operated on - after which
the results are again serialized and sorted. Combiners trade CPU for gainsin |/O.

Cascading takes a different approach. It provides a mechanism to perform partial aggregations on the Map side and
combine the results on the Reduce side, but trades memory, instead of CPU, for 1/0 gains by caching values (up to
athreshold limit). This bypasses the redundant serialization, deserialization, and sorting. Also, Cascading allows any
aggregate function to be implemented - not just Associative and Commutative functions.

Cascading supports afew built-in partial aggregate operations, including AverageBy, CountBy, SumBY, and FirstBy.
These are actually SubAssemblies, not Operations, and are subclasses of the AggregateBy SubAssembly. For more
on this, see the section on AggregateBy.

Using partial aggregate operations is quite easy. They are actually |ess verbose than a standard Aggregate operation.
Pi pe assenbly = new Pi pe("assenbly");

/1

Fi el ds groupi ngFi el ds = new Fields("date");
Fi el ds val ueField = new Fields("size");

Fiel ds sunField = new Fields("total-size");
assenbly =

new SunBy(assenbly, groupingFields, valueField, sunfField, |ong.class);
Example 8.10 Using a SUmBy
For composing multiple partial aggregate operations, things are done alittle differently.
Pi pe assenbly = new Pi pe("assenbly");

/1
Fi el ds groupi ngFi el ds = new Fields("date");

/1 note we do not pass the parent assenbly Pipe in

Fi el ds val ueField = new Fields("size");

Fields sunField = new Fields("total -size", |ong.class);
SumBy sunmBy = new SunBy(val ueField, sunField);

Fields countField = new Fields("numevents");
Count By countBy = new CountBy(countField);

assenbly = new Aggr egat eBy(assenbly, groupingFields, sunBy, countBy);

Example 8.11 Composing partials with AggregateBy

It'simportant to note that a G- oupBy Pipe is embedded in the resulting assemblies above. But only one GroupBY is
performed in the case of the AggregateBy, and all of the partial aggregations will be performed simultaneoudly. It is
also important to note that, depending on the final pipe assembly, the Map side partial aggregate functions may be
planned into the previous Reduce operation in Hadoop, further improving the performance of the application.

Cascading Cascading 2.2 User Guide 69

9. Built-In Operations

9.1 Ildentity Function

The cascadi ng. operation. | dentity function is used to "shape" a tuple stream. Here are some common
patterns that illustrate how Cascading "field algebra' works. (Note that, in actual practice, some of these example
tasks might be better performed with helper subassemblies such as cascadi ng. pi pe. assenbl y. Renane,
cascadi ng. pi pe. assenbl y. Ret ai n, and cascadi ng. pi pe. assenbl yDi scard.)

Discard unused fields
Here ldentity passes its arguments out as results, thanksto the Fi el ds. ARGS field declaration.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"

Identity identity = new Ildentity(Fields. ARGS);
Fiel ds i pMethod = new Fields("ip", "method");

pi pe =
new Each(pipe, ipMethod, identity, Fields. RESULTS);

/1 outgoing -> "ip", "method"

In practicethefield declaration can beleft out, asFi el d. ARGSisthedefault declaration for the I dentity function.
And Fi el ds. RESULTs can be l€ft off, asit is the default for the Ever y pipe. Thus, simpler code yields the
same resullt:

[/l incoming -> "ip", "tine", "nethod", "event", "status", "size"

pi pe = new Each(pipe, new Fields("ip", "nmethod"), new Identity());

/1 outgoing -> "ip", "nmethod"

Rename al fields

Hereldentity renamestheincoming arguments. Since Fields. RESUL TSisimplied, theincoming Tupleisreplaced
by the selected arguments and given new field names as declared on I dentity.

/1 incoming -> "ip", "method"

Identity identity = new ldentity(new Fields("address", "request"));
pi pe = new Each(pipe, new Fields("ip", "nmethod"), identity);

/1 outgoing -> "address", "request"

In the example above, if there were more fields than "ip" and "method", it would work fine - all the extra fields
would be discarded. But if the same were true for the next example, the planner would fail.

Cascading Cascading 2.2 User Guide 70

Built-In Operations

/1 incoming -> "ip", "method"

Identity identity = new ldentity(new Fields("address", "request"));
pi pe = new Each(pipe, Fields.ALL, identity);

/1 outgoing -> "address", "request"

SinceFi el ds. ALL isthe default argument selector for the Each pipe, it can beleft out as shown below. Again,
the above and below examples will fail unlessthere are exactly two fields in the tuples of the incoming stream.

/1 incoming -> "ip", "nmethod"

Identity identity = new ldentity(new Fields("address", "request"));
pi pe = new Each(pipe, identity);

/1 outgoing -> "address", "request"

Rename asingle field
Here we rename a single field and return it, along with an input Tuple field, as the result. All other fields are

dropped.
/[l incoming -> "ip", "tine", "method", "event", "status", "size"
Fields fieldSelector = new Fi el ds("address", "nethod");

Identity identity = new Identity(new Fields("address"));

pi pe = new Each(pipe, new Fields("ip"), identity, fieldSelector);

/1 outgoing -> "address", "nethod"

Coerce values to specific primitive types

Here we replace the Tuple String values "status' and "size" with i nt and | ong values, respectively. All other
fields are dropped.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"

Identity identity = new ldentity(Integer.TYPE, Long. TYPE);
pi pe = new Each(pipe, new Fields("status", "size"), identity);

/1 outgoing -> "status", "size"

Or we can replace just the Tuple String value "status' with an i nt , while keeping all the other values in the
output Tuple.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"

Cascading Cascading 2.2 User Guide 71

Built-In Operations

Identity identity = new Identity(|nteger.TYPE);

pi pe =
new Each(pipe, new Fields("status"), identity, Fields. REPLACE);

/1 outgoing -> "ip", "tine", "nethod", "event", "status", "size"

9.2 Debug Function

Thecascadi ng. oper at i on. Debug functionisautility function (actualy, it'saFi | t er) that printsthe current
argument Tupleto either st dout or st der r . Used with one of the DebugLevel enum values (NONE, DEFAULT,
or VERBCSE), different debug levels can be embedded in a pipe assembly.

The example below insertsa Debug operation at the VERBOSE level, but configures the planner to remove all Debug
operations from the resulting Fl ow.

Pi pe assenbly = new Pipe("assenbly");

/1
assenbly = new Each(assenbly, DebuglLevel.VERBOSE, new Debug());
/1

/1 head and tail have sanme nane

Fl owDef fl owDef = new Fl owDef ()
. set Name("debug")
. addSource("assenbly", source)
. addSi nk("assenbly", sink)
.addTai | (assenbly);

/1 tell the planner to renove all Debug operations
f 1 owDef
. set DebuglLevel (DebugLevel . NONE) ;

/1
Fl owConnect or fl owConnector = new HadoopFl owConnect or () ;

Fl ow fl ow = fl owConnect or. connect (fl owDef);

Note that if the above Flow isrun on acluster, thest dout onthe cluster nodes will be used. Nothing from the debug
output will display on the client side. Debug is only useful when testing things in an IDE or if the remote logs are
readily available.

9.3 Sample and Limit Functions

The Sample and Limit functions are used to limit the number of tuples that pass through a pipe assembly.

Cascading Cascading 2.2 User Guide 72

Built-In Operations

Sample
Thecascadi ng. operation.filter. Sanpl e filter allows apercentage of tuplesto pass.

Limit

Thecascadi ng. operation.filter.Limt filter allowsaset number of tuplesto pass.

9.4 Insert Function

Thecascadi ng. oper ati on. I nsert functionallowsfor insertion of constant literal valuesinto thetuple stream.

This is most useful when a splitting a tuple stream and one of the branches needs some identifying value, or when
some missing parameter or value, like a date String for the current date, needs to be inserted.

9.5 Text Functions

Cascading includes a number of text functionsin thecascadi ng. oper ati on. t ext package.

DateFormatter
The cascadi ng. oper ati on. t ext. Dat eFor mat t er function is used to convert a date timestamp to a
formatted String. This function expects al ong value representing the number of milliseconds since January 1,
1970, 00:00:00 GMT/UTC, and formats the output using j ava. t ext . Si npl eDat eFor mat syntax.

/[l "ts" -> 1188604863000

Dat eFormatter formatter =
new Dat eFormatter(new Fields("date"), "dd/ MW yyyy");
pi pe = new Each(pipe, new Fields("ts"), formatter);

/1 outgoing -> "date" -> 31/ Aug/ 2007

The example above convertsal ong timestamp ("ts") to a date String.

DateParser
The cascadi ng. oper ati on. t ext. Dat ePar ser function is used to convert a text date String to a
timestamp, using thej ava. t ext . Si npl eDat eFor mat syntax. Thetimestampisal ong valuerepresenting
the number of milliseconds since January 1, 1970, 00:00:00 GMT/UTC. By default, the output is afield with the
name "ts" (for timestamp), but this can be overridden by passing adeclared Fields value.

/[l "time" -> 01/ Sep/2007: 00: 01: 03 +0000

Dat ePar ser dat eParser = new Dat eParser("dd/ MW yyyy: HH: mm ss Z");
pi pe = new Each(pipe, new Fields("time"), dateParser);

/1 outgoing -> "ts" -> 1188604863000

In the example above, an Apache log-style date-time field is converted into al ong timestamp in UTC.

Cascading Cascading 2.2 User Guide 73

Built-In Operations

FieldJoiner
Thecascadi ng. operation. t ext. Fi el dJoi ner functionjoinsall thevaluesinaTuplewith aspecified
delimiter and places the result into anew field. (For the opposite effect, seethe RegexSpl i tt er function.)

FieldFormatter
Thecascadi ng. operati on. text. Fi el dFor matt er functionformats Tuplevaueswith agiven String
format and stuffs the result into a new field. The j ava. uti|l. Formatter classis used to create a new
formatted String.

9.6 Regular Expression Operations

RegexSplitter
The cascadi ng. operati on. regex. RegexSplitter function splits an argument value based on a
regex pattern String. (For the opposite effect, see the FieldJoiner function.) Internally, this function uses
java.util.regex.Pattern.split(), and it behaves accordingly. By default, it splits on the TAB
character ("\t"). If it is known that a determinate number of values will emerge from this function, it can declare
field names. In this case, if the splitter encounters more split values than field names, the remaining values are
discarded. For more information, seej ava. util . regex. Pattern.split(input, limt).

RegexParser
The cascadi ng. oper ati on. r egex. RegexPar ser function is used to extract a regex-matched value
from anincoming argument value. If theregular expressionissufficiently complex, ani nt array may be provided
to specify which regex groups should be returned in which field names.

/[l incoming -> "line"

String regex =

R G AT D B A 2 A B AR Y NG B D AR N

VNI TF) DN 1) I TN (0N 1) (I 1) . %87

Fields fieldDeclaration =

new Fields("ip", "tinme", "method", "event", "status", "size");
int[] groups = {1, 2, 3, 4, 5, 6};
RegexPar ser parser = new RegexParser(fieldDeclaration, regex, groups);
assenbly = new Each(assenbly, new Fields("line"), parser);

/1 outgoing -> "ip", "tine", "nethod", "event", "status", "size"

In the example above, aline from an Apache access log is parsed into its component parts. Note that thei nt []
groups array starts at 1, not 0. Group O is the whole group, so if the first field is included, it is a copy of "line"
and not "ip".

RegexReplace
The cascadi ng. oper ati on. regex. RegexRepl ace function is used to replace a regex-matched
value with a specified replacement value. It can operate in a "replace al" or "replace first"
mode. For more information, see the methods j ava. util.regex. Matcher.repl aceAll () and
java.util.regex. Matcher.repl aceFirst().

Cascading Cascading 2.2 User Guide 74

Built-In Operations

/1 incoming -> "line"

RegexRepl ace repl ace =
new RegexRepl ace(new Fields("clean-line"), "\\s+", " " true);

assenbly = new Each(assenbly, new Fields("line"), replace);

/1 outgoing -> "clean-line"

In the example above, all adjoined white space characters are replaced with a single space character.

RegexFilter

Thecascadi ng. oper ati on. regex. RegexFi | t er function filters a Tuple stream based on a specified
regex value. By default, tuples that match the given pattern are kept, and tuples that do not match are filtered out.
This can be reversed by setting "removeMatch" tot r ue. Also, by default, the whole Tupleis matched against the
givenregex String (in tab-delimited sections). If "matchEachElement” issettot r ue, the patternisapplied to each
Tuple valueindividually. For more information, seethej ava. uti | . regex. Mat cher. fi nd() method.

[/l incoming -> "ip", "tine", "nmethod", "event", "status", "size"

Filter filter = new RegexFilter("768\\..*");
assenbly = new Each(assenbly, new Fields("ip"), filter);

// outgoing -> "ip", "tine", "method", "event", "status", "size"

The above keeps all linesin which "68." appears at the start of the |P address.

RegexGenerator

The cascadi ng. oper ati on. r egex. RegexGener at or function emits a new tuple for every string
(found in an input tuple) that matches a specified regex pattern.

/[l incoming -> "line"

String regex = "(?2<!\\pL) (?=\\pL)[*]1*(?<=\\pL) (?!'\\pL)";
Function function = new RegexGenerator(new Fields("word"), regex);
assenbly = new Each(assenbly, new Fields("line"), function);

/! outgoing -> "word"

Above each "line" in adocument is parsed into unique words and stored in the "word" field of each result Tuple.

RegexSplitGenerator
The cascadi ng. oper ati on. r egex. RegexSpl i t Gener at or function emits a new Tuple for every
split on the incoming argument value delimited by the given pattern String. The behavior is similar to the
RegexSpl i tter function, except that (assuming multiple matches) RegexSpl i tt er emits a single tuple

that may contain multiple values, and RegexSpl i t Gener at or emits multiple tuples that each contain only
onevalue, asdoes RegexCGener at or .

Cascading Cascading 2.2 User Guide 75

Built-In Operations

9.7 Java Expression Operations

Cascading provides some support for dynamically-compiled Java expressions to be used in either Functi ons or
Fi | t ers. This capability is provided by the Janino embedded Java compiler, which compiles the expressions into
byte code for optimal processing speed. Janino is documented in detail on its website, http://www.janino.net/.

This capability allows an Operation to evaluate a suitable one-line Java expression, suchasa + 3 * 2ora <
7, where the variable values (a and b) are passed in as Tuple fields. The result of the Operation thus depends on the
evaluated result of the expression - in the first example, some number, and in the second, a Boolean value.

ExpressionFunction
The function cascadi ng. oper ati on. expr essi on. Expr essi onFunct i on dynamically composes a
string expression when executed, assigning argument Tuple values to variables in the expression.

/[l incoming -> "ip", "tine", "method", "event", "status", "size"
String exp =

"\"this \" + nmethod + \" request was \" + size + \" bytes\"";
Fields fields = new Fields("pretty");
Expr essi onFunction function =

new Expressi onFunction(fields, exp, String.class);

assenmbly =
new Each(assenbly, new Fields("nmethod", "size"), function);
/1 outgoing -> "pretty" = "this GET request was 1282652 byt es"

Above, we create a new String value that contains an expression containing values from the current Tuple. Note
that you must declare the type for every input Tuple field so that the expression compiler knows how to treat the
variablesin the expression.

ExpressionFilter
Thefilter cascadi ng. oper at i on. expr essi on. Expr essi onFi | t er evaluatesaBoolean expression,
assigning argument Tuple values to variables in the expression. If the expression returnst r ue, the Tuple is
removed from the stream.

/1 incoming -> "ip", "tine", "nethod", "event", "status", "size"
ExpressionFilter filter =
new ExpressionFilter("status != 200", Integer.TYPE);

assenbly = new Each(assenbly, new Fields("status"), filter);

// outgoing -> "ip", "tine", "method", "event", "status", "size"

Cascading Cascading 2.2 User Guide 76

http://www.janino.net/

Built-In Operations

In this example, every line in the Apache log that does not have a status of 200" isfiltered out. ExpressionFilter
coerces the value into the specified type if necessary to make the comparison - in this case, coercing the status
String into ani nt .

As of Cascading 2.2, dong with cascadi ng. operation. expression. ExpressionFilter
and cascadi ng. operati on. expressi on. Expressi onFuncti on, two new operations have been
added to support multi-line Java code, cascadi ng. operati on. expression. ScriptFilter and
cascadi ng. oper ati on. expressi on. Scri pt Funct i on. Seethe relevant Javadoc for details on usage.

9.8 XML Operations

To use XML Operations in a Cascading application, include the cascadi ng- xm - x.y. z. j ar in the project.
When using the TagSoupPar ser operation, this module requires the TagSoup library, which provides support for
HTML and XML "tidying". Moreinformation isavailable at the TagSoup website, http://home.ccil.org/~cowan/XML/
tagsoup/.

XPathParser

The cascadi ng. oper ati on. xrm . XPat hPar ser function uses one or more XPath expressions, passed
into the constructor, to extract one or more node values from an XML document contained in the passed Tuple
argument, and placesthe result(s) into one or more new fieldsin the current Tuple. Inthisway, it effectively parses
an XML document into a table of fields, creating one Tuple field value for every given XPath expression. The
Node is converted to a String type containing an XML document. If only the text values are required, search on
thet ext () nodes, or consider using X PathGenerator to handlemultiple NodeLi st values. If thereturned result
of an XPath expressionisaNodeLi st , only thefirst Node is used for the field value and the rest are ignored.

XPathGenerator
Similar to XPathParser, the cascadi ng. oper ati on. xnl . XPat hGener at or function emits a new
Tupl e for every Node returned by the given XPath expression from the XML in the current Tuple.

XPathFilter
Thefilter cascadi ng. oper ati on. xm . XPat hFi | t er removesaTupleif the specified XPath expression
returnsf al se. Set the removeMatch parameter to t r ue if the filter should be reversed, i.e., to keep only those
Tuples where the XPath expression returnst r ue.

TagSoupParser
The cascadi ng. operati on. xm . TagSoupPar ser function uses the TagSoup library to convert
incoming HTML to clean XHTML. Usetheset Feat ure(feature, val ue) method to set TagSoup-
specific features, which are documented on the TagSoup website.

9.9 Assertions

Cascading Stream Assertions are used to build robust reusable pipe assemblies. If desired, they can be planned out
of a Flow instance at runtime. For more information, see the section on Stream Assertions. Below we describe the
Assertions available in the core library.

Cascading Cascading 2.2 User Guide 77

http://home.ccil.org/~cowan/XML/tagsoup/
http://home.ccil.org/~cowan/XML/tagsoup/

Built-In Operations

AssertEquals
The cascadi ng. operati on. assertion. Assert Equal s Assertion asserts that the number of values
given on the constructor is equal to the number of argument Tuple values, and that each constructor value
. equal s() itscorresponding argument value.

AssertNotEquals
The cascadi ng. operati on. asserti on. Assert Not Equal s Assertion asserts that the number of
values given on the constructor is equal to the number of argument Tuple values and that each constructor value
isnot. equal s() toits corresponding argument value.

AssertEqualsAll
Thecascadi ng. operation. assertion. Assert Equal sAl | Assertion asserts that every value in the
argument Tuple. equal s() thesingle value given on the constructor.

AssertExpression
Thecascadi ng. oper ati on. asserti on. Assert Expr essi on Assertion dynamically resolvesagiven
Java expression (see Expression Operations) using argument Tuple values. Any Tuple that returnst r ue for the
given expression passes the assertion.

AssertMatches
The cascadi ng. operati on. assertion. Assert Mat ches Assertion matches the given regular
expression pattern String against the entire argument Tuple. The comparison is made possible by concatenating
all thefields of the Tuple, separated by the TAB character (\t). If amatch isfound, the Tuple passes the assertion.

AssertMatchesAll
The cascadi ng. oper ati on. assertion. Assert Mat chesAl | Assertion matches the given regular
expression pattern String against each argument Tuple value individually.

AssertNotNull
Thecascadi ng. operati on. asserti on. Assert Not Nul | Assertion assertsthat every position/fieldin
the argument Tupleisnot nul | .

AssertNull
Thecascadi ng. oper ati on. assertion. Assert Nul | Assertion assertsthat every position/field in the
argument Tupleisnul | .

AssertSizeEquals
Thecascadi ng. operati on. assertion. Assert Si zeEqual s Assertion assertsthat the current Tuple
in the tuple stream is exactly the given size. Size, here, is the number of fields in the Tuple, as returned by
Tupl e. si ze() . Note that some or al fieldsmay benul | .

AssertSizel essThan
The cascadi ng. operation. assertion. Assert Si zeLessThan Assertion asserts that the current
Tuple in the stream has a size less than (<) the given size. Size, here, is the number of fields in the Tuple, as
returned by Tupl e. si ze() . Notethat some or al fieldsmay benul | .

AssertSizeMoreThan
The cascadi ng. operation. assertion. Assert Si zeMor eThan Assertion asserts that the current
Tuplein the stream has a size greater than (>) the given size. Size, here, is the number of fields in the Tuple, as
returned by Tupl e. si ze() . Notethat some or al fieldsmay benul | .

Cascading Cascading 2.2 User Guide 78

Built-In Operations

AssertGroupSizeEquals
Thecascadi ng. operati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of itemsin the current grouping is equal to (==) the given size. If apattern String is given, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

AssertGroupSizel essThan
Thecascadi ng. operati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of itemsin the current grouping is less than (<) the given size. If a pattern String is given, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

AssertGroupSizeMoreThan
Thecascadi ng. oper ati on. assertion. Assert G oupSi zeEqual s Group Assertion assertsthat the
number of itemsin the current grouping isgreater than (>) thegiven size. If apattern String isgiven, only grouping
keys that match the regular expression will have this assertion applied where multiple key values are delimited
by a TAB character.

9.10 Logical Filter Operators

Thelogical Fi | t er operatorsallow you to combine multiplefilterstoruninasingle Pipe, instead of chaining multiple
Pipes together to get the same logical result.

And
The cascadi ng. operation.filter.And Filter performs a logica "and" on the results of the
constructor-provided Fi | t er instances. That is, if Fi | t er #i sRenmove() returnst r ue for al of the given
instances, thisfilter returnst r ue.

Or
Thecascadi ng. operation.filter. O Filter perfformsalogical "or" ontheresults of the constructor-
provided Fi | t er instances. That is, if Fi | t er #i sRenove() returnst r ue for any of the given instances,
thisfilter returnst r ue.

Not
The cascadi ng. operation.filter.Not Filter peforms alogica "not" (negation) on the results
of the constructor-provided Fi | t er instance. That is, if Fi | t er #i sRenmove() returnst r ue for the given
instance, thisfilter returns f al se, and if Fi | t er #i sRenove() returns f al se for the given instance, this
filter returnst r ue.

Xor
Thecascadi ng. operation.filter. Xor Filter peformsalogica "xor" (exclusive or) on the results
of the constructor-provided Fi | t er instances. Xor can only be applied to two instances at a time. It returns
t r ue if the two instances have different truth values, and f al se if they have the same truth value. That is, if
Filter.isRenove() returnst r ue for both, or returnsf al se for both, thisfilter returnsf al se; otherwise
itreturnstr ue.

Cascading Cascading 2.2 User Guide 79

Built-In Operations

[/l incoming -> "ip", "tine", "nethod", "event", "status", "size"

FilterNull filterNull = new FilterNull();
RegexFilter regexFilter = new RegexFilter("(GET| HEAD| POST)");

And andFilter = new And(filterNull, regexFilter);

assenbly = new Each(assenbly, new Fields("method"), andFilter);

/1 outgoing -> "ip", "tine", "nethod", "event", "status", "size"

Example 9.1 Combining Filters

The example above performs a logical "and" on the two filters. Both must be satisfied for the data to pass through
this one Pipe.

9.11 Buffers

As of Cascading 2.2, the FirstNBuffer Buffer is provided as an optimized means to determine the top N elements in
agrouping.

FirstNBuffer
The cascading. operation.buffer.FirstNBuffer Buffer returns the firss N tuples
seen in a given grouping. Unlike the cascadi ng. pi pe. assenbl y. First By Aggregat eBy
and cascadi ng. operation. aggregator. First Aggregator, FirstNBuffer will stop
iterating the available tuples when the top N condition is met. FirstNBuffer is used by
cascadi ng. pi pe. assenbl y. Uni que.

Cascading Cascading 2.2 User Guide 80

10. Built-in Assemblies

There are anumber of helper SubAssemblies provided by the core cascading library.

As of Cascading 2.2, many of the below assemblies can optionally ignore null values. This allows for an optional but
closer resemblance to how similar functionsin SQL perform.

10.1 AggregateBy

The cascadi ng. pi pe. assenbl y. Aggr egat eBy SubAssembly is an implementation of the Partial
Aggregation pattern, and is the base class for built-in and custom partial aggregation implementations like
Aver ageBy or Count By.

Generally the AggregateBy class is used to combine multiple AggregateBy subclassesinto asingle Pipe.

Pi pe assenbly = new Pi pe("assenbly");

/1
Fi el ds groupi ngFields = new Fields("date");

/1 note we do not pass the parent assenbly Pipe in

Fi el ds val ueField = new Fields("size");

Fields sunField = new Fields("total -size", |ong.class);
SunBy sunmBy = new SunBy(val ueField, sunField);

Fields countField = new Fields("numevents");
Count By count By = new CountBy(countField);

assenbly = new Aggr egat eBy(assenbly, groupingFields, sunBy, countBy);

Example 10.1 Composing partials with AggregateBy

To create a custom partial aggregation, subclass the AggregateBy class and implement the appropriate internal
interfaces. See the Javadoc for details.

AverageBYy

The cascadi ng. pi pe. assenbl y. Aver ageBy SubAssembly performs an average over the given
val ueFi el ds and returns the result in the aver ageFi el d field. AverageBy may be combined with other
AggregateBy subclasses so they may be executed simultaneously over the same grouping.

Cascading Cascading 2.2 User Guide 81

Built-in Assemblies

Pi pe assenbly = new Pi pe("assenbly");

/1

Fi el ds groupi ngFi el ds = new Fields("date");

Fi el ds val ueField = new Fields("size");

Fi el ds avgField = new Fi el ds("avg-size");

assenbly = new Aver ageBy(assenbly, groupingFields, valueField, avgField);

Example 10.2 Using AverageBy

CountBy

The cascadi ng. pi pe. assenbl y. Count By SubAssembly performs a count over the given
gr oupi ngFi el ds and returns the result in the count Fi el d field. CountBy may be combined with other
AggregateBy subclasses so they may be executed simultaneously over the same grouping.

Pi pe assenmbly = new Pi pe("assenbly");

/1

Fi el ds groupi ngFi el ds = new Fields("date");

Fields countField = new Fields("count");

assenbly = new Count By(assenbly, groupingFields, countField);

Example 10.3 Using CountBy

SumBYy

The cascadi ng. pi pe. assenbl y. SunBy SubAssembly performs a sum over the given val ueFi el ds and
returns the result in the sunti el d field. SumBy may be combined with other AggregateBy subclasses so they may
be executed simultaneously over the same grouping.

Pi pe assenbly = new Pi pe("assenbly");

/1

Fi el ds groupi ngFi el ds = new Fields("date");
Fi el ds val ueField = new Fields("size");

Fiel ds sunField = new Fields("total-size");
assenbly =

new SunBy(assenbly, groupingFields, valueField, sunfField, |ong.class);

Example 10.4 Using SUmBYy

Cascading Cascading 2.2 User Guide 82

Built-in Assemblies

FirstBy

The cascadi ng. pi pe. assenbl y. Fi r st By SubAssembly is used to return the first encountered value in the
given val ueFi el ds. FirstBy may be combined with other AggregateBy subclasses so they may be executed
simultaneously over the same grouping.

Pi pe assenbly = new Pipe("assembly");

/1
Fi el ds groupi ngFi elds = new Fields("date");
Fi el ds val ueField = new Fields("size");

/1 we want the |argest size in this grouping
val ueFi el d. set Conparator("size", new LongConparator());

assenbly =
new FirstBy(assenbly, groupingFields, valueField);

Example 10.5 Using FirstBy

Note if the val ueFi el ds Fields instance has field comparators, they will be used to sort the argument values to
influence what values are seen first. Otherwise the fields will not be sorted in any deterministic order.

10.2 Coerce

Thecascadi ng. pi pe. assenbl y. SunBy SubAssembly isused to coerce aset of valuesfrom onetypeto another
type - for example, to convert thefield age fromaStri ng toan| nt eger.

/1 incoming -> first, last, age

assenbly =
new Coerce(assenbly, new Fields("age"), Integer.class);

/l outgoing -> first, |last, age

Example 10.6 Using Coerce

10.3 Discard

Thecascadi ng. pi pe. assenbl y. Di scar d SubAssembly is used to shape the Tuple stream by discarding all
fields given on the constructor. All fields not listed are retained.

Cascading Cascading 2.2 User Guide 83

Built-in Assemblies

/1 incoming -> first, last, age
assenbly = new Di scard(assenbly, new Fields("age"));

/1 outgoing -> first, |ast

Example 10.7 Using Discard

10.4 Rename

Thecascadi ng. pi pe. assenbl y. Renane SubAssembly is used to rename afield.

/[l incoming -> first, last, age

assenbly =
new Renanme(assenbly, new Fields("age"), new Fields("years"));

/1 outgoing -> first, last, years

Example 10.8 Using Rename

10.5 Retain

The cascadi ng. pi pe. assenbl y. Ret ai n SubAssembly is used to shape the Tuple stream by retaining all
fields given on the constructor. All fields not listed are discarded.

/! incoming -> first, |last, age
assenbly = new Retain(assenbly, new Fields("first", "last"));

/1 outgoing -> first, |ast

Example 10.9 Using Retain

10.6 Unique

Thecascadi ng. pi pe. assenbl y. Uni que SubAssembly is used to remove duplicate valuesin a Tuple stream.
Uniqueness is determined by the values of all fields listed in uni queFi el ds. Thusto find all distinct Tuplesin a
Tuple stream, use Fi el ds. ALL astheuni queFi el ds argument.

Cascading Cascading 2.2 User Guide 84

Built-in Assemblies

/1 incoming -> first, |ast
assenbly = new Uni que(assenbly, new Fields("first", "last"));
/1 outgoing -> first, |ast

Example 10.10 Using Unique

Asof Cascading 2.2, Uni que usestheFi r st NBuf f er to more efficiently determine unique values.

Cascading Cascading 2.2 User Guide

85

11. Best Practices

11.1 Unit Testing

Discrete testing of al Operations, pipe assemblies;, and applications is a must. The
cascadi ng. Cascadi ngTest Case provides anumber of static helper methods.

When testing custom Operations, usethei nvokeFuncti on(),i nvokeFil ter(),i nvokeAggregator (),
andi nvokeBuf f er () methods.

When testing Flows, use the val i dat eLengt h() methods. There are quite a few of them, and collectively they
offer great flexibility. All of them read the sink tap, validate that it is the correct length and has the correct Tuple size,
and check to see whether the values match a given regular expression pattern.

As of Cascading 2, it is possible to write tests that are independent of the underlying platform. Any unit test should
subclasscascadi ng. Pl at f or niTest Case locatedinthecascadi ng-pl atform x.y. z-tests.jar jar
file. Any platform to be tested against should be added to the CLASSPATHaswell. Pl at f or niTest Case will search
the CLASSPATH for all available platforms and run each test on the subclass against each platform found.

See the Cascading platform unit tests for examples.

For Maven users, be sure to add thet est s classifier to any dependencies. Note that the cascadi ng- pl at f orm
project has no main code, but does have only tests, so it must be retrieved viathet est s classifier.

11.2 Flow Granularity

Although using one large FI ow may result in slightly more efficient performance, it's advisable to use a more
modular and flexible approach, creating medium or small Flows with well-defined responsibilities, and passing all
the resulting interdependent Flows to a Cascade to sequence and execute as a single unit. Similarly, using the
Text Del i mi t ed Scheme (or any custom format for long-term archival) between FI ow instances allows you to
hand off intermediate data to other systems for reporting or QA purposes, incurring a minimal performance penalty
while remaining compatible with other tools.

11.3 SubAssemblies, not Factories

When developing your applications, use SubAssenbl y subclasses, not "factory” methods. The resulting code is
much easier to read and test.

It's worth noting that the Qbj ect constructors are "factories’, so there isn't much reason to build frameworks to
duplicate what a constructor aready does. Of course there are exceptional cases in which you don't have the option
touseaSubAssenbl y, but in practice they are rare.

Cascading Cascading 2.2 User Guide 86

Best Practices

11.4 Logical Responsibilities for
SubAssemblies

SubAssembies provide a very convenient means to co-locate similar or related responsibilitiesinto asingle place. For
example, it'ssimpleto use a Par si ngSubAssenbl y and aRul esSubAssenbl y, where the first is responsible
solely for parsing incoming Tupl e streams (log files for example), and the second applies rules to decide whether a
given Tupl e should be discarded or marked as bad.

Additionally, in your unit tests you can create a Test Asserti onsSubAssenbl y that simply inlines various
Val ueAsserti ons and G oupAsserti ons. Thepractice of inlining Assertions directly in your SubAssemblies
is also important, but sometimes it makes sense to have more tests outside of the business logic.

11.5 Java Operators in Field Names

There are afew Operations in Cascading (e.g., Expr essi onFunct i on and Expr essi onFi | t er) that compile
and apply Java expressions on the fly. In these expressions, Operation argument field names are used as variable
namesin the expression. For thisreason, take care to create field names that don't contain characters which will cause
compilation errors if they are used in an expression. For example, "first-name” is a valid field name for use with
Cascading, but might result in the expressionf i r st - name. t ri n() , which will cause a compilation error.

11.6 Debugging Planner Failures

The Fl owConnect or will sometimes fail when attempting to plan a Fl ow. If the error message given by
Pl anner Except i on isvague, use the method Pl anner Excepti on. wri t eDOT() to export arepresentation
of the internal pipe assembly. DOT files can be opened by GraphViz and OmniGraffle. These plans are only partial,
but you will be able to see where the Cascading planner failed.

Note that you can also create a DOT file from aFl ow, by using Fl ow. wri t eDOT() .

See Debugging Hadoop.

11.7 Optimizing Joins

When joining two streams via a CoGr oup Pi pe, try to put the largest of the streams in the leftmost argument to
the CoG oup. The reason for thisis that joining multiple streams requires some accumulation of values before the
join operator can begin, but the leftmost stream is not accumulated, so this technique should improve the performance
of most joins.

11.8 Debugging Streams

When creating complex assemblies, it's safe to embed Debug operations (see Debug Function) at appropriate debug
levelsas needed. Usethe planner to removethem at runtimefor production and staging runs, to avoid wasting resources.

See Debugging Hadoop.

Cascading Cascading 2.2 User Guide 87

Best Practices

11.9 Handling Good and Bad Data

It's very common when processing raw data streams to encounter data that is corrupt or malformed in some way. For
instance, bad content may be fetched from the web via a crawler upstream, or a bug may have leaked into a browser
widget somewhere that sends user behavior information back for analysis. Whatever the cause, it's a good practice to
define a set of rulesfor identifying and discarding questionable records.

It istempting to simply throw an exception and have a Trap capturethe offending Tupl e, but Trapswere not designed
as afiltering mechanism, and consequently much valuable information would be lost.

Instead of traps, use filters. Create a SubAssenbl y that applies rules to the stream by setting a binary field that
marks the tuple as good or bad. After all the rules are applied, split the stream based on the value of the good or bad
Bool ean value. Consider setting areason field that states why the Tuple was marked bad.

11.10 Maintaining State in Operations

When creating custom Operations (Funct i on, Fi | t er, Aggr egat or, or Buf f er) do not store operation state
in classfields.

For example, if implementing acustom "counter" Aggr egat or , do not create afield named "count" and increment it
on every Aggr egat or . aggr egat e() call. Thereisno guarantee that your Operation will be called from asingle
thread in a VM - and future versions of Hadoop or Cascading local mode might execute the same operation from
multiple threads.

11.11 Custom Types

Passing acustom classthrough a Tuple stream isgenerally frowned upon. It leadsto the coupling of custom Operations
to particular types, and it removes opportunities for reducing the amount of data that passes over the network.

Thefirst objection can be overcomewith alittlework. When using acustom typethat has multipleinstancefields, try to
provide Functions that can promote avalue from the custom object to a position in aTuple, or demote the Tuple value
for a particular field back into the custom type. Thislets you use existing operations like Expr essi onFunct i on
or RegexFi | t er to operate on values owned by a custom type.

For example, if you have a Per son object, create a Function named Get Per sonAge that takes Person as an
argument and returns just the age. The next operation can then Filter all Persons based on their age. This may seem
more difficult and less effiicient, but it keeps your application flexible and avoids duplicating existing operations. (The
only alternative hereisto create aPer sonAgeFi | t er , which becomes one more thing to test.)

11.12 Fields Constants

Instead of having String field names strewn about, create an Interface that holds a constant value for each field name:
public static Fields FIRST _NAME = new Fields("firstnane");

Using the Fields class, instead of String, allows for building more complex constants:

Cascading Cascading 2.2 User Guide 88

Best Practices

public static Fields NAME = FI RST_NAME. append(LAST_NAME);

11.13 Checking the Source Code

When in doubt, look at the Cascading source code. If something is not documented in this User Guide or Javadoc, and
it'safeature of Cascading, the feature source code or unit testswill give you clear instructions on what to do or expect.

Cascading Cascading 2.2 User Guide 89

12. Extending Cascading
12.1 Scripting

The Cascading APl was designed with scripting in mind. Any Java-compatible scripting language can import and
instanti ate Cascading classes, create pipe assemblies and flows, and execute those flows. And if the scripting language
in question supports Domain Specific Language (DSL) creation, users can create their own DSL s to handle common
idioms.

The Cascading website includes information on scripting language bindings that are publicly available.

12.2 Custom Types and Serialization

The Tupl e classisageneric container for all j ava. | ang. Qbj ect instances. Thus any primitive value or custom
Class can be stored in a Tupl e instance - that is, returned by aFunct i on, Aggr egat or, or Buf f er asaresult
value.

But for this to work when using the Cascading Hadoop mode, any Class that isn't a primitive type or a Hadoop
W i t abl e type requires a corresponding Hadoop serialization class registered in the Hadoop configuration files for
your cluster. Hadoop Wi t abl e types work because there is aready a generic serialization implementation built
into Hadoop. See the Hadoop documentation for information on registering a new serialization helper or creating
Wit abl e types. Registered serialization implementations are automatically inherited by Cascading.

During serialization and deserialization of Tupl e instances that contain custom types, the Cascading Tupl e
serialization framework must store the class name (asa St r i ng) before serializing the custom object. This can be
very space-inefficient. To overcome this, custom types can add the Ser i al i zat i onToken Java annotation to the
custom type class. The Seri al i zat i onToken annotation expects two arrays - one of integers that are used as
tokens, and one of Class name strings. Both arrays must be the same size. The integer tokens must all have values of
128 or greater, since the first 128 values are reserved for internal use.

During serialization and deserialization, the token values are used instead of the St r i ng Class names, in order to
reduce the amount of storage used.

Serialization tokens may also be stored in the Hadoop config files or set asaproperty passed tothe Fl owConnect or
with the property namecascadi ng. seri al i zati on. t okens. Thevalue of this property isacomma separated
list of t oken=cl assname values.

Note that Cascading natively seridlizes/deserializes all primitives and byte arrays
(byte[]), if the developer registers the BytesSerialization claass by using
Tupl eSeri al i zati onProps. addSeri al i zati on(properties,

Byt esSeri al i zati on. cl ass. get Name() . Thetoken 127 is used for the Hadoop Byt esW i t abl e class.

By default, Cascading useslazy deserialization on Tuple elements during compari sons when Hadoop sorts keys during
the "shuffle" phase.

Cascading Cascading 2.2 User Guide 90

Extending Cascading

Cascading supports custom serialization for custom types, as well as lazy deseriaization of custom types during
comparisons. Thisisaccomplished by implementingthe St r eamConpar at or interface. Seethe Javadoc for detailed
instructions on implemention, and the unit tests for examples.

12.3 Custom Comparators and Hashing

Frequently, objectsin one Tupl e are compared to objectsin asecond Tupl e. Thisis especially true during the sort
phase of G- oupBy and CoGr oup in Cascading Hadoop mode . By default, Hadoop and Cascading use the native
nj ect methodsequal s() and hashCode() to compare two values and get a consistent hash code for a given
value, respectively.

To overridethisdefault behavior, you can createacustomj ava. ut i | . Conpar at or classto perform comparisons
on agiven field in a Tuple. For instance, to secondary-sort a collection of custom Per son objectsin a G oupBy,
usetheFi el ds. set Conpar at or () method to designate the custom Conpar at or totheFi el ds instance that
specifies the sort fields.

Alternatively, you can set a default Conpar at or to be used by a FI ow, or used locally on a given Pi pe
instance. There are two ways to do this. Cal Fl owPr ops. set Def aul t Tupl eEl emrent Conparator() ona
Pr operti es instance, or use the property key cascadi ng. f| ow. t upl e. el enent . conpar at or .

If the hash code must aso be customized, the custom Comparator can implement the interface
cascadi ng. t upl e. Hasher . For more information, see the Javadoc.

Cascading Cascading 2.2 User Guide 91

13. Cookbook

This chapter demonstrates some common idioms used in Cascading applications.

13.1 Tuples and Fields

Copy a Tupleinstance
Tupl e original = new Tuple("john", "doe");

/1 call copy constructor
Tupl e copy = new Tuple(original);

assert copy.getObject(O).equals("john");
assert copy.getObject(1).equals("doe");

Nest a Tuple instance within a Tuple

Tupl e parent = new Tupl e();
parent . add(new Tuple("john", "doe"));

assert ((Tuple) parent.getCbject(O)).getOhject(0).equals("john");

assert ((Tuple) parent.getCbject(O)).getOoject(1).equals("doe");

Build alonger Fields instance

Fields first = new Fields("first");
Fields mddle = new Fields("mddle");
Fiel ds | ast new Fields("last");

Fields full

first.append(niddle).append(last);

Remove afield from alonger Fieldsinstance

Fields full = new Fields("first", "mddle", "last");

Fields firstLast = full.subtract(new Fields("mddle"));

13.2 Stream Shaping
Split (branch) a Tuple Stream

Pi pe pi pe = new Pi pe("head");

Cascading Cascading 2.2 User Guide

92

Cookbook

pi pe = new Each(pi pe, new SoneFunction());
/1

/1 split left with the branch nanme 'l hs'
Pi pe | hs = new Pipe("l hs", pipe);

| hs = new Each(| hs, new SonmeFunction());
/1

/1 split right with the branch name 'rhs'
Pi pe rhs = new Pipe("rhs", pipe);

rhs = new Each(rhs, new SoneFunction());
/1

Copy afield value

Fiel ds argument = new Fields("field");
Identity identity = new ldentity(new Fields("copy"));

[/l identity copies the incom ng argunment to the result tuple
pi pe = new Each(pipe, argunent, identity, Fields.ALL);

Discard (drop) afield
/1 incomng -> "keepField", "dropField"
pi pe = new Di scard(pipe, new Fields("dropField"));
/1 outgoing -> "keepFiel d"

Retain (keep) afield

/1 incomng -> "keepField", "dropField"
pi pe = new Retain(pipe, new Fields("keepField"));
/1 outgoing -> "keepField"

Rename afield

/1 a sinple SubAssenbly that uses Identity internally

pi pe = new Renane(pipe, new Fields("front), new Fields("to

Coerce field values from Strings to primitives

)

)

Fields fields
G ass types][]

new Fi el ds("l ongFi el d", "bool eanField");
new Cl ass[]{l ong. cl ass, bool ean. cl ass};

/1 convert to given type
pi pe = new Coerce(pipe, fields, types);

Cascading Cascading 2.2 User Guide

93

Cookbook

Insert constant values into a stream

Fields fields = new Fields("constantl1l", "constant2");
Insert function = new Insert(fields, "valuel", "value2");

pi pe = new Each(pipe, function, Fields.ALL);

13.3 Common Operations

Parse a String date/time value

/1 convert string date/tine field to a |long

/1 mlliseconds "tinmestanp" val ue

String format = "yyyy: MM dd: HH: mm ss. SSS";

Dat ePar ser parser = new DateParser(new Fields("ts"), format);

pi pe = new Each(pipe, new Fields("datetine"), parser, Fields.ALL);

Format a time-stamp to a date/time value

/1 convert a long mlliseconds "tinestanp" value to a string
String format = "HH: mm ss. SSS";
Dat eFornatter formatter =

new Dat eFormatter(new Fields("datetinme"), format);

pi pe = new Each(pipe, new Fields("ts"), formatter, Fields.ALL);

13.4 Stream Ordering

Remove duplicate tuplesin a stream

/1 renove all duplicates fromthe stream
pi pe = new Uni que(pipe, Fields.ALL);

Create alist of unique values

/[l narrow streamto just ips

pi pe = new Retain(pipe, new Fields("ip"));
/1l find all unique 'ip'" values

pi pe = new Uni que(pipe, new Fields("ip"));

Find first occurrence in time of a unique value

/1 group on all wunique "ip' values
/] secondary sort on 'datetine', natural order is in ascendi ng order

Cascading Cascading 2.2 User Guide 94

Cookbook

pi pe = new G oupBy(pipe, new Fields("ip"), new Fields("datetime"));
/1l take the first "ip' tuple in the group which has the

/1 ol dest 'datetinme' val ue

pi pe = new Every(pipe, Fields.ALL, new First(), Fields.RESULTS);

13.5 APl Usage

Pass properties to a custom Operation

/1 set property on Flow
Properties properties = new Properties();

properties. put("key", "value");
Fl onConnect or fl owConnector = new HadoopFl owConnect or (properties);
I/

/1 get the property fromw thin an OQperation (Function, Filter, etc)
String value = (String) flowProcess. getProperty("key");

Bind multiple sources and sinks to a Flow

Pi pe headlLeft = new Pi pe("headLeft");
/1 do sonething interesting

Pi pe headRi ght = new Pi pe("headRi ght");
/1 do sonething interesting

/1 nmerge the two i nput streans
Pi pe nerged = new G oupBy(headLeft, headRi ght, new Fields("common"));
/1

/1 branch the nerged stream

Pipe tailLeft = new Pipe("tailLeft", merged);

/1 filter out values to the |eft

tailLeft = new Each(tail Left, new SoneFilter());

Pipe tail Right = new Pipe("tail Right", nerged);
/1 filter out values to the right
tai |l R ght = new Each(tail Ri ght, new SoneFilter());

/'l source taps
Schene inLeft Schene =

new TextDel i mted(new Fields("sone-fields"));
Tap sourcelLeft = new Hfs(inLeftSchene, "sone/path");

Schene i nRi ght Schene =

Cascading Cascading 2.2 User Guide 95

Cookbook

new TextDel i m ted(new Fields("sone-fields"));
Tap sourceRi ght = new Hf s(inRi ght Schene, "sone/path");

/1 sink taps
Scheme out Left Schenme =

new TextDelim ted(new Fields("sonme-fields"));
Tap sinkLeft = new Hf s(outLeft Scheme, "sone/path");

Schene out Ri ght Schene =
new TextDel i m ted(new Fields("sone-fields"));
Tap sinkRi ght = new Hf s(out Ri ght Schene, "sone/path");

Fl owDef fl owDef = new Fl owDef ()
.set Name("fl ow nane");

/1 bind source Taps to Pipe heads
f | owDef
. addSour ce(headLeft, sourcelLeft)
. addSour ce(headRi ght, sourceRight);

/! bind sink Taps to Pipe tails

f | owDef
.addSi nk(tail Left, sinkLeft)
.addTai | Sink(tail Right, sinkRight);

/1 ALTERNATI VELY . ..

/! add nanmed source Taps

/1 the head pipe nanme to bind to

f 1 owDef
.addSource("headLeft", sourcelLeft) /1 headLeft. get Name()
.addSource("headRi ght", sourceRight); // headRi ght. get Name()

/1 add nanmed sink Taps

f 1 owDef
.addSi nk("tailLeft", sinkLeft) /1 tailLeft. getName()
.addSi nk("tail Right", sinkRight); // tail R ght.getNane()

/!l add tails -- heads are reachable fromthe tails
f | owDef

.addTail (tailLeft)

.addTail (tail Right);

/1 set property on Flow
Fl onConnect or fl owConnect or = new HadoopFl owConnect or () ;

Cascading Cascading 2.2 User Guide 96

Cookbook

Fl ow fl ow = fl owConnect or. connect (fl owbDef);

Cascading Cascading 2.2 User Guide

97

14. How It Works
14.1 MapReduce Job Planner

The Hadoop MapReduce Job Planner is an internal feature of Cascading.

When a collection of functions, splits, and joins are al tied up together into a "pipe assembly", the FlowConnector
object is used to create a new Flow instance against input and output data paths. This Flow is a single Cascading job.

Internally, the FlowConnector employs an intelligent planner to convert the pipe assembly to a graph of dependent
MapReduce jobs that can be executed on a Hadoop cluster.

All this happens behind the scenes - as does the scheduling of the individual MapReduce jobs, and the cleanup of
intermediate data sets that bind the jobs together.

__

' Map ""Reduce \'Map !!Reduce

>-0-6-05b-6-0-0h
00 .

__

The diagram above shows how a typical Flow is partitioned into MapReduce jobs. Every job is delimited by a
temporary file that serves as the sink from the first job and the source for the next.

To create avisualization of how your Flows are partitioned, call the FI ow#wr i t eDOT() method. ThiswritesaDOT
[http://en.wikipedia.org/wiki/DOT _language] file out to the path specified, which can be viewed in agraphics package
like OmniGraffle or Graphviz.

14.2 The Cascade Topological Scheduler

Cascading has a simple class, Cascade , that executes a collection of Cascading Flows on a target cluster in
dependency order.

Consider the following example.

* Flow 1 readsinput file A and outputs B.

» Flow 2 expectsinput B and outputs C and D.
» Flow 3 expectsinput C and outputs E.

A Cascade is constructed through the CascadeConnect or class, by building an internal graph that makes each
Flow a "vertex", and each file an "edge". A topological walk on this graph will touch each vertex in order of its
dependencies. When avertex has all itsincoming edges (i.e., files) available, it is scheduled on the cluster.

In the example above, Flow 1 goes first, Flow 2 goes second, and Flow 3 islast.

Cascading Cascading 2.2 User Guide 98

http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language

How It Works

If two or more Flows are independent of one another, they are scheduled concurrently.

And by default, if any outputs from a Flow are newer than the inputs, the Flow is skipped. The assumption isthat the
Flow was executed recently, since the output isn't stale. So there is no reason to re-execute it and use up resources or
add timetothejob. Thisissimilar behavior acompiler would exhibit if asource file wasn't updated before arecompile.

This is very handy if you have alarge set of jobs, with varying interdependencies between them, that needs to be
executed as alogical unit. Just pass them to the CascadeConnector and let it sort them all out.

Cascading Cascading 2.2 User Guide 99

	Cascading 2.2 User Guide
	Table of Contents
	1. About Cascading
	1.1 What is Cascading?
	1.2 Usage Scenarios
	Why use Cascading?
	Who are the users?

	1.3 What is Apache Hadoop?

	2. Diving In
	3. Data Processing
	3.1 Terminology
	3.2 Pipe Assemblies
	Pipe Assembly Workflow
	Common Stream Patterns
	Data Processing

	3.3 Pipes
	Types of Pipes
	The Each and Every Pipes
	Merge
	GroupBy
	Secondary sorting

	CoGroup
	Field names
	The Joiner class
	Scaling

	HashJoin
	Scaling

	Setting Custom Pipe Properties

	3.4 Platforms
	3.5 Source and Sink Taps
	Schemes
	Platform-specific implementation details
	Sequence File Compression

	Taps
	Platform-specific implementation details

	3.6 Sink modes
	3.7 Fields Sets
	3.8 Flows
	Creating Flows from Pipe Assemblies
	Configuring Flows
	Skipping Flows
	Creating Flows from a JobConf
	Creating Custom Flows

	3.9 Cascades

	4. Executing Processes on Hadoop
	4.1 Introduction
	4.2 Building
	4.3 Configuring
	4.4 Executing
	4.5 Debugging

	5. Using and Developing Operations
	5.1 Introduction
	5.2 Functions
	5.3 Filter
	5.4 Aggregator
	5.5 Buffer
	5.6 Operation and BaseOperation

	6. Custom Taps and Schemes
	6.1 Introduction
	6.2 Custom Taps
	6.3 Custom Schemes

	7. Field Typing and Type Coercion
	7.1 Field Typing
	7.2 Type Coercion

	8. Advanced Processing
	8.1 SubAssemblies
	8.2 Stream Assertions
	8.3 Failure Traps
	8.4 Checkpointing
	8.5 Restarting a Checkpointed Flow
	8.6 Flow and Cascade Event Handling
	8.7 Template taps
	8.8 Partial Aggregation instead of Combiners

	9. Built-In Operations
	9.1 Identity Function
	9.2 Debug Function
	9.3 Sample and Limit Functions
	9.4 Insert Function
	9.5 Text Functions
	9.6 Regular Expression Operations
	9.7 Java Expression Operations
	9.8 XML Operations
	9.9 Assertions
	9.10 Logical Filter Operators
	9.11 Buffers

	10. Built-in Assemblies
	10.1 AggregateBy
	AverageBy
	CountBy
	SumBy
	FirstBy

	10.2 Coerce
	10.3 Discard
	10.4 Rename
	10.5 Retain
	10.6 Unique

	11. Best Practices
	11.1 Unit Testing
	11.2 Flow Granularity
	11.3 SubAssemblies, not Factories
	11.4 Logical Responsibilities for SubAssemblies
	11.5 Java Operators in Field Names
	11.6 Debugging Planner Failures
	11.7 Optimizing Joins
	11.8 Debugging Streams
	11.9 Handling Good and Bad Data
	11.10 Maintaining State in Operations
	11.11 Custom Types
	11.12 Fields Constants
	11.13 Checking the Source Code

	12. Extending Cascading
	12.1 Scripting
	12.2 Custom Types and Serialization
	12.3 Custom Comparators and Hashing

	13. Cookbook
	13.1 Tuples and Fields
	13.2 Stream Shaping
	13.3 Common Operations
	13.4 Stream Ordering
	13.5 API Usage

	14. How It Works
	14.1 MapReduce Job Planner
	14.2 The Cascade Topological Scheduler

