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1. About Cascading

1.1 What is Cascading?
Cascading is a data processing API and processing query planner used for defining, sharing, and executing data-

processing workflows on a single computing node or distributed computing cluster. On a single node, Cascading's

"local mode" can be used to efficiently test code and process local files before being deployed on a cluster. On a

distributed computing cluster using Apache Hadoop platform, Cascading adds an abstraction layer over the Hadoop

API, greatly simplifying Hadoop application development, job creation, and job scheduling.

1.2 Usage Scenarios

Why use Cascading?
Cascading was developed to allow organizations to rapidly develop complex data processing applications with Hadoop.

The need for Cascading is typically driven by one of two cases:

Increasing data size exceeds the processing capacity of a single computing system. In response, developers may adopt

Apache Hadoop as the base computing infrastructure, but discover that developing useful applications on Hadoop is

not trivial. Cascading eases the burden on these developers and allows them to rapidly create, refactor, test, and execute

complex applications that scale linearly across a cluster of computers.

Increasing process complexity in data centers  results in one-off data-processing applications sprawling haphazardly

onto any available disk space or CPU. Apache Hadoop solves the problem with its Global Namespace file system,

which provides a single reliable storage framework. In this scenario, Cascading eases the learning curve for developers

as they convert their existing applications for execution on a Hadoop cluster for its reliability and scalability. In

addition, it lets developers create reusable libraries and applications for use by analysts, who use them to extract data

from the Hadoop file system.

Since Cascading's creation, a number of Domain Specific Languages (DSLs) have emerged as query languages that

wrap the Cascading APIs, allowing developers and analysts to create ad-hoc queries for data mining and exploration.

These DSLs coupled with Cascading local-mode allow users to rapidly query and analyze reasonably large datasets on

their local systems before executing them at scale in a production environment. See the section on DSLs for references.

Who are the users?
Cascading users typically fall into three roles:

The application Executor is a person (e.g., a developer or analyst) or process (e.g., a cron job) that runs a data

processing application on a given cluster. This is typically done via the command line, using a prepackaged Java Jar file

compiled against the Apache Hadoop and Cascading libraries. The application may accept command-line parameters

to customize it for a given execution, and generally outputs a data set to be exported from the Hadoop file system

for some specific purpose.

The process Assembler is a person who assembles data processing workflows into unique applications. This work is

generally a development task that involves chaining together operations to act on one or more input data sets, producing
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one or more output data sets. This can be done with the raw Java Cascading API, or with a scripting language such as

Scala, Clojure, Groovy, JRuby, or Jython (or by one of the DSLs implemented in these languages).

The operation Developer is a person who writes individual functions or operations (typically in Java) or reusable

subassemblies that act on the data that passes through the data processing workflow. A simple example would be a

parser that takes a string and converts it to an Integer. Operations are equivalent to Java functions in the sense that

they take input arguments and return data. And they can execute at any granularity, from simply parsing a string to

performing complex procedures on the argument data using third-party libraries.

All three roles can be filled by a developer, but because Cascading supports a clean separation of these responsibilities,

some organizations may choose to use non-developers to run ad-hoc applications or build production processes on

a Hadoop cluster.

1.3 What is Apache Hadoop?
From the Hadoop website, it “is a software platform that lets one easily write and run applications that process vast

amounts of data”. Hadoop does this by providing a storage layer that holds vast amounts of data, and an execution

layer that runs an application in parallel across the cluster, using coordinated subsets of the stored data.

The storage layer, called the Hadoop File System (HDFS), looks like a single storage volume that has been optimized

for many concurrent serialized reads of large data files - where "large" might be measured in gigabytes or petabytes.

However, it does have limitations. For example, random access to the data is not really possible in an efficient manner.

And Hadoop only supports a single writer for output. But this limit helps make Hadoop very performant and reliable,

in part because it allows for the data to be replicated across the cluster, reducing the chance of data loss.

The execution layer, called MapReduce, relies on a divide-and-conquer strategy to manage massive data sets and

computing processes. Explaining MapReduce is beyond the scope of this document, but its complexity, and the

difficulty of creating real-world applications against it, are the chief driving force behind the creation of Cascading.

Hadoop, according to its documentation, can be configured to run in three modes: standalone mode (i.e., on the local

computer, useful for testing and debugging), pseudo-distributed mode (i.e., on an emulated "cluster" of one computer,

useful for testing), and fully-distributed mode (on a full cluster, for production purposes). The pseudo-distributed mode

does not add value for most purposes, and will not be discussed further. Cascading itself can run locally or on the

Hadoop platform, where Hadoop itself may be in standalone or distributed mode. The primary difference between

these two platforms is that, when Cascading is running locally, it makes no use of Hadoop APIs and performs all of

its work in memory, allowing it to be very fast - but consequently not as robust or scalable as when it is running on

the Hadoop platform.

Apache Hadoop is an Open Source Apache project and is freely available. It can be downloaded from the Hadoop

website: http://hadoop.apache.org/core/.

http://hadoop.apache.org/core/
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2. Diving In
The most common example presented to new Hadoop (and MapReduce) developers is an application that counts words.

It is the Hadoop equivalent to a "Hello World" application.

In the word-counting application, a document is parsed into individual words and the frequency of each word is

counted. In the last paragraph, for example, "is" appears twice and "equivalent" appears once.

The following code example uses Cascading to read each line of text from our document file, parse it into words, then

count the number of times each word appears.
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// define source and sink Taps.

Scheme sourceScheme = new TextLine( new Fields( "line" ) );

Tap source = new Hfs( sourceScheme, inputPath );

Scheme sinkScheme = new TextLine( new Fields( "word", "count" ) );

Tap sink = new Hfs( sinkScheme, outputPath, SinkMode.REPLACE );

// the 'head' of the pipe assembly

Pipe assembly = new Pipe( "wordcount" );

// For each input Tuple

// parse out each word into a new Tuple with the field name "word"

// regular expressions are optional in Cascading

String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)";

Function function = new RegexGenerator( new Fields( "word" ), regex );

assembly = new Each( assembly, new Fields( "line" ), function );

// group the Tuple stream by the "word" value

assembly = new GroupBy( assembly, new Fields( "word" ) );

// For every Tuple group

// count the number of occurrences of "word" and store result in

// a field named "count"

Aggregator count = new Count( new Fields( "count" ) );

assembly = new Every( assembly, count );

// initialize app properties, tell Hadoop which jar file to use

Properties properties = new Properties();

AppProps.setApplicationJarClass( properties, Main.class );

// plan a new Flow from the assembly using the source and sink Taps

// with the above properties

FlowConnector flowConnector = new HadoopFlowConnector( properties );

Flow flow = flowConnector.connect( "word-count", source, sink, assembly );

// execute the flow, block until complete

flow.complete();

Example 2.1 Word Counting

Several features of this example are worth highlighting.

First, notice that the pipe assembly is not coupled to the data (i.e., the Tap instances) until the last moment before

execution. File paths or references are not embedded in the pipe assembly; instead, the pipe assembly is specified

independent of data inputs and outputs. The only dependency is the data scheme, i.e., the field names. In Cascading,

every input or output file has field names associated with it, and every processing element of the pipe assembly either

expects the specified fields or creates them. This allows developers to easily self-document their code, and allows the
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Cascading planner to "fail fast" if an expected dependency between elements isn't satisfied - for instance, if a needed

field name is missing or incorrect. (If more information is desired on the planner, see MapReduce Job Planner.)

Also notice that pipe assemblies are assembled through constructor chaining. This may seem odd, but it is done for two

reasons. First, it keeps the code more concise. Second, it prevents developers from creating "cycles" (i.e., recursive

loops) in the resulting pipe assembly. Pipe assemblies are intended to be Directed Acyclic Graphs (DAG's), and in

keeping with this, the Cascading planner is not designed to handle processes that feed themselves. (If desired, there

are safer approaches to achieving this result.

Finally, notice that the very first Pipe instance has a name. That instance is the head of this particular pipe assembly.

Pipe assemblies can have any number of heads, and any number of tails. Although the tail in this example does not

have a name, in a more complex assembly it would. In general, heads and tails of pipe assemblies are assigned names

to disambiguate them. One reason is that names are used to bind sources and sinks to pipes during planning. (The

example above is an exception, because there is only one head and one tail - and consequently only one source and

one sink - so the binding is unmistakable.) Another reason is that the naming of pipes contributes to self-documention

of pipe assemblies, especially where there are splits, joins, and merges in the assembly.

To sum up, the example word-counting application will:

• Read each line of text from a file and give it the field name "line"

• parse each "line" into words with the RegexGenerator object, which returns each word in the field named "word"

• sort and group all the tuples on the "word" field, using the GroupBy object

• count the number of elements in each group, using the Count object, and store this value in the "count" field

• and write out the "word" and "count" fields.
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3. Data Processing

3.1 Terminology
The Cascading processing model is based on a metaphor of pipes (data streams) and filters (data operations). Thus

the Cascading API allows the developer to assemble pipe assemblies that split, merge, group, or join streams of data

while applying operations to each data record or groups of records.

In Cascading, we call a data record a tuple, a simple chain of pipes without forks or merges a branch, an interconnected

set of pipe branches a pipe assembly, and a series of tuples passing through a pipe branch or assembly a tuple stream.

Pipe assemblies are specified independently of the data source they are to process. So before a pipe assembly can be

executed, it must be bound to taps, i.e., data sources and sinks. The result of binding one or more pipe assemblies to

taps is a flow, which is executed on a computer or cluster using the Hadoop framework.

Multiple flows can be grouped together and executed as a single process. In this context, if one flow depends on the

output of another, it is not executed until all of its data dependencies are satisfied. Such a collection of flows is called

a cascade.

3.2 Pipe Assemblies
Pipe assemblies define what work should be done against tuple streams, which are read from tap sources  and written

to tap sinks. The work performed on the data stream may include actions such as filtering, transforming, organizing,

and calculating. Pipe assemblies may use multiple sources and multiple sinks, and may define splits, merges, and joins

to manipulate the tuple streams.

Pipe Assembly Workflow

Pipe assemblies are created by chaining cascading.pipe.Pipe classes and subclasses together. Chaining is

accomplished by passing the previous Pipe instances to the constructor of the next Pipe instance.

The following example demonstrates this type of chaining. It creates two pipes - a "left-hand side" (lhs) and a "right-

hand side" (rhs) - and performs some processing on them both, using the Each pipe. Then it joins the two pipes into one,

using the CoGroup pipe, and performs several operations on the joined pipe using Every and GroupBy. The specific

operations performed are not important in the example; the point is to show the general flow of the data streams. The

diagram after the example gives a visual representation of the workflow.
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// the "left hand side" assembly head

Pipe lhs = new Pipe( "lhs" );

lhs = new Each( lhs, new SomeFunction() );

lhs = new Each( lhs, new SomeFilter() );

// the "right hand side" assembly head

Pipe rhs = new Pipe( "rhs" );

rhs = new Each( rhs, new SomeFunction() );

// joins the lhs and rhs

Pipe join = new CoGroup( lhs, rhs );

join = new Every( join, new SomeAggregator() );

join = new GroupBy( join );

join = new Every( join, new SomeAggregator() );

// the tail of the assembly

join = new Each( join, new SomeFunction() );

Example 3.1 Chaining Pipes

The following diagram is a visual representation of the example above.

CoGroupEach Every GroupBy

Each

Every

Each

Each

Common Stream Patterns

As data moves through the pipe, streams may be separated or combined for various purposes. Here are the three basic

patterns:

Split

A split takes a single stream and sends it down multiple paths - that is, it feeds a single Pipe instance into two

or more subsequent separate Pipe instances with unique branch names.
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Merge

A merge combines two or more streams that have identical fields into a single stream. This is done by passing

two or more Pipe instances to a Merge or GroupBy pipe.

Join

A join combines data from two or more streams that have different fields, based on common field values

(analogous to a SQL join.) This is done by passing two or more Pipe instances to a HashJoin or CoGroup

pipe. The code sequence and diagram above give an example.

Data Processing

In addition to directing the tuple streams - using splits, merges, and joins - pipe assemblies can examine, filter, organize,

and transform the tuple data as the streams move through the pipe assemblies. To facilitate this, the values in the tuple

are typically given field names, just as database columns are given names, so that they may be referenced or selected.

The following terminology is used:

Operation

Operations (cascading.operation.Operation) accept an input argument Tuple, and output zero or more

result tuples. There are a few sub-types of operations defined below. Cascading has a number of generic Operations

that can be used, or developers can create their own custom Operations.

Tuple

In Cascading, data is processed as a stream of Tuples (cascading.tuple.Tuple), which are composed of

fields, much like a database record or row. A Tuple is effectively an array of (field) values, where each value

can be any java.lang.Object Java type (or byte[] array). For information on supporting non-primitive

types, see Custom Types.

Fields

Fields (cascading.tuple.Fields) are used either to declare the field names for fields in a Tuple, or

reference field values in a Tuple. They can either be strings (such as "firstname" or "birthdate"), integers (for the

field position, starting at 0 for the first position, or starting at -1 for the last position), or one of the predefined

Fields sets (such as Fields.ALL, which selects all values in the Tuple, like an asterisk in SQL). For more on

Fields sets, see Field Algebra).

3.3 Pipes
The code for the sample pipe assembly above, Chaining Pipes, consists almost entirely of a series of Pipe constructors.

This section describes the various Pipe classes in detail. The base class cascading.pipe.Pipe and its subclasses

are shown in the diagram below.
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CoGroup

InnerJoin OuterJoin LeftJoin RightJoin

Joiner

MixedJoin

GroupBy

Pipe

Merge Every
S u b  

Assembly
JoinEach

Types of Pipes

The Pipe class  is used to instantiate and name a pipe. Pipe names are used by the planner to bind taps to the pipe as

sources or sinks. (A third option is to bind a tap to the pipe branch as a trap, discussed elsewhere as an advanced topic.)

The SubAssembly subclass  is a special type of pipe. It is used to nest re-usable pipe assemblies within a Pipe

class for inclusion in a larger pipe assembly. For more information on this, see the section on SubAssemblies.

The other six types of pipes are used to perform operations on the tuple streams as they pass through the pipe

assemblies. This may involve operating on the individual tuples (e.g., transform or filter), on groups of related tuples

(e.g., count or subtotal), or on entire streams (e.g., split, combine, group, or sort). These six pipe types are briefly

introduced here, then explored in detail further below.

Each

These pipes perform operations based on the data contents of tuples - analyze, transform, or filter. The Each pipe

operates on individual tuples in the stream, applying functions or filters such as conditionally replacing certain

field values, removing tuples that have values outside a target range, etc.

You can also use Each to split or branch a stream, simply by routing the output of an Each into a different

pipe or sink.

Note that with Each, as with other types of pipe, you can specify a list of fields to output, thereby removing

unwanted fields from a stream.

Merge

Just as Each can be used to split one stream into two, Merge can be used to combine two or more streams into

one, as long as they have the same fields.
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A Merge accepts two or more streams that have identical fields, and emits a single stream of tuples (in arbitrary

order) that contains all the tuples from all the specified input streams. Thus a Merge is just a mingling of all the

tuples from the input streams, as if shuffling multiple card decks into one.

Use Merge when no grouping is required (i.e., no aggregator or buffer operations will be performed). Merge is

much faster than GroupBy (see below) for merging.

To combine streams that have different fields, based on one or more common values, use CoGroup or

HashJoin.

GroupBy

GroupBy groups the tuples of a stream based on common values in a specified field.

If passed multiple streams as inputs, it performs a merge before the grouping. As with Merge, a GroupBy

requires that multiple input streams share the same field structure.

The purpose of grouping is typically to prepare a stream for processing by the Every pipe, which performs

aggregator and buffer operations on the groups, such as counting, totalling, or averaging values within that group.

It should be clear that "grouping" here essentially means sorting all the tuples into groups based on the value of

a particular field. However, within a given group, the tuples are in arbitrary order unless you specify a secondary

sort key. For most purposes, a secondary sort is not required and only increases the execution time.

Every

The Every pipe operates on a tuple stream that has been grouped (by GroupBy or CoGroup) on the values

of a particular field, such as timestamp or zipcode. It's used to apply aggregator or buffer operations such as

counting, totaling, or averaging field values within each group. Thus the Every class is only for use on the output

of GroupBy or CoGroup, and cannot be used with the output of Each, Merge, or HashJoin.

An Every instance may follow another Every instance, so Aggregator operations can be chained. This is

not true for Buffer operations.

CoGroup

CoGroup performs a join on two or more streams, similar to a SQL join, and groups the single resulting output

stream on the value of a specified field. As with SQL, the join can be inner, outer, left, or right. Self-joins are

permitted, as well as mixed joins (for three or more streams) and custom joins. Null fields in the input streams

become corresponding null fields in the output stream.

The resulting output stream contains fields from all the input streams. If the streams contain any field names in

common, they must be renamed to avoid duplicate field names in the resulting tuples.

HashJoin

HashJoin performs a join on two or more streams, similar to a SQL join, and emits a single stream in arbitrary

order. As with SQL, the join can be inner, outer, left, or right. Self-joins are permitted, as well as mixed joins

(for three or more streams) and custom joins. Null fields in the input streams become corresponding null fields

in the output stream.

For applications that do not require grouping, HashJoin provides faster execution than CoGroup, but only

within certain prescribed cases. It is optimized for joining one or more small streams to no more than one
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large stream. Developers should thoroughly understand the limitations of this class, as described below, before

attempting to use it.

The following table summarizes the different types of pipes.

Table 3.1. Comparison of pipe types

Pipe type Purpose Input Output

Pipe instantiate a pipe; create or

name a branch

name a (named) pipe

SubAssembly create nested subassemblies

Each apply a filter or function, or

branch a stream

tuple stream (grouped or not) a tuple stream, optionally

filtered or transformed

Merge merge two or more streams

with identical fields

two or more tuple streams a tuple stream, unsorted

GroupBy sort/group on field values;

optionally merge two or

more streams with identical

fields

one or more tuple streams

with identical fields

a single tuple stream,

grouped on key field(s) with

optional secondary sort

Every apply aggregator or buffer

operation

grouped tuple stream a tuple stream plus new

fields with operation results

CoGroup join 1 or more streams on

matching field values

one or more tuple streams a single tuple stream, joined

on key field(s)

HashJoin join 1 or more streams on

matching field values

one or more tuple streams a tuple stream in arbitrary

order

The Each and Every Pipes

The Each and Every pipes perform operations on tuple data - for instance, perform a search-and-replace on tuple

contents, filter out some of the tuples based on their contents, or count the number of tuples in a stream that share

a common field value.

Here is the syntax for these pipes:

new Each( previousPipe, argumentSelector, operation, outputSelector )

new Every( previousPipe, argumentSelector, operation, outputSelector )

Both types take four arguments:

• a Pipe instance
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• an argument selector

• an Operation instance

• an output selector on the constructor (selectors here are Fields instances)

The key difference between Each and Every is that the Each operates on individual tuples, and Every operates

on groups of tuples emitted by GroupBy or CoGroup. This affects the kind of operations that these two pipes can

perform, and the kind of output they produce as a result.

The Each pipe applies operations that are subclasses of Functions and Filters (described in the Javadoc). For

example, using Each you can parse lines from a logfile into their constituent fields, filter out all lines except the HTTP

GET requests, and replace the timestring fields with date fields.

Similarly, since the Every pipe works on tuple groups (the output of a GroupBy or CoGroup pipe), it applies

operations that are subclasses of Aggregators and Buffers. For example, you could use GroupBy to group the

output of the above Each pipe by date, then use an Every pipe to count the GET requests per date. The pipe would

then emit the operation results as the date and count for each group.

Pipe

Operation
argument
Selector

Pipe

output
Selector

result
Tuple

Tuple

Fields

argument
Tuple

declared
Fields

argument
Fields

input
Fields

declared
Fields

+

input
Tuple

result
Tuple

+

input
Fields

output
Fields

Pipe Pipe
output
Tuple

input
Tuple

In the syntax shown at the start of this section, the argument selector  specifies fields from the input tuple to use as

input values. If the argument selector is not specified, the whole input tuple (Fields.ALL) is passed to the operation

as a set of argument values.

Most Operation subclasses declare result fields (shown as "declared fields" in the diagram). The output selector

specifies the fields of the output Tuple from the fields of the input Tuple and the operation result. This new output

Tuple becomes the input Tuple to the next pipe in the pipe assembly. If the output selector is Fields.ALL, the

output is the input Tuple plus the operation result, merged into a single Tuple.

Note that it's possible for a Function or Aggregator to return more than one output Tuple per input Tuple. In

this case, the input tuple is duplicated as many times as necessary to create the necessary output tuples. This is similar

to the reiteration of values that happens during a join. If a function is designed to always emit three result tuples for

every input tuple, each of the three outgoing tuples will consist of the selected input tuple values plus one of the three

sets of function result values.
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default:

Fields.ALL

If the result selector is not specified for an Each pipe performing a Functions operation, the operation results are

returned by default (Fields.RESULTS), discarding the input tuple values in the tuple stream. (This is not true of

Filters , which either discard the input tuple or return it intact, and thus do not use an output selector.)
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input
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Every

default:

Fields.ALL

Aggregator

group
Fields

declared
Fields

+

group
Tuple

result
Tuple

+

default:

Fields.ALL

For the Every pipe, the Aggregator results are appended to the input Tuple (Fields.ALL) by default.

Note that the Every pipe associates Aggregator results with the current group Tuple (the unique keys currently

being grouped on). For example, if you are grouping on the field "department" and counting the number of "names"

grouped by that department, the resulting output Fields will be ["department","num_employees"].

If you are also adding up the salaries associated with each "name" in each "department", the output Fields will be

["department","num_employees","total_salaries"].

This is only true for chains of Aggregator Operations - you are not allowed to chain Buffer operations, as

explained below.
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When the Every pipe is used with a Buffer operation, instead of an Aggregator, the behavior is different. Instead

of being associated with the current grouping tuple, the operation results are associated with the current values tuple.

This is analogous to how an Each pipe works with a Function. This approach may seem slightly unintuitive, but

provides much more flexibility. To put it another way, the results of the buffer operation are not appended to the current

keys being grouped on. It is up to the buffer to emit them if they are relevant. It is also possible for a Buffer to emit

more than one result Tuple per unique grouping. That is, a Buffer may or may not emulate an Aggregator, where an

Aggregator is just a special optimized case of a Buffer.

For more information on how operations process fields, see Operations and Field-processing .

Merge

The Merge pipe is very simple. It accepts two or more streams that have the same fields, and emits a single stream

containing all the tuples from all the input streams. Thus a merge is just a mingling of all the tuples from the input

streams, as if shuffling multiple card decks into one. Note that the output of Merge is in arbitrary order.

Pipe merge = new Merge( lhs, rhs );

Example 3.2 Merging Two Tuple Streams

The example above simply combines all the tuples from two existing streams ("lhs" and "rhs") into a new tuple stream

("merge").

GroupBy

GroupBy groups the tuples of a stream based on common values in a specified field. If passed multiple streams as

inputs, it performs a merge before the grouping. As with Merge, a GroupBy requires that multiple input streams

share the same field structure.

The output of GroupBy is suitable for the Every pipe, which performs Aggregator and Buffer operations,

such as counting, totalling, or averaging groups of tuples that have a common value (e.g., the same date). By default,
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GroupBy performs no secondary sort, so within each group the tuples are in arbitrary order. For instance, when

grouping on "lastname", the tuples [doe, john] and [doe, jane] end up in the same group, but in arbitrary

sequence.

Secondary sorting

If multi-level sorting is desired, the names of the sort fields on must be specified to the GroupBy instance, as

seen below. In this example, value1 and value2 will arrive in their natural sort order (assuming they are

java.lang.Comparable).

Fields groupFields = new Fields( "group1", "group2" );

Fields sortFields = new Fields( "value1", "value2" );

Pipe groupBy = new GroupBy( assembly, groupFields, sortFields );

Example 3.3 Secondary Sorting

If we don't care about the order of value2, we can leave it out of the sortFields Fields constructor.

In the next example, we reverse the order of value1 while keeping the natural order of value2.

Fields groupFields = new Fields( "group1", "group2" );

Fields sortFields = new Fields( "value1", "value2" );

sortFields.setComparator( "value1", Collections.reverseOrder() );

Pipe groupBy = new GroupBy( assembly, groupFields, sortFields );

Example 3.4 Reversing Secondary Sort Order

Whenever there is an implied sort during grouping or secondary sorting, a custom java.util.Comparator can

optionally be supplied to the grouping Fields or secondary sort Fields. This allows the developer to use the

Fields.setComparator() call to control the sort.

To sort or group on non-Java-comparable classes, consider creating a custom Comparator.

Below is a more practical example, where we group by the "day of the year", but want to reverse the order of the tuples

within that grouping by "time of day".
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Fields groupFields = new Fields( "year", "month", "day" );

Fields sortFields = new Fields( "hour", "minute", "second" );

sortFields.setComparators(

  Collections.reverseOrder(),   // hour

  Collections.reverseOrder(),   // minute

  Collections.reverseOrder() ); // second

Pipe groupBy = new GroupBy( assembly, groupFields, sortFields );

Example 3.5 Reverse Order by Time

CoGroup

The CoGroup pipe is similar to GroupBy, but instead of a merge, performs a join. That is, CoGroup accepts two

or more input streams and groups them on one or more specified keys, and performs a join operation on equal key

values, similar to a SQL join.

The output stream contains all the fields from all the input streams.

As with SQL, the join can be inner, outer, left, or right. Self-joins are permitted, as well as mixed joins (for three or

more streams) and custom joins. Null fields in the input streams become corresponding null fields in the output stream.

Since the output is grouped, it is suitable for the Every pipe, which performs Aggregator and Buffer operations

- such as counting, totalling, or averaging groups of tuples that have a common value (e.g., the same date).

The output stream is sorted by the natural order of the grouping fields. To control this order, at least the first

groupingFields value given should be an instance of Fields containing Comparator instances for the

appropriate fields. This allows fine-grained control of the sort grouping order.

Field names

In a join operation, all the field names used in any of the input tuples must be unique; duplicate field names are not

allowed. If the names overlap there is a collision, as shown in the following diagram.

"word" "count""url" "sentence" "count""url"

CoGroup

"word" "count""url" "sentence" "count""url"
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In this figure, two streams are to be joined on the "url" field, resulting in a new Tuple that contains fields from the two

input tuples. However, the resulting tuple would include two fields with the same name ("url"), which is unworkable.

To handle the conflict, developers can use the declaredFields argument (described in the Javadoc) to declare

unique field names for the output tuple, as in the following example.

Fields common = new Fields( "url" );

Fields declared = new Fields(

  "url1", "word", "wd_count", "url2", "sentence", "snt_count"

);

Pipe join =

  new CoGroup( lhs, common, rhs, common, declared, new InnerJoin() );

Example 3.6 Joining Two Tuple Streams with Duplicate Field Names

"word" "count""url" "sentence" "count""url"

CoGroup

"word" "count""url" "sentence" "count""url""word" "wd_count""url1" "sentence" "snt_count""url2"

This revised figure demonstrates the use of declared field names to prevent a planning failure.

It might seem preferable for Cascading to automatically recognize the duplication and simply merge the identically-

named fields, saving effort for the developer. However, consider the case of an outer type join in which one field (or

set of fields used for the join) for a given join side happens to be null. Discarding one of the duplicate fields would

lose this information.

Further, the internal implementation relies on field position, not field names, when reading tuples; the field names are

a device for the developer. This approach allows the behavior of the CoGroup to be deterministic and predictable.

The Joiner class

In the example above, we explicitly specified a Joiner class (InnerJoin) to perform a join on our data. There are five

Joiner subclasses, as shown in this diagram.
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CoGroup

InnerJoin OuterJoin LeftJoin RightJoin

Joiner

MixedJoin

In CoGroup, the join is performed after all the input streams are first co-grouped by their common keys. Cascading

must create a "bag" of data for every grouping in the input streams, consisting of all the Tuple instances associated

with that grouping.

lhs rhs

"word" "count""url" "sentence" "count""url"
"word" "count""url"

"word" "count""url"
"word" "count""url"

"word" "count""url"
"word" "count""url"

"sentence" "count""url"
"sentence" "count""url"

"sentence" "count""url"
"sentence" "count""url"

"sentence" "count""url"

It's already been mentioned that joins in Cascading are analogous to joins in SQL. The most commonly-used type of

join is the inner join, the default in CoGroup. An inner join tries to match each Tuple on the "lhs" with every Tuple

on the "rhs", based on matching field values. With an inner join, if either side has no tuples for a given value, no tuples

are joined. An outer join, conversely, allows for either side to be empty and simply substitutes a Tuple containing

null values for the non-existent tuple.

This sample data is used in the discussion below to explain and compare the different types of join:

LHS = [0,a] [1,b] [2,c]

RHS = [0,A] [2,C] [3,D]

In each join type below, the values are joined on the first tuple position (the join key), a numeric value. Note that,

when Cascading joins tuples, the resulting Tuple contains all the incoming values from in incoming tuple streams,

and does not discard the duplicate key fields. As mentioned above, on outer joins where there is no equivalent key in

the alternate stream, null values are used.

For example using the data above, the result Tuple of an "inner" join with join key value of 2 would be [2,c,2,C].

The result Tuple of an "outer" join with join key value of 1 would be [1,b,null,null].

InnerJoin

An inner join only returns a joined Tuple if neither bag for the join key is empty.
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[0,a,0,A] [2,c,2,C]

OuterJoin

An outer join performs a join if one bag (left or right) for the join key is empty, or if neither bag is empty.

[0,a,0,A] [1,b,null,null] [2,c,2,C] [null,null,3,D]

LeftJoin

A left join can also be stated as a left inner and right outer join, where it is acceptable for the right bag to be

empty (but not the left).

[0,a,0,A] [1,b,null,null] [2,c,2,C]

RightJoin

A right join can also be stated as a left outer and right inner join, where it is acceptable for the left bag to be

empty (but not the right).

[0,a,0,A] [2,c,2,C] [null,null,3,D]

MixedJoin

A mixed join is where 3 or more tuple streams are joined, using a small Boolean array to specify each of the join

types to use. For more information, see the cascading.pipe.cogroup.MixedJoin class in the Javadoc.

Custom

Developers can subclass the cascading.pipe.cogroup.Joiner class to create custom join operations.

Scaling

CoGroup attempts to store the entire current unique keys tuple "bag" from the right-hand stream in memory for rapid

joining to the left-hand stream. If the bag is very large, it may exceed a configurable threshold and be spilled to disk,

reducing performance and potentially causing a memory error (if the threshold value is too large). Thus it's usually

best to put the stream with the largest groupings on the left-hand side and, if necessary, adjust the spill threshold as

described in the Javadoc.

HashJoin

HashJoin performs a join (similar to a SQL join) on two or more streams, and emits a stream of tuples that contain

fields from all of the input streams. With a join, the tuples in the different input streams do not typically contain the

same set of fields.

As with  CoGroup, the field names must all be unique, including the names of the key fields, to avoid duplicate

field names in the emitted Tuple. If necessary, use the declaredFields argument to specify unique field names

for the output.

An inner join is performed by default, but you can choose inner, outer, left, right, or mixed (three or more streams).

Self-joins are permitted. Developers can also create custom Joiners if desired. For more information on types of joins,

refer to the section called “The Joiner class” or the Javadoc.



Data Processing

Cascading Cascading 2.2 User Guide 20

Fields lhsFields = new Fields( "fieldA", "fieldB" );

Fields rhsFields = new Fields( "fieldC", "fieldD" );

Pipe join =

  new HashJoin( lhs, lhsFields, rhs, rhsFields, new InnerJoin() );

Example 3.7 Joining Two Tuple Streams

The example above performs an inner join on two streams ("lhs" and "rhs"), based on common values in two fields.

The field names that are specified in lhsFields and rhsFields are among the field names previously declared

for the two input streams.

Scaling

For joins that do not require grouping, HashJoin provides faster execution than CoGroup, but it operates within

stricter limitations. It is optimized for joining one or more small streams to no more than one large stream.

Unlike CoGroup, HashJoin attempts to keep the entire right-hand stream in memory for rapid comparison (not just

the current grouping, as no grouping is performed for a HashJoin). Thus a very large tuple stream in the right-hand

stream may exceed a configurable spill-to-disk threshold, reducing performance and potentially causing a memory

error. For this reason, it's advisable to use the smaller stream on the right-hand side. Additionally, it may be helpful

to adjust the spill threshold as described in the Javadoc.

Due to the potential difficulties of using HashJoin (as compared to the slower but much more reliable CoGroup),

developers should thoroughly understand this class before attempting to use it.

Frequently the HashJoin is fed a filtered down stream of Tuples from what was originally a very large file. To

prevent the large file from being replicated throughout a cluster, when running in Hadoop mode, use a Checkpoint

pipe at the point where the data has been filtered down to its smallest before it is streamed into a HashJoin. This

will force the Tuple stream to be persisted to disk and new FlowStep (MapReduce job) to be created to read the

smaller data size more efficiently.

Setting Custom Pipe Properties

By default, the properties passed to a FlowConnector subclass become the defaults for every Flow instance created by

that FlowConnector. In the past, if some of the Flow instances needed different properties, it was necessary to create

additional FlowConnectors to set those properties. However, it is now possible to set properties at the Pipe scope and

at the process FlowStep scope.

Setting properties at the Pipe scope lets you set a property that is only visible to a given Pipe instance (and its child

Operation). This allows Operations such as custom Functions to be dynamically configured.

More importantly, setting properties at the process FlowStep scope allows you to set properties on a Pipe that are

inherited by the underlying process during runtime. When running on the Apache Hadoop platform (i.e., when using

the HadoopFlowConnector), a FlowStep is the current MapReduce job. Thus a Hadoop-specific property can be set on

a Pipe, such as a CoGroup. During runtime, the FlowStep (MapReduce job) that the CoGroup executes in is configured

with the given property - for example, a spill threshold, or the number of reducer tasks for Hadoop to deploy.

The following code samples demonstrates the basic form for both the Pipe scope and the process FlowStep scope.
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Pipe join =

  new HashJoin( lhs, common, rhs, common, declared, new InnerJoin() );

SpillableProps props = SpillableProps.spillableProps()

  .setCompressSpill( true )

  .setMapSpillThreshold( 50 * 1000 );

props.setProperties( join.getConfigDef(), ConfigDef.Mode.REPLACE );

Example 3.8 Pipe Scope

Pipe join =

  new HashJoin( lhs, common, rhs, common, declared, new InnerJoin() );

SpillableProps props = SpillableProps.spillableProps()

  .setCompressSpill( true )

  .setMapSpillThreshold( 50 * 1000 );

props.setProperties( join.getStepConfigDef(), ConfigDef.Mode.DEFAULT );

Example 3.9 Step Scope

As of Cascading 2.2, SubAssemblies can now be configured via the ConfigDef method.

3.4 Platforms
Cascading supports pluggable planners that allow it to execute on differing platforms. Planners are invoked by an

associated FlowConnector subclass. Currently, only two planners are provided, as described below:

LocalFlowConnector

The cascading.flow.local.LocalFlowConnector provides a "local" mode planner for running

Cascading completely in memory on the current computer. This allows for fast execution of Flows against local

files or any other compatible custom Tap and Scheme classes.

The local mode planner and platform were not designed to scale beyond available memory, CPU, or disk on the

current machine. Thus any memory-intensive processes that use GroupBy, CoGroup, or HashJoin are likely

to fail against moderately large files.

Local mode is useful for development, testing, and interactive data exploration against sample sets.

HadoopFlowConnector

The cascading.flow.hadoop.HadoopFlowConnector provides a planner for running Cascading on

an Apache Hadoop cluster. This allows Cascading to execute against extremely large data sets over a cluster of

computing nodes.

Cascading's support for pluggable planners allows a pipe assembly to be executed on an arbitrary platform, using

platform-specific Tap and Scheme classes that hide the platform-related I/O details from the developer. For example,

Hadoop uses org.apache.hadoop.mapred.InputFormat to read data, but local mode is happy with a
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java.io.FileInputStream. This detail is hidden from developers unless they are creating custom Tap and

Scheme classes.

3.5 Source and Sink Taps
All input data comes in from, and all output data goes out to, some instance of cascading.tap.Tap. A tap

represents a data resource - such as a file on the local file system, on a Hadoop distributed file system, or on Amazon

S3. A tap can be read from, which makes it a source, or written to, which makes it a sink. Or, more commonly, taps

act as both sinks and sources when shared between flows.

The platform on which your application is running (Cascading local or Hadoop) determines which specific classes

you can use. Details are provided in the sections below.

Schemes

If the Tap is about where the data is and how to access it, the Scheme is about what the data is and how to read it.

Every Tap must have a Scheme that describes the data. Cascading provides four Scheme classes:

TextLine

TextLine reads and writes raw text files and returns tuples which, by default, contain two fields specific to the

platform used. The first field is either the byte offset or line number, and the second field is the actual line of

text. When written to, all Tuple values are converted to Strings delimited with the TAB character (\t). A TextLine

scheme is provided for both the local and Hadoop modes.

By default TextLine uses the UTF-8 character set. This can be overridden on the appropriate TextLine constructor.

TextDelimited

TextDelimited reads and writes character-delimited files in standard formats such as CSV (comma-separated

variables), TSV (tab-separated variables), and so on. When written to, all Tuple values are converted to Strings

and joined with the specified character delimiter. This Scheme can optionally handle quoted values with custom

quote characters. Further, TextDelimited can coerce each value to a primitive type when reading a text file. A

TextDelimited scheme is provided for both the local and Hadoop modes.

By default TextDelimited uses the UTF-8 character set. This can be overridden on appropriate the TextDelimited

constructor.

SequenceFile

SequenceFile is based on the Hadoop Sequence file, which is a binary format. When written to or read from,

all Tuple values are saved in their native binary form. This is the most efficient file format - but be aware that the

resulting files are binary and can only be read by Hadoop applications running on the Hadoop platform.

WritableSequenceFile

Like the SequenceFile Scheme, WritableSequenceFile is based on the Hadoop Sequence file, but it

was designed to read and write key and/or value Hadoop Writable objects directly. This is very useful if you

have sequence files created by other applications. During writing (sinking), specified key and/or value fields are

serialized directly into the sequence file. During reading (sourcing), the key and/or value objects are deserialized

and wrapped in a Cascading Tuple object and passed to the downstream pipe assembly. This class is only available

when running on the Hadoop platform.
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There's a key difference between the TextLine and SequenceFile schemes. With the SequenceFile scheme,

data is stored as binary tuples, which can be read without having to be parsed. But with the TextLine option,

Cascading must parse each line into a Tuple before processing it, causing a performance hit.

Platform-specific implementation details

Depending on which platform you use (Cascading local or Hadoop), the classes you use to specify schemes will vary.

Platform-specific details for each standard scheme are shown below.

Table 3.2. Platform-specific tap scheme classes

Description Cascading local platform Hadoop platform

Package Name cascading.scheme.local cascading.scheme.hadoop

Read lines of text TextLine TextLine

Read delimited text (CSV, TSV, etc) TextDelimited TextDelimited

Cascading proprietary efficient

binary

 SequenceFile

External Hadoop application binary

(custom Writable type)

 WritableSequenceFile

Sequence File Compression

For best performance when running on the Hadoop platform, enable Sequence File Compression in the Hadoop

property settings - either block or record-based compression. Refer to the Hadoop documentation for the available

properties and compression types.

Taps

The following sample code creates a new Hadoop FileSystem Tap that can read and write raw text files. Since only

one field name is provided, the "offset" field is discarded, resulting in an input tuple stream with only "line" values.

Tap tap = new Hfs( new TextLine( new Fields( "line" ) ), path );

Example 3.10 Creating a new tap

Here are the most commonly-used tap types:

FileTap

The cascading.tap.local.FileTap tap is used with the Cascading local platform to access files on the

local file system.

Hfs

The cascading.tap.hadoop.Hfs tap uses the current Hadoop default file system, when running on the

Hadoop platform.
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If Hadoop is configured for "Hadoop local mode" (not to be confused with Cascading local mode), its default file

system is the local file system. If configured for distributed mode, its default file system is typically the Hadoop

distributed file system.

Note that Hadoop can be forced to use an external file system by specifying a prefix to the URL passed into a new

Hfs tap. For instance, using "s3://somebucket/path" tells Hadoop to use the S3 FileSystem implementation to

access files in an Amazon S3 bucket. More information on this can be found in the Javadoc.

Also provided are four utility taps:

MultiSourceTap

The cascading.tap.MultiSourceTap is used to tie multiple tap instances into a single tap for use as an

input source. The only restriction is that all the tap instances passed to a new MultiSourceTap share the same

Scheme classes (not necessarily the same Scheme instance).

MultiSinkTap

The cascading.tap.MultiSinkTap is used to tie multiple tap instances into a single tap for use as output

sinks. At runtime, for every Tuple output by the pipe assembly, each child tap to the MultiSinkTap will sink the

Tuple.

TemplateTap

The cascading.tap.hadoop.TemplateTap and cascading.tap.local.TemplateTap are used

to sink tuples into directory paths based on the values in the Tuple. More can be read below in Template Taps.

GlobHfs

The cascading.tap.hadoop.GlobHfs tap accepts Hadoop style "file globbing" expression patterns. This

allows for multiple paths to be used as a single source, where all paths match the given pattern. This tap is only

available when running on the Hadoop platform.

Platform-specific implementation details

Depending on which platform you use (Cascading local or Hadoop), the classes you use to specify file systems will

vary. Platform-specific details for each standard tap type are shown below.

Table 3.3. Platform-specific details for setting file system

Description Either platform Cascading local platform Hadoop platform

Package Name cascading.tap cascading.tap.local cascading.tap.hadoop

File access  FileTap Hfs

Multiple Taps as

single source

MultiSourceTap   

Multiple Taps as

single sink

MultiSinkTap   

Bin/Partition data

into multiple files

 TemplateTap TemplateTap
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Pattern match

multiple files/dirs

  GlobHfs

3.6 Sink modes

Tap tap =

  new Hfs( new TextLine( new Fields( "line" ) ), path, SinkMode.REPLACE );

Example 3.11 Overwriting An Existing Resource

All applications created with Cascading read data from one or more sources, process it, then write data to one or more

sinks. This is done via the various Tap classes, where each class abstracts different types of back-end systems that

store data as files, tables, blobs, and so on. But in order to sink data, some systems require that the resource (e.g., a

file) not exist before processing thus must be removed (deleted) before the processing can begin. Other systems may

allow for appending or updating of a resource (typical with database tables).

When creating a new Tap instance, a SinkMode may be provided so that the Tap will know how to handle any

existing resources. Note that not all Taps support all SinkMode values - for example, Hadoop does not support

appends (updates) from a MapReduce job.

The available SinkModes are:

SinkMode.KEEP

This is the default behavior. If the resource exists, attempting to write over it will fail.

SinkMode.REPLACE

This allows Cascading to delete the file immediately after the Flow is started.

SinkMode.UPDATE

Allows for new tap types that can update or append - for example, to update or add records in a database. Each

tap may implement this functionality in its own way. Cascading recognizes this update mode, and if a resource

exists, will not fail or attempt to delete it.

Note that Cascading itself only uses these labels internally to know when to automatically call deleteResource()

on the Tap or to leave the Tap alone. It is up the the Tap implementation to actually perform a write or update

when processing starts. Thus, when start() or complete() is called on a Flow, any sink Tap labeled

SinkMode.REPLACE will have its deleteResource() method called.

Conversely, if a Flow is in a Cascade and the Tap is set to SinkMode.KEEP or SinkMode.REPLACE,

deleteResource() will be called if and only if the sink is stale (i.e., older than the source). This allows a Cascade

to behave like a "make" or "ant" build file, only running Flows that should be run. For more information, see Skipping

Flows.

It's also important to understand how Hadoop deals with directories. By default, Hadoop cannot source data from

directories with nested sub-directories, and it cannot write to directories that already exist. However, the good news

is that you can simply point the Hfs tap to a directory of data files, and they are all used as input - there's no need to

enumerate each individual file into a MultiSourceTap. If there are nested directories, use GlobHfs.
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3.7 Fields Sets
Cascading applications can perform complex manipulation or "field algebra" on the fields stored in tuples, using Fields

sets, a feature of the Fields class that provides a sort of wildcard tool for referencing sets of field values.

These predefined Fields sets are constant values on the Fields class. They can be used in many places where the

Fields class is expected. They are:

Fields.ALL

The cascading.tuple.Fields.ALL constant is a wildcard that represents all the current available fields.

// incoming -> first, last, age

String expression = "first + \" \" + last";

Fields fields = new Fields( "full" );

ExpressionFunction full =

  new ExpressionFunction( fields, expression, String.class );

assembly =

  new Each( assembly, new Fields( "first", "last" ), full, Fields.ALL );

// outgoing -> first, last, age, full

Fields.RESULTS

The cascading.tuple.Fields.RESULTS constant is used to represent the field names of the current

operations return values. This Fields set may only be used as an output selector on a pipe, causing the pipe to

output a tuple containing the operation results.

// incoming -> first, last, age

String expression = "first + \" \" + last";

Fields fields = new Fields( "full" );

ExpressionFunction full =

  new ExpressionFunction( fields, expression, String.class );

Fields firstLast = new Fields( "first", "last" );

assembly =

  new Each( assembly, firstLast, full, Fields.RESULTS );

// outgoing -> full

Fields.REPLACE

The cascading.tuple.Fields.REPLACE constant is used as an output selector to inline-replace values

in the incoming tuple with the results of an operation. This convenient Fields set allows operations to overwrite

the value stored in the specified field. The current operation must either specify the identical argument selector

field names used by the pipe, or use the ARGS Fields set.
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// incoming -> first, last, age

// coerce to int

Identity function = new Identity( Fields.ARGS, Integer.class );

Fields age = new Fields( "age" );

assembly = new Each( assembly, age, function, Fields.REPLACE );

// outgoing -> first, last, age

Fields.SWAP

The cascading.tuple.Fields.SWAP constant is used as an output selector to swap the operation

arguments with its results. Neither the argument and result field names, nor the size, need to be the same. This

is useful for when the operation arguments are no longer necessary and the result Fields and values should be

appended to the remainder of the input field names and Tuple.

// incoming -> first, last, age

String expression = "first + \" \" + last";

Fields fields = new Fields( "full" );

ExpressionFunction full =

  new ExpressionFunction( fields, expression, String.class );

Fields firstLast = new Fields( "first", "last" );

assembly = new Each( assembly, firstLast, full, Fields.SWAP );

// outgoing -> age, full

Fields.ARGS

The cascading.tuple.Fields.ARGS constant is used to let a given operation inherit the field names of its

argument Tuple. This Fields set is a convenience and is typically used when the Pipe output selector is RESULTS

or REPLACE. It is specifically used by the Identity Function when coercing values from Strings to primitive types.

// incoming -> first, last, age

// coerce to int

Identity function = new Identity( Fields.ARGS, Integer.class );

Fields age = new Fields( "age" );

assembly = new Each( assembly, age, function, Fields.REPLACE );

// outgoing -> first, last, age

Fields.GROUP

The cascading.tuple.Fields.GROUP constant represents all the fields used as grouping key in the most

recent grouping. If no previous grouping exists in the pipe assembly, GROUP represents all the current field names.
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// incoming -> first, last, age

assembly = new GroupBy( assembly, new Fields( "first", "last" ) );

FieldJoiner full = new FieldJoiner( new Fields( "full" ), " " );

assembly = new Each( assembly, Fields.GROUP, full, Fields.ALL );

// outgoing -> first, last, age, full

Fields.VALUES

The cascading.tuple.Fields.VALUES constant represents all the fields not used as grouping fields in a

previous Group. That is, if you have fields "a", "b", and "c", and group on "a", Fields.VALUES will resolve

to "b" and "c".

// incoming -> first, last, age

assembly = new GroupBy( assembly, new Fields( "age" ) );

FieldJoiner full = new FieldJoiner( new Fields( "full" ), " " );

assembly = new Each( assembly, Fields.VALUES, full, Fields.ALL );

// outgoing -> first, last, age, full

Fields.UNKNOWN

The cascading.tuple.Fields.UNKNOWN constant is used when Fields must be declared, but it's not

known how many fields or what their names are. This allows for processing tuples of arbitrary length from an

input source or some operation. Use this Fields set with caution.

// incoming -> line

RegexSplitter function = new RegexSplitter( Fields.UNKNOWN, "\t" );

Fields fields = new Fields( "line" );

assembly =

  new Each( assembly, fields, function, Fields.RESULTS );

// outgoing -> unknown

Fields.NONE

The cascading.tuple.Fields.NONE constant is used to specify no fields. Typically used as an argument

selector for Operations that do not process any Tuples, like cascading.operation.Insert.

// incoming -> first, last, age
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Insert constant = new Insert( new Fields( "zip" ), "77373" );

assembly = new Each( assembly, Fields.NONE, constant, Fields.ALL );

// outgoing -> first, last, age, zip

The chart below shows common ways to merge input and result fields for the desired output fields. A few minutes

with this chart may help clarify the discussion of fields, tuples, and pipes. Also see Each and Every Pipes for details on

the different columns and their relationships to the Each and Every pipes and Functions, Aggregators, and Buffers.

Result FieldsInput Fields CommentsArgument Selector Output SelectorDeclared Fields Output Fields

"line" "ip" "time" "line" "ip" "time"

"line"

ALL

"line" "ip" "time" "ip" "time"RESULTS

"line" "ip" "time" "line" "time""line"

"ip" "time"

"ip" "time"

"ip" "time" "line" "time"

ARGS"status""status""ip" "time" "status" REPLACE "status""ip" "time"

"status""date" "time" "ts" SWAP "ts""status""ts""time""date"

"line" "ip" "time" "line" "ip" "time"ALL"ip" "time"

ALL

"line" "ip" "time" "ip" "time""line" RESULTS"ip" "time"

ALL

ARGS"status""status""ip" "time" "status" "status"RESULTS

ARGS"status""ip" "time" RESULTSALL "status""ip" "time" "status""ip" "time"

ARGS"status""ip" "time" ALL "status""ip" "time" ALL FAIL
O u t p u t  s e le c t o r  ALL w i l l  

cause duplicate fie l d  
names.

ARGS"status""status""ip" "time" "status" ALL FAIL
O u t p u t  s e le c t o r  ALL w i l l  

cause duplicate fie l d  
names.

"line" RESULTSALL UNKNOWN UNKNOWN UNKNOWN

"line" ALL UNKNOWN UNKNOWN UNKNOWNALL

ARGS"status""status""ip" "time" "status" REPLACE "status""ip" "time"

"time""status""ip" "time" "month" SWAP "month""ip" "status""month"
SWAP w i l l  s w a p  in  a l l  
argument fie l d s  f o r  t h e  

result

3.8 Flows
When pipe assemblies are bound to source and sink taps, a Flow is created. Flows are executable in the sense that, once

they are created, they can be started and will execute on the specified platform. If the Hadoop platform is specified,

the Flow will execute on a Hadoop cluster.
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A Flow is essentially a data processing pipeline that reads data from sources, processes the data as defined by the pipe

assembly, and writes data to the sinks. Input source data does not need to exist at the time the Flow is created, but it

must exist by the time the Flow is executed (unless it is executed as part of a Cascade - see Cascades for more on this).

The most common pattern is to create a Flow from an existing pipe assembly. But there are cases where a MapReduce

job (if running on Hadoop) has already been created, and it makes sense to encapsulate it in a Flow class so that it may

participate in a Cascade and be scheduled with other Flow instances. Alternatively, via the Riffle  [http://github.com/

cwensel/riffle] annotations, third-party applications can participate in a Cascade, and complex algorithms that result

in iterative Flow executions can be encapsulated as a single Flow. All patterns are covered here.

Creating Flows from Pipe Assemblies

HadoopFlowConnector flowConnector = new HadoopFlowConnector();

Flow flow =

  flowConnector.connect( "flow-name", source, sink, pipe );

Example 3.12 Creating a new Flow

To create a Flow, it must be planned though one of the FlowConnector subclass objects. In Cascading, each platform

(i.e., local and Hadoop) has its own connectors. The connect() method is used to create new Flow instances based

on a set of sink taps, source taps, and a pipe assembly. Above is a trivial example that uses the Hadoop mode connector.

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle
http://github.com/cwensel/riffle
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// the "left hand side" assembly head

Pipe lhs = new Pipe( "lhs" );

lhs = new Each( lhs, new SomeFunction() );

lhs = new Each( lhs, new SomeFilter() );

// the "right hand side" assembly head

Pipe rhs = new Pipe( "rhs" );

rhs = new Each( rhs, new SomeFunction() );

// joins the lhs and rhs

Pipe join = new CoGroup( lhs, rhs );

join = new Every( join, new SomeAggregator() );

Pipe groupBy = new GroupBy( join );

groupBy = new Every( groupBy, new SomeAggregator() );

// the tail of the assembly

groupBy = new Each( groupBy, new SomeFunction() );

Tap lhsSource = new Hfs( new TextLine(), "lhs.txt" );

Tap rhsSource = new Hfs( new TextLine(), "rhs.txt" );

Tap sink = new Hfs( new TextLine(), "output" );

FlowDef flowDef = new FlowDef()

  .setName( "flow-name" )

  .addSource( rhs, rhsSource )

  .addSource( lhs, lhsSource )

  .addTailSink( groupBy, sink );

Flow flow = new HadoopFlowConnector().connect( flowDef );

Example 3.13 Binding taps in a Flow

The example above expands on our previous pipe assembly example by creating multiple source and sink taps and

planning a Flow. Note there are two branches in the pipe assembly - one named "lhs" and the other named "rhs".

Internally Cascading uses those names to bind the source taps to the pipe assembly. New in 2.0, a FlowDef can be

created to manage the names and taps that must be passed to a FlowConnector.
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Configuring Flows

The FlowConnector constructor accepts the java.util.Property object so that default Cascading

and any platform-specific properties can be passed down through the planner to the platform at

runtime. In the case of Hadoop, any relevant Hadoop hadoop-default.xml properties may be

added. For instance, it's very common to add mapred.map.tasks.speculative.execution,

mapred.reduce.tasks.speculative.execution, or mapred.child.java.opts.

One of the two properties that must always be set for production applications is the application Jar class or Jar path.

Properties properties = new Properties();

// pass in the class name of your application

// this will find the parent jar at runtime

AppProps.setApplicationJarClass( properties, Main.class );

// ALTERNATIVELY ...

// pass in the path to the parent jar

AppProps.setApplicationJarPath( properties, pathToJar );

// pass properties to the connector

FlowConnector flowConnector = new HadoopFlowConnector( properties );

Example 3.14 Configuring the Application Jar

More information on packaging production applications can be found in Executing Processes.

Note the pattern of using a static property-setter method

(cascading.property.AppProps.setApplicationJarPath).

Since the FlowConnector can be reused, any properties passed on the constructor will be handed to all the Flows

it is used to create. If Flows need to be created with different default properties, a new FlowConnector will need to

be instantiated with those properties, or properties will need to be set on a given Pipe or Tap instance directly - via

the getConfigDef() or getStepConfigDef() methods.

Skipping Flows

When a Flow participates in a Cascade, the Flow.isSkipFlow() method is consulted before calling

Flow.start() on the flow. The result is based on the Flow's skip strategy. By default, isSkipFlow() returns true

if any of the sinks are stale - i.e., the sinks don't exist or the resources are older than the sources. However, the strategy

can be changed via the Flow.setFlowSkipStrategy() and Cascade.setFlowSkipStrategy()

method, which can be called before or after a particular Flow instance has been created.

Cascading provides a choice of two standard skip strategies:
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FlowSkipIfSinkNotStale

This strategy - cascading.flow.FlowSkipIfSinkNotStale - is the default. Sinks are treated as stale

if they don't exist or the sink resources are older than the sources. If the SinkMode for the sink tap is REPLACE,

then the tap is treated as stale.

FlowSkipIfSinkExists

The cascading.flow.FlowSkipIfSinkExists strategy skips the Flow if the sink tap exists, regardless

of age. If the SinkMode for the sink tap is REPLACE, then the tap is treated as stale.

Additionally, you can implement custom skip strategies by using the interface

cascading.flow.FlowSkipStrategy.

Note that Flow.start() does not consult the isSkipFlow() method, and consequently always tries to start the

Flow if called. It is up to the user code to call isSkipFlow() to determine whether the current strategy indicates

that the Flow should be skipped.

Creating Flows from a JobConf

If a MapReduce job already exists and needs to be managed by a Cascade, then the

cascading.flow.hadoop.MapReduceFlow class should be used. To do this, after creating a Hadoop

JobConf instance simply pass it into the MapReduceFlow constructor. The resulting Flow instance can be used

like any other Flow.

Creating Custom Flows

Any custom Class can be treated as a Flow if given the correct Riffle [http://github.com/cwensel/riffle] annotations.

Riffle is a set of Java annotations that identify specific methods on a class as providing specific life-cycle and

dependency functionality. For more information, see the Riffle documentation and examples. To use with Cascading, a

Riffle-annotated instance must be passed to the cascading.flow.hadoop.ProcessFlow constructor method.

The resulting ProcessFlow instance can be used like any other Flow instance.

Since many algorithms need to perform multiple passes over a given data set, a Riffle-annotated Class can be written

that internally creates Cascading Flows and executes them until no more passes are needed. This is like nesting Flows

or Cascades in a parent Flow, which in turn can participate in a Cascade.

3.9 Cascades
Cascade

Flow

FlowFlow

Flow

http://github.com/cwensel/riffle
http://github.com/cwensel/riffle
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A Cascade allows multiple Flow instances to be executed as a single logical unit. If there are dependencies between

the Flows, they are executed in the correct order. Further, Cascades act like Ant builds or Unix make files - that is,

a Cascade only executes Flows that have stale sinks (i.e., output data that is older than the input data). For more on

this, see Skipping Flows.

CascadeConnector connector = new CascadeConnector();

Cascade cascade = connector.connect( flowFirst, flowSecond, flowThird );

Example 3.15 Creating a new Cascade

When passing Flows to the CascadeConnector, order is not important. The CascadeConnector automatically identifies

the dependencies between the given Flows and creates a scheduler that starts each Flow as its data sources become

available. If two or more Flow instances have no interdependencies, they are submitted together so that they can

execute in parallel.

For more information, see the section on Topological Scheduling.

If an instance of cascading.flow.FlowSkipStrategy is given to a Cascade instance (via the

Cascade.setFlowSkipStrategy() method), it is consulted for every Flow instance managed by that Cascade,

and all skip strategies on those Flow instances are ignored. For more information on skip strategies, see Skipping Flows.
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4. Executing Processes on Hadoop

4.1 Introduction
This section covers some of the operational mechanics of running an application that uses Cascading with the Hadoop

platform, including building the application jar file and configuring the operating mode.

To use the HadoopFlowConnector (i.e., to run in Hadoop mode), Cascading requires that Apache Hadoop be

installed and correctly configured. Hadoop is an Open Source Apache project, freely available for download from the

Hadoop website, http://hadoop.apache.org/core/.

4.2 Building
Cascading ships with several jars and dependencies in the download archive. Alternatively, Cascading is available

over Maven and Ivy through the Conjars repository, along with a number of other Cascading-related projects. See

http://conjars.org  [http://conjars.org/] for more information.

The core Cascading artifacts include the following:

cascading-core-2.2.x.jar

This jar contains the Cascading Core class files. It should be packaged with lib/*.jar when using Hadoop.

cascading-local-2.2.x.jar

This jar contains the Cascading local mode class files. It is not needed when using Hadoop.

cascading-hadoop-2.2.x.jar

This jar contains the Cascading Hadoop specific dependencies. It should be packaged with lib/*.jar when

using Hadoop.

cascading-xml-2.2.x.jar

This jar contains Cascading XML module class files and is optional. It should be packaged with lib/xml/

*.jar when using Hadoop.

Cascading works with either of the Hadoop processing modes - the default local standalone mode and the distributed

cluster mode. As specified in the Hadoop documentation, running in cluster mode requires the creation of a Hadoop

job jar that includes the Cascading jars, plus any needed third-party jars, in its lib directory. This is true regardless

of whether they are Cascading Hadoop-mode applications or raw Hadoop MapReduce applications.

4.3 Configuring
During runtime, Hadoop must be told which application jar file should be pushed to the cluster. Typically, this is done

via the Hadoop API JobConf object.

Cascading offers a shorthand for configuring this parameter, demonstrated here:

Properties properties = new Properties();

http://hadoop.apache.org/core/
http://conjars.org/
http://conjars.org/
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// pass in the class name of your application

// this will find the parent jar at runtime

AppProps.setApplicationJarClass( properties, Main.class );

// ALTERNATIVELY ...

// pass in the path to the parent jar

AppProps.setApplicationJarPath( properties, pathToJar );

// pass properties to the connector

FlowConnector flowConnector = new HadoopFlowConnector( properties );

Above we see two ways to set the same property - via the setApplicationJarClass() method, and via the

setApplicationJarPath() method. One is based on a Class name, and the other is based on a literal path.

The first method takes a Class object that owns the "main" function for this application. The assumption here is that

Main.class is not located in a Java Jar that is stored in the lib folder of the application Jar. If it is, that Jar is

pushed to the cluster, not the parent application jar.

The second method simply sets the path to the parent Class as a property.

In your application, only one of these methods needs to be called, but one of them must be called to properly configure

Hadoop.

JobConf jobConf = new JobConf();

// pass in the class name of your application

// this will find the parent jar at runtime

jobConf.setJarByClass( Main.class );

// ALTERNATIVELY ...

// pass in the path to the parent jar

jobConf.setJar( pathToJar );

// build the properties object using jobConf as defaults

Properties properties = AppProps.appProps()

  .setName( "sample-app" )

  .setVersion( "1.2.3" )

  .buildProperties( jobConf );

// pass properties to the connector

FlowConnector flowConnector = new HadoopFlowConnector( properties );

Example 4.1 Configuring the Application Jar with a JobConf
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Above we are starting with an existing Hadoop JobConf instance and building a Properties object with it as the

default.

4.4 Executing
Running a Cascading application is the same as running any Hadoop application. After packaging your application

into a single jar (see Building), you must use bin/hadoop to submit the application to the cluster.

For example, to execute an application stuffed into your-application.jar, call the Hadoop shell script:

$HADOOP_HOME/bin/hadoop jar your-application.jar [some params]

Example 4.2 Running a Cascading Application

If the configuration scripts in $HADOOP_CONF_DIR are configured to use a cluster, the Jar is pushed into the cluster

for execution.

Cascading does not rely on any environment variables like $HADOOP_HOME or $HADOOP_CONF_DIR, only bin/

hadoop does.

It should be noted that even though your-application.jar is passed on the command line to bin/hadoop, this

in no way configures Hadoop to push this jar into the cluster. You must still call one of the property setters mentioned

above to set the proper path to the application jar. If misconfigured, it's likely that one of the internal libraries (found

in the lib folder) will be pushed to the cluster instead, and "Class Not Found" exceptions will be thrown.

4.5 Debugging
Debugging and testing in Cascading local mode, unlike Cascading Hadoop mode, is trivial as all the work and

processing happens in the local JVM and in local memory. This dramatically simplifies the use of an IDE and

Debugger.Thus the very first recommendation for debugging Cascading applications on Hadoop is to first write tests

that run in Cascading local mode.

Along with the use of an IDE Debugger, Cascading provides two tools to help sort out runtime issues. First is the

use of the Debug filter.

It is a best practice to sprinkle Debug operators (see Debug Function) in the pipe assembly and rely on the planner

to remove them at runtime by setting a DebugLevel. Debug can only print to the local console via std out or std

error, thus making it harder for use on Hadoop, as Operations do not execute locally but on the cluster side. Debug

can optionally print the current field names, and a prefix can be set to help distinguish between instances of the Debug

operation.

Additionally, the actual execution plan for a given Flow can be written out (and visualized) via the Flow.writeDOT()

method. DOT files are simply text representation of graph data and can be read by tools like GraphViz and Omni

Graffle.

In Cascading local mode, these execution plans are exactly as the pipe assemblies were coded, except the sub-

assemblies are unwound and the field names across the Flow are resolved by the local mode planner. That is,

Fields.ALL and other wild cards are converted the actual field names or ordinals.
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In the case of Hadoop mode, using the HadoopFlowConnector, the DOT files also contain the intermediate

Tap instances created to join MapReduce jobs together. Thus the branches between Tap instances are effectively

MapReduce jobs. See the Flow.writeStepsDOT() method to write out all the MapReduce jobs that will be

scheduled.

This information can also be misleading to what is actually happening per Map or Reduce task cluster side.

For a more detailed view of the data pipeline actually executing on a given Map or Reduce task, set the

"cascading.stream.dotfile.path" property on the FlowConnector. This will write, cluster side, a DOT representation

of the current data pipeline path the current Map or Reduce task is handling which is a function of which file(s) the

Map or Reduce task are reading and processing. And if multiple files, which files are being read to which HashJoin

instances. It is recommended to use a relative path like stepPlan/.

If the connect() method on the current FlowConnector fails, the resulting PlannerException has a

writeDOT() method that shows the progress of the current planner.

If Cascading is failing with an unknown internal runtime exception during Map or Reduce task startup, setting the

"cascading.stream.error.dotfile" property will tell Cascading where to write a DOT representation of the pipeline it

was attempting to build, if any. This file will allow the Cascading community to better identify and resolve issues.
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5. Using and Developing Operations

5.1 Introduction
So far we've talked about setting up sources and sinks, shaping the data streams, referencing the data fields, and so on.

Within this Pipe framework, Operations are used to act upon the data - e.g., alter it, filter it, analyze it, or transform it.

You can use the standard Operations in the Cascading library to create powerful and robust applications by combining

them in chains (much like Unix operations such as sed, grep, sort, uniq, and awk). And if you want to go further, it's

also very simple to develop custom Operations in Cascading.

There are four kinds of Operations: Function, Filter, Aggregator, and Buffer.

Function

Operation

Filter Aggregator Buffer

Operations typically require an input argument Tuple to act on. And all Operations can return zero or more Tuple

object results - except Filter, which simply returns a Boolean indicating whether to discard the current Tuple. A

Function, for instance, can parse a string passed by an argument Tuple and return a new Tuple for every value

parsed (i.e., one Tuple for each "word"), or it may create a single Tuple with every parsed value included as an element

in one Tuple object (e.g., one Tuple with "first-name" and "last-name" fields).

In theory, a Function can be used as a Filter by not emitting a Tuple result. However, the Filter type is

optimized for filtering, and can be combined with logical Operations such as Not, And, Or, etc.

During runtime, Operations actually receive arguments as one or more instances of the TupleEntry object. The

TupleEntry object holds the current Tuple and a Fields object that defines field names for positions within the

Tuple.

Except for Filter, all Operations must declare result Fields, and if the actual output does not match the declaration,

the process will fail. For example, consider a Function written to parse words out of a String and return a new Tuple

for each word. If it declares that its intended output is a Tuple with a single field named "word", and then returns more

values in the Tuple beyond that single "word", processing will halt. However, Operations designed to return arbitrary

numbers of values in a result Tuple may declare Fields.UNKNOWN.

The Cascading planner always attempts to "fail fast" where possible by checking the field name dependencies between

Pipes and Operations, but there may be some cases the planner can't account for.

All Operations must be wrapped by either an Each or an Every pipe instance. The pipe is responsible for passing

in an argument Tuple and accepting the resulting output Tuple.
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Operations by default are assumed by the Cascading planner to be "safe". A safe Operation is idempotent; it can

safely execute multiple times on the exact same record or Tuple; it has no side-effects. If a custom Operation is not

idempotent, the method isSafe() must return false. This value influences how the Cascading planner renders

the Flow under certain circumstances.

5.2 Functions
A Function expects a stream of individual argument Tuples, and returns zero or more result Tuples for each of

them. Like a Filter, a Function is used with an Each pipe, which may follow any pipe type.

To create a custom Function, subclass the class cascading.operation.BaseOperation and implement

the interface cascading.operation.Function. Since the BaseOperation has been subclassed, the

operate method, as defined on the Function interface, is the only method that must be implemented.

public class SomeFunction extends BaseOperation implements Function

  {

  public void operate( FlowProcess flowProcess, FunctionCall functionCall )

    {

    // get the arguments TupleEntry

    TupleEntry arguments = functionCall.getArguments();

    // create a Tuple to hold our result values

    Tuple result = new Tuple();

    // insert some values into the result Tuple

    // return the result Tuple

    functionCall.getOutputCollector().add( result );

    }

  }

Example 5.1 Custom Function

Whenever possible, functions should declare both the number of argument values they expect and the field names of

the Tuple they return. However, these declarations are optional, as explained below.

For input, functions must accept one or more values in a Tuple as arguments. If not specified, the default is to accept

any number of values (Operation.ANY). Cascading verifies during planning that the number of arguments selected

matches the number of arguments expected.

For output, it's a good practice to declare the field names that a function returns. If not specified, the default is

Fields.UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,

either by passing default values to the super constructor, or by accepting the values from the user via a constructor

implementation.
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public class AddValuesFunction extends BaseOperation implements Function

  {

  public AddValuesFunction()

    {

    // expects 2 arguments, fail otherwise

    super( 2, new Fields( "sum" ) );

    }

  public AddValuesFunction( Fields fieldDeclaration )

    {

    // expects 2 arguments, fail otherwise

    super( 2, fieldDeclaration );

    }

  public void operate( FlowProcess flowProcess, FunctionCall functionCall )

    {

    // get the arguments TupleEntry

    TupleEntry arguments = functionCall.getArguments();

    // create a Tuple to hold our result values

    Tuple result = new Tuple();

    // sum the two arguments

    int sum = arguments.getInteger( 0 ) + arguments.getInteger( 1 );

    // add the sum value to the result Tuple

    result.add( sum );

    // return the result Tuple

    functionCall.getOutputCollector().add( result );

    }

  }

Example 5.2 Add Values Function

The example above implements a Function that accepts two values in the argument Tuple, adds them together, and

returns the result in a new Tuple.

The first constructor above assumes a default field name for the field that this Function returns. In practice, it's

good to give the user the option of overriding the declared field names, allowing them to prevent possible field name

collisions that might cause the planner to fail.

This line is especially important:

int sum = arguments.getInteger( 0 ) +

          arguments.getInteger( 1 );
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Note that ordinal numbers, not field names, are used here to get argument values. If field names had been used, the

AddValuesFunction would have been coupled to the incoming stream.
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public class EfficientAddValuesFunction

  extends BaseOperation<Tuple> implements Function<Tuple>

  {

  public EfficientAddValuesFunction()

    {

    // expects 2 arguments, fail otherwise

    super( 2, new Fields( "sum" ) );

    }

  public EfficientAddValuesFunction( Fields fieldDeclaration )

    {

    // expects 2 arguments, fail otherwise

    super( 2, fieldDeclaration );

    }

  @Override

  public void prepare( FlowProcess flowProcess, OperationCall<Tuple> call )

    {

    // create a reusable Tuple of size 1

    call.setContext( Tuple.size( 1 ) );

    }

  public void operate( FlowProcess flowProcess, FunctionCall<Tuple> call )

    {

    // get the arguments TupleEntry

    TupleEntry arguments = call.getArguments();

    // get our previously created Tuple

    Tuple result = call.getContext();

    // sum the two arguments

    int sum = arguments.getInteger( 0 ) + arguments.getInteger( 1 );

    // set the sum value on the result Tuple

    result.set( 0, sum );

    // return the result Tuple

    call.getOutputCollector().add( result );

    }

  @Override

  public void cleanup( FlowProcess flowProcess, OperationCall<Tuple> call )

    {

    call.setContext( null );

    }

  }Example 5.3 Add Values Function and Context
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This example, a minor variation on the previous one, introduces the use of a "context" object and prepare() and

cleanup() methods.

All Operations allow for a context object, simply a user-defined object that holds state between calls to the

operate() method. This allows for a given instance of the Operation to be thread safe on a platform that may use

multiple threads of execution versus multiple processes. It also allows deferring initialization of complex resources

until the Operation is engaged.

The prepare() and cleanup() methods are invoked once per thread of execution, and in the case of the Hadoop

platform, only on the cluster side, never on the client.

In the above example, a Tuple is used as the context; a more complex type isn't necessary. Also note

that the Tuple isn't storing state, but is re-used to reduce the number of new Object instances created.

In Cascading, it is perfectly safe to output the same Tuple instance from operate(). The method

functionCall.getOutputCollector().add( result ) will not return until the result Tuple has been

processed or persisted downstream.

5.3 Filter
A Filter expects a stream of individual argument Tuples and returns a Boolean value for each one, stating whether

it should be discarded. Like a Function, a Filter is used with an Each pipe, which may follow any pipe type.

To create a custom Filter, subclass the class cascading.operation.BaseOperation and implement the

interface cascading.operation.Filter. Because BaseOperation has been subclassed, the isRemove

method, as defined on the Filter interface, is the only method that must be implemented.

public class SomeFilter extends BaseOperation implements Filter

  {

  public boolean isRemove( FlowProcess flowProcess, FilterCall call )

    {

    // get the arguments TupleEntry

    TupleEntry arguments = call.getArguments();

    // initialize the return result

    boolean isRemove = false;

    // test the argument values and set isRemove accordingly

    return isRemove;

    }

  }

Example 5.4 Custom Filter

Filters must accept one or more values in a Tuple as arguments, and should declare the number of argument values

they expect. If not specified, the default is to accept any number of values (Operation.ANY). Cascading verifies

during planning that the number of arguments selected matches the number of arguments expected.
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The number of arguments declaration must be done on the constructor, either by passing a default value to the super

constructor, or by accepting the value from the user via a constructor implementation.

public class StringLengthFilter extends BaseOperation implements Filter

  {

  public StringLengthFilter()

    {

    // expects 2 arguments, fail otherwise

    super( 2 );

    }

  public boolean isRemove( FlowProcess flowProcess, FilterCall call )

    {

    // get the arguments TupleEntry

    TupleEntry arguments = call.getArguments();

    // filter out the current Tuple if the first argument length is greater

    // than the second argument integer value

    return arguments.getString( 0 ).length() > arguments.getInteger( 1 );

    }

  }

Example 5.5 String Length Filter

The example above implements a Filter that accepts two arguments and filters out the current Tuple if the first

argument, String length, is greater than the integer value of the second argument.

5.4 Aggregator
An Aggregator expects a stream of tuple groups (the output of a GroupBy or CoGroup pipe), and returns zero

or more result tuples for every group. An Aggregator may only be used with an Every pipe - which may follow

a GroupBy, a CoGroup, or another Every pipe, but not an Each.

To create a custom Aggregator, subclass the class cascading.operation.BaseOperation and implement

the interface cascading.operation.Aggregator. Because BaseOperation has been subclassed, the

start, aggregate, and complete methods, as defined on the Aggregator interface, are the only methods

that must be implemented.
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public class SomeAggregator extends BaseOperation<SomeAggregator.Context>

  implements Aggregator<SomeAggregator.Context>

  {

  public static class Context

    {

    Object value;

    }

  public void start( FlowProcess flowProcess,

                     AggregatorCall<Context> aggregatorCall )

    {

    // get the group values for the current grouping

    TupleEntry group = aggregatorCall.getGroup();

    // create a new custom context object

    Context context = new Context();

    // optionally, populate the context object

    // set the context object

    aggregatorCall.setContext( context );

    }

  public void aggregate( FlowProcess flowProcess,

                         AggregatorCall<Context> aggregatorCall )

    {

    // get the current argument values

    TupleEntry arguments = aggregatorCall.getArguments();

    // get the context for this grouping

    Context context = aggregatorCall.getContext();

    // update the context object

    }

  public void complete( FlowProcess flowProcess,

                        AggregatorCall<Context> aggregatorCall )

    {

    Context context = aggregatorCall.getContext();

    // create a Tuple to hold our result values

    Tuple result = new Tuple();

    // insert some values into the result Tuple based on the context

    // return the result Tuple

    aggregatorCall.getOutputCollector().add( result );

    }

  }

Example 5.6 Custom Aggregator
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Whenever possible, Aggregators should declare both the number of argument values they expect and the field names

of the Tuple they return. However, these declarations are optional, as explained below.

For input, Aggregators must accept one or more values in a Tuple as arguments. If not specified, the default is to accept

any number of values (Operation.ANY). Cascading verifies during planning that the number of arguments selected

is the same as the number of arguments expected.

For output, it's good practice for Aggregators to declare the field names they return. If not specified, the default is

Fields.UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,

either by passing default values to the super constructor, or by accepting the values from the user via a constructor

implementation.
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public class AddTuplesAggregator

    extends BaseOperation<AddTuplesAggregator.Context>

    implements Aggregator<AddTuplesAggregator.Context>

  {

  public static class Context

    {

    long value = 0;

    }

  public AddTuplesAggregator()

    {

    // expects 1 argument, fail otherwise

    super( 1, new Fields( "sum" ) );

    }

  public AddTuplesAggregator( Fields fieldDeclaration )

    {

    // expects 1 argument, fail otherwise

    super( 1, fieldDeclaration );

    }

  public void start( FlowProcess flowProcess,

                     AggregatorCall<Context> aggregatorCall )

    {

    // set the context object, starting at zero

    aggregatorCall.setContext( new Context() );

    }

  public void aggregate( FlowProcess flowProcess,

                         AggregatorCall<Context> aggregatorCall )

    {

    TupleEntry arguments = aggregatorCall.getArguments();

    Context context = aggregatorCall.getContext();

    // add the current argument value to the current sum

    context.value += arguments.getInteger( 0 );

    }

  public void complete( FlowProcess flowProcess,

                        AggregatorCall<Context> aggregatorCall )

    {

    Context context = aggregatorCall.getContext();

    // create a Tuple to hold our result values

    Tuple result = new Tuple();

    // set the sum

    result.add( context.value );

    // return the result Tuple

    aggregatorCall.getOutputCollector().add( result );

    }

  }

Example 5.7 Add Tuples Aggregator



Using and Developing Operations

Cascading Cascading 2.2 User Guide 49

The example above implements an Aggregator that accepts a value in the argument Tuple, adds all the argument

tuples in the current grouping, and returns the result as a new Tuple.

The first constructor above assumes a default field name that this Aggregator returns. In practice, it's good to give

the user the option of overriding the declared field names, allowing them to prevent possible field name collisions that

might cause the planner to fail.

There are several constraints on the use of Aggregators that may not be self-evident. These are detailed in the Javadoc

5.5 Buffer
A Buffer expects set of argument tuples in the same grouping, and may return zero or more result tuples.

A Buffer is very similar to an Aggregator, except that it receives the current Grouping Tuple, and an iterator

of all the arguments it expects, for every value Tuple in the current grouping - all on the same method call. This is

very similar to the typical Reducer interface in MapReduce, and is best used for operations that need visibility to the

previous and next elements in the stream - such as smoothing a series of time-stamps where there are missing values.

A Buffer may only be used with an Every pipe, and it may only follow a GroupBy or CoGroup pipe type.

To create a custom Buffer, subclass the class cascading.operation.BaseOperation and implement the

interface cascading.operation.Buffer. Because BaseOperation has been subclassed, the operate

method, as defined on the Buffer interface, is the only method that must be implemented.
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public class SomeBuffer extends BaseOperation implements Buffer

  {

  public void operate( FlowProcess flowProcess, BufferCall bufferCall )

    {

    // get the group values for the current grouping

    TupleEntry group = bufferCall.getGroup();

    // get all the current argument values for this grouping

    Iterator<TupleEntry> arguments = bufferCall.getArgumentsIterator();

    // create a Tuple to hold our result values

    Tuple result = new Tuple();

    while( arguments.hasNext() )

      {

      TupleEntry argument = arguments.next();

      // insert some values into the result Tuple based on the arguemnts

      }

    // return the result Tuple

    bufferCall.getOutputCollector().add( result );

    }

  }

Example 5.8 Custom Buffer

Buffers should declare both the number of argument values they expect and the field names of the Tuple they return.

For input, Buffers must accept one or more values in a Tuple as arguments. If not specified, the default is to accept

any number of values (Operation.ANY). During the planning phase, Cascading verifies that the number of arguments

selected is the same as the number of arguments expected.

For output, it's good practice for Buffers to declare the field names they return. If not specified, the default is

Fields.UNKNOWN, meaning that an unknown number of fields are returned in each Tuple.

Both declarations - the number of input arguments and declared result fields - must be done on the constructor,

either by passing default values to the super constructor, or by accepting the values from the user via a constructor

implementation.
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public class AverageBuffer extends BaseOperation implements Buffer

  {

  public AverageBuffer()

    {

    super( 1, new Fields( "average" ) );

    }

  public AverageBuffer( Fields fieldDeclaration )

    {

    super( 1, fieldDeclaration );

    }

  public void operate( FlowProcess flowProcess, BufferCall bufferCall )

    {

    // init the count and sum

    long count = 0;

    long sum = 0;

    // get all the current argument values for this grouping

    Iterator<TupleEntry> arguments = bufferCall.getArgumentsIterator();

    while( arguments.hasNext() )

      {

      count++;

      sum += arguments.next().getInteger( 0 );

      }

    // create a Tuple to hold our result values

    Tuple result = new Tuple( sum / count );

    // return the result Tuple

    bufferCall.getOutputCollector().add( result );

    }

  }

Example 5.9 Average Buffer

The example above implements a buffer that accepts a value in the argument Tuple, adds all these argument tuples in

the current grouping, and returns the result divided by the number of argument tuples counted in a new Tuple.

The first constructor above assumes a default field name for the field that this Buffer returns. In practice, it's good to

give the user the option of overriding the declared field names, allowing them to prevent possible field name collisions

that might cause the planner to fail
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Note that this example is somewhat artificial. In actual practice, an Aggregator would be a better way to compute

averages for an entire dataset. A Buffer is better suited for calculating running averages across very large spans,

for example.

There are several constraints on the use of Buffers that may not be self-evident. These are detailed in the Javadoc.

As with the Function example above, a Buffer may define a custom context object and implement the

prepare() and cleanup() methods to maintain state, or re-use outgoing Tuple instances for efficiency.

5.6 Operation and BaseOperation
In all of the above sections, the cascading.operation.BaseOperation class was subclassed. This class is

an implementation of the cascading.operation.Operation interface, and provides a few default method

implementations. It is not strictly required to extend BaseOperation when implementing this interface, but it is

very convenient to do so.

When developing custom operations, the developer may need to initialize and destroy a resource. For example, when

doing pattern matching, you might need to initialize a java.util.regex.Matcher and use it in a thread-safe

way. Or you might need to open, and eventually close, a remote connection. But for performance reasons, the operation

should not create or destroy the connection for each Tuple or every Tuple group that passes through.

For this reason, the interface Operation declares two methods: prepare() and cleanup(). In the case of

Hadoop and MapReduce, the prepare() and cleanup() methods are called once per Map or Reduce task. The

prepare() method is called before any argument Tuple is passed in, and the cleanup() method is called after all

Tuple arguments have been operated on. Within each of these methods, the developer can initialize a "context" object

that can hold an open socket connection or Matcher instance. This context is user defined, and is the same mechanism

used by the Aggregator operation - except that the Aggregator is also given the opportunity to initialize and

destroy its context, via the start() and complete() methods.

Note that if a "context" object is used, its type should be declared in the subclass class declaration using the Java

Generics notation.
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6. Custom Taps and Schemes

6.1 Introduction
Cascading is designed to be easily configured and enhanced by developers. In addition to creating custom Operations,

developers can create custom Tap and Scheme classes that let applications connect to external systems or read/write

data to proprietary formats.

A Tap represents something physical, like a file or a database table. Accordingly, Tap implementations are responsible

for life-cycle issues around the resource they represent, such as tests for resource existence, or to perform resource

deletion (dropping a remote SQL table).

A Scheme represents a format or representation - such as a text format for a file, the columns in a table, etc. Schemes

are used to convert between the source data's native format and a cascading.tuple.Tuple instance.

Creating custom taps and schemes can be an involved process. When using the Cascading Hadoop mode, it requires

some knowledge of Hadoop and the Hadoop FileSystem API. If a flow needs to support a new file system, passing

a fully-qualified URL to the Hfs constructor may be sufficient - the Hfs tap will look up a file system based on

the URL scheme via the Hadoop FileSystem API. If not, a new system is commonly constructed by subclassing the

cascading.tap.Hfs class.

Delegating to the Hadoop FileSystem API is not a strict requirement. But if not using

it, the developer must implement Hadoop org.apache.hadoop.mapred.InputFormat and/or

org.apache.hadoop.mapred.OutputFormat classes so that Hadoop knows how to split and handle the

incoming/outgoing data. The custom Scheme is responsible for setting the InputFormat and OutputFormat

on the JobConf, via the sinkConfInit and sourceConfInit methods.

For examples of how to implement a custom tap and scheme, see the Cascading Modules  [http://cascading.org/

modules.html] page.

6.2 Custom Taps
All custom Tap classes must subclass the cascading.tap.Tap abstract class and implement the required methods.

The method getIdentifier() must return a String that uniquely identifies the resource the Tap instance is

managing. Any two Tap instances with the same fully-qualified identifier value will be considered equal.

Every Tap is presented an opportunity to set any custom properties the underlying platform requires, via the methods

sourceConfInit() (for a Tuple source tap) and sinkConfInit() (for a Tuple sink tap). These two methods

may be called more than once with new configuration objects, and should be idempotent.

A Tap is always sourced from the openForRead() method via a TupleEntryIterator - i.e.,

openForRead() is always called in the same process that will read the data. It is up to the Tap to return a

TupleEntryIterator that will iterate across the resource, returning a TupleEntry instance (and Tuple

instance) for each "record" in the resource. TupleEntryIterator.close() is always called when no more

entries will be read. For more on this topic, see TupleEntrySchemeIterator in the Javadoc.

http://cascading.org/modules.html
http://cascading.org/modules.html
http://cascading.org/modules.html
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On some platforms, openForRead() is called with a pre-instantiated Input type. Typically this Input type should

be used instead of instantiating a new instance of the appropriate type.

In the case of the Hadoop platform, a RecordReader is created by Hadoop and passed to the Tap. This

RecordReader is already configured to read data from the current InputSplit.

Similarly, a Tap is always used to sink data from the openForWrite() method via the TupleEntryCollector.

Here again, openForWrite() is always called in the process in which data will be written. It is up to the Tap to

return a TupleEntryCollector that will accept and store any number of TupleEntry or Tuple instances for

each record that is processed or created by a given Flow. TupleEntryCollector.close() is always called

when no more entries will be written. See TupleEntrySchemeCollector in the Javadoc.

Again, on some platforms, openForWrite() will be called with a pre-instantiated Output type. Typically this

Output type should be used instead of instantiating a new instance of the appropriate type.

In the case of the Hadoop platform, an OutputCollector is created by Hadoop and passed to the Tap. This

OutputCollector is already configured to to write data to the current resource.

Both the TupleEntrySchemeIterator and TupleEntrySchemeCollector should be used to hold any

state or resources necessary to communicate with any remote services. For example, when connecting to a SQL

database, any JDBC drivers should be created on the constructor and cleaned up on close().

Note that the Tap is not responsible for reading or writing data to the Input or Output type. This is delegated to the

Scheme passed on the constructor of the Tap. Consequently, the Scheme is responsible for configuring the Input

and Output types it will be reading and writing.

6.3 Custom Schemes
All custom Scheme classes must subclass the cascading.scheme.Scheme abstract class and implement the

required methods.

A Scheme is ultimately responsible for sourcing and sinking Tuples of data. Consequently it must know what Fields

it presents during sourcing, and what Fields it accepts during sinking. Thus the constructors on the base Scheme

type must be set with the source and sink Fields.

A Scheme is allowed to source different Fields than it sinks. The TextLine Scheme does just this. (The

TextDelimited Scheme, on the other hand, forces the source and sink Fields to be the same.)

The retrieveSourceFields() and retrieveSinkFields() methods allow a custom Scheme to fetch its

source and sink Fields immediately before the planner is invoked - for example, from the header of a file, as is

the case with TextDelimited. Also the presentSourceFields() and presentSinkFields() methods

notify the Scheme of the Fields that the planner expects the Scheme to handle - for example, to write the field

names as a header, as is the case with TextDelimited.

Every Scheme is presented the opportunity to set any custom properties the underlying platform requires, via the

methods sourceConfInit() (for a Tuple source tap) and sinkConfInit() (for a Tuple sink tap). These

methods may be called more than once with new configuration objects, and should be idempotent.

On the Hadoop platform, these methods should be used to configure the appropriate

org.apache.hadoop.mapred.InputFormat and org.apache.hadoop.mapred.OutputFormat.
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A Scheme is always sourced via the source() method, and is always sunk to via the sink() method.

Prior to a source() or sink() call, the sourcePrepare() and sinkPrepare() methods are called. After

all values have been read or written, the s ourceCleanup() and sinkCleanup() methods are called.

The *Prepare() methods allow a Scheme to initialize any state necessary - for example, to create a new

java.util.regex.Matcher instance for use against all record reads). Conversely, the *Cleanup() methods

allow for clearing up any resources.

These methods are always called in the same process space as their associated source() and sink() calls. In the

case of the Hadoop platform, this will likely be on the cluster side, unlike calls to *ConfInit() which will likely

be on the client side.
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7. Field Typing and Type Coercion

7.1 Field Typing
As of Cascading 2.2, the Fields class can hold type information for each field, and the Cascading planner can propagate

that information from source Tap instances to downstream Operations through to sink Tap instances.

This allows for Taps to read and store type information for external systems and applications, error detection during

joins (detecting non-comparable types), to enforce canonical representations within the Tuple (prevent a field from

switching arbitrarily between String and Integer types), and to allow for pluggable coercion from one type to another

type, even if either isn't a Java primitive.

To declare types, simply pass type information to the Fields instance either through the constructor or via a fluent API.

Fields resultFields = new Fields( "count", Long.class ); // null is ok

Example 7.1 Constructor

Fields resultFields = new Fields( "count" ).applyTypes( long.class ); // null becomes 0

Example 7.2 Fluent

Note the first example uses Long.class, and the second long.class. Since Long is an object, we are letting

Cascading know that the null value can be set. If declared long (a primitive) then null becomes zero.

In practice, typed fields can only be used when they declare the results of an operation, for example:

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

// note we do not pass the parent assembly Pipe in

Fields valueField = new Fields( "size" );

Fields sumField = new Fields( "total-size", long.class );

SumBy sumBy = new SumBy( valueField, sumField );

Fields countField = new Fields( "num-events" );

CountBy countBy = new CountBy( countField );

assembly = new AggregateBy( assembly, groupingFields, sumBy, countBy );

Example 7.3 Declaring Typed Results
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Here the type information serves two roles. First, it allows a downstream consumer of the field value to know the type

maintained in the tuple. Second, the SumBy sub-assembly now has a simpler API and can get the type information it

needs internally to perform the aggregation directly from the Fields instance.

Note that the TextDelimited and other Scheme classes should have any type information declared so it can be

maintained by the Cascading planner. Custom Scheme types also have the opportunity to read type information from

any field or data sources they represent so it can be handed to the planner during runtime.

7.2 Type Coercion
Type coercion is a means to convert one data type to another. For example, parsing the Java String "42" to the

Integer 42 would be coercion. Or more simply, converting a Long 42 to a Double 42.0. Cascading supports

primitive type coercions natively through the cascading.tuple.coerce.Coercions class.

In practice, developers implicitly invoke coercions via the cascading.tuple.TupleEntry interface

by requesting a Long or String representation of a field, via TupleEntry.getLong() or

TupleEntry.getString(), respectively.

Or when data is set on a Tuple via TupleEntry.setLong() or TupleEntry.setString(), for example. If

the field was declared as an Integer, and TupleEntry.setString( "someField", "42" ) was called,

the value of "someFields" will be coerced into its canonical form, 42.

To create custom coercions, the cascading.tuple.type.CoercibleType interface must be implemented,

and instances of CoercibleType can be used as the Type accepted by the Fields API as CoercibleType extends

java.lang.reflect.Type.

Cascading provided a cascading.tuple.type.DateType implementation to allow for coercions between date

strings and the Long canonical type. For example:
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SimpleDateFormat dateFormat = new SimpleDateFormat( "dd/MMM/yyyy:HH:mm:ss:SSS Z" );

Date firstDate = new Date();

String stringFirstDate = dateFormat.format( firstDate );

CoercibleType coercible = new DateType( "dd/MMM/yyyy:HH:mm:ss:SSS Z", TimeZone.getDefault() );

// create the Fields, Tuple, and TupleEntry

Fields fields = new Fields( "dateString", "dateValue" ).applyTypes( coercible, long.class );

Tuple tuple = new Tuple( firstDate.getTime(), firstDate.getTime() );

TupleEntry results = new TupleEntry( fields, tuple );

// test the results

assert results.getObject( "dateString" ).equals( firstDate.getTime() );

assert results.getLong( "dateString" ) == firstDate.getTime();

assert results.getString( "dateString" ).equals( stringFirstDate );

assert !results.getString( "dateString" ).equals( results.getString( "dateValue" ) ); // not equals

Date secondDate = new Date( firstDate.getTime() + ( 60 * 1000 ) );

String stringSecondDate = dateFormat.format( secondDate );

results.setString( "dateString", stringSecondDate );

results.setLong( "dateValue", secondDate.getTime() );

assert !results.getObject( "dateString" ).equals( firstDate.getTime() ); // equals

assert results.getObject( "dateString" ).equals( secondDate.getTime() ); // not equals

Example 7.4 Date Type

In this example we declare the "dateString" field to be a DateType. DateType maintains the value of the field as

a long internally, but if a String is set or requested, it will be converted using the given SimpleDateFormat

String against the given TimeZone. In the case of a TextDelimited CSV file, where one column is a date

value, DateType can be used to declare its format allowing TextDelimited to read and write the value as a

String, but use the value internally (in the Tuple) as a long, which is much more efficient.
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8. Advanced Processing

8.1 SubAssemblies
In Cascading, SubAssemblies are reusable pipe assemblies that are linked into larger pipe assemblies. They function

much like subroutines in a larger program. SubAssemblies are a good way to organize complex pipe assemblies, and

they allow for commonly-used pipe assemblies to be packaged into libraries for inclusion in other projects by other

users.

To create a SubAssembly, subclass the cascading.pipe.SubAssembly class.

public class SomeSubAssembly extends SubAssembly

  {

  public SomeSubAssembly( Pipe lhs, Pipe rhs )

    {

    // must register incoming pipes

    setPrevious( lhs, rhs );

    // continue assembling against lhs

    lhs = new Each( lhs, new SomeFunction() );

    lhs = new Each( lhs, new SomeFilter() );

    // continue assembling against rhs

    rhs = new Each( rhs, new SomeFunction() );

    // joins the lhs and rhs

    Pipe join = new CoGroup( lhs, rhs );

    join = new Every( join, new SomeAggregator() );

    join = new GroupBy( join );

    join = new Every( join, new SomeAggregator() );

    // the tail of the assembly

    join = new Each( join, new SomeFunction() );

    // must register all assembly tails

    setTails( join );

    }

  }

Example 8.1 Creating a SubAssembly
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In the example above, we pass in (as parameters via the constructor) the pipes that we wish to continue assembling

against, in the first line we register the incoming "previous" pipes, and in the last line we register the outgoing "join"

pipe as a tail. This allows SubAssemblies to be nested within larger pipe assemblies or other SubAssemblies.

// the "left hand side" assembly head

Pipe lhs = new Pipe( "lhs" );

// the "right hand side" assembly head

Pipe rhs = new Pipe( "rhs" );

// our custom SubAssembly

Pipe pipe = new SomeSubAssembly( lhs, rhs );

pipe = new Each( pipe, new SomeFunction() );

Example 8.2 Using a SubAssembly

The example above demonstrates how to include a SubAssembly into a new pipe assembly.

Note that in a SubAssembly that represents a split - that is, a SubAssembly with two or more tails - you can use the

getTails() method to access the array of tails set internally by the setTails() method.

public class SplitSubAssembly extends SubAssembly

  {

  public SplitSubAssembly( Pipe pipe )

    {

    // must register incoming pipe

    setPrevious( pipe );

    // continue assembling against pipe

    pipe = new Each( pipe, new SomeFunction() );

    Pipe lhs = new Pipe( "lhs", pipe );

    lhs = new Each( lhs, new SomeFunction() );

    Pipe rhs = new Pipe( "rhs", pipe );

    rhs = new Each( rhs, new SomeFunction() );

    // must register all assembly tails

    setTails( lhs, rhs );

    }

  }

Example 8.3 Creating a Split SubAssembly
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// the "left hand side" assembly head

Pipe head = new Pipe( "head" );

// our custom SubAssembly

SubAssembly pipe = new SplitSubAssembly( head );

// grab the split branches

Pipe lhs = new Each( pipe.getTails()[ 0 ], new SomeFunction() );

Pipe rhs = new Each( pipe.getTails()[ 1 ], new SomeFunction() );

Example 8.4 Using a Split SubAssembly

To rephrase, if a SubAssembly does not split the incoming Tuple stream, the SubAssembly instance can be passed

directly to the next Pipe instance. But, if the SubAssembly splits the stream into multiple branches, handles will be

needed to access them. The solution is to pass each branch tail to the setTails() method, and call the getTails()

method to get handles for the desired branches, which can be passed to subsequent instances of Pipe.

8.2 Stream Assertions
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func

func

assert assert

assert

Flow

Stream assertions are simply a mechanism for asserting that one or more values in a tuple stream meet certain criteria.

This is similar to the Java language "assert" keyword, or a unit test. An example would be "assert not null" or "assert

matches".

Assertions are treated like any other function or aggregator in Cascading. They are embedded directly into the pipe

assembly by the developer. By default, if an assertion fails, the processing fails. As an alternative, an assertion failure

can be caught by a failure Trap.

Assertions may be more, or less, desirable in different contexts. For this reason, stream assertions can be treated as

either "strict" or "validating". Strict assertions make sense when running tests against regression data - which should

be small, and should represent many of the edge cases that the processing assembly must robustly support. Validating
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assertions, on the other hand, make more sense when running tests in staging, or when using data that may vary in

quality due to an unmanaged source.

And of course there are cases where assertions are unnecessary and only impede processing, and it would be best to

just bypass them altogether.

To handle all three of these situations, Cascading can be instructed to plan out (i.e., omit) strict assertions, validation

assertions, or both when building the Flow. To create optimal performance, Cascading implements this by actually

leaving the undesired assertions out of the final Flow (not merely switching them off).

// incoming -> "ip", "time", "method", "event", "status", "size"

AssertNotNull notNull = new AssertNotNull();

assembly = new Each( assembly, AssertionLevel.STRICT, notNull );

AssertSizeEquals equals = new AssertSizeEquals( 6 );

assembly = new Each( assembly, AssertionLevel.STRICT, equals );

AssertMatchesAll matchesAll = new AssertMatchesAll( "(GET|HEAD|POST)" );

assembly = new Each( assembly, new Fields( "method" ),

  AssertionLevel.STRICT, matchesAll );

// outgoing -> "ip", "time", "method", "event", "status", "size"

Example 8.5 Adding Assertions

Again, assertions are added to a pipe assembly like any other operation, except that the AssertionLevel must be

set to tell the planner how to treat the assertion during planning.

// FlowDef is a fluent way to define a Flow

FlowDef flowDef = new FlowDef();

// bind the taps and pipes

flowDef

  .addSource( assembly.getName(), source )

  .addSink( assembly.getName(), sink )

  .addTail( assembly );

// removes all assertions from the Flow

flowDef

  .setAssertionLevel( AssertionLevel.NONE );

Flow flow = new HadoopFlowConnector().connect( flowDef );

Example 8.6 Planning Out Assertions

To configure the planner to remove some or all assertions, a property can be set via the

FlowConnectorProps.setAssertionLevel() method or directly on the FlowDef instance, as shown
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above. Setting AssertionLevel.NONE removes all assertions. AssertionLevel.VALID keeps VALID

assertions but removes STRICT ones. And AssertionLevel.STRICT keeps all assertions - the planner default

value.

8.3 Failure Traps
The following diagram shows the use of Failure Traps  in a pipe assembly.
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Failure Traps are similar to tap sinks (as opposed to tap sources) in that they allow data to be stored. The difference

is that Tap sinks are bound to a particular tail pipe in a pipe assembly and are the primary outlet of a branch in a pipe

assembly. Traps can be bound to intermediate pipe assembly branches - just like Stream Assertions - yet they only

capture data that causes an Operation to fail (throw an Exception).

Whenever an operation fails and throws an exception, if there is an associated trap, the offending Tuple is saved to the

resource specified by the trap Tap. This allows the job to continue processing without any data loss.

By design, clusters are hardware fault-tolerant - lose a node, and the cluster continues working. But fault tolerance for

software is a little different. Failure Traps provide a means for the processing to continue without losing track of the

data that caused the fault. For high fidelity applications, this may not be very useful, since you likely will want any

errors during processing to cause the application to stop. But for low fidelity applications such as webpage indexing,

where skipping a page or two out of a few million is acceptable, this can dramatically improve processing reliability.
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// ...some useful pipes here

// name this pipe assembly segment

assembly = new Pipe( "assertions", assembly );

AssertNotNull notNull = new AssertNotNull();

assembly = new Each( assembly, AssertionLevel.STRICT, notNull );

AssertSizeEquals equals = new AssertSizeEquals( 6 );

assembly = new Each( assembly, AssertionLevel.STRICT, equals );

AssertMatchesAll matchesAll = new AssertMatchesAll( "(GET|HEAD|POST)" );

Fields method = new Fields( "method" );

assembly =

  new Each( assembly, method, AssertionLevel.STRICT, matchesAll );

// ...some more useful pipes here

FlowDef flowDef = new FlowDef();

flowDef

  .setName( "log-parser" )

  .addSource( "logs", source )

  .addTailSink( assembly, sink );

// set the trap on the "assertions" branch

flowDef

  .addTrap( "assertions", trap );

FlowConnector flowConnector = new HadoopFlowConnector();

Flow flow =

  flowConnector.connect( flowDef );

Example 8.7 Setting Traps

The example above binds a trap tap to the pipe assembly segment named "assertions". Note how we can name branches

and segments by using a single Pipe instance, and that the naming applies to all subsequent Pipe instances.

Traps are for exceptional cases, in the same way that Java Exception handling is. Traps are not intended for application

flow control, and not a means to filter some data into other locations. Applications that need to filter out bad data

should do so explicitly, using filters. For more on this, see Handling Good and Bad Data.
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8.4 Checkpointing
New to Cascading 2, and only supported by the Hadoop planner, is the ability to "checkpoint" data within a Flow by

using the cascading.pipe.Checkpoint Pipe. That is, a Tuple stream can be persisted to disk at most any

arbitrary point. Doing so forces a new FlowStep (MapReduce job when using Hadoop) after the checkpoint position.

By default the checkpoint is anonymous and is cleaned up immediately after the Flow completes. This feature is useful

when used in conjunction with a HashJoin where the small side of the join starts out extremely large but is filtered

down to fit into memory before being read into the HashJoin. By forcing a checkpoint before the HashJoin, only the

small filtered version of the data is replicated over the cluster. Without the checkpoint, it is likely the full unfiltered

file will be replicated to every node the FlowStep is executing.

Alternatively, checkpointing is useful for debugging when used with a checkpoint Tap, where the Tap has specified

a TextDelimited Scheme without any declared Fields.
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// the "left hand side" assembly head

Pipe lhs = new Pipe( "lhs" );

lhs = new Each( lhs, new SomeFunction() );

lhs = new Each( lhs, new SomeFilter() );

// the "right hand side" assembly head

Pipe rhs = new Pipe( "rhs" );

rhs = new Each( rhs, new SomeFunction() );

// joins the lhs and rhs

Pipe join = new CoGroup( lhs, rhs );

join = new Every( join, new SomeAggregator() );

// we want to see the data passing through this point

Checkpoint checkpoint = new Checkpoint( "checkpoint", join );

Pipe groupBy = new GroupBy( checkpoint );

groupBy = new Every( groupBy, new SomeAggregator() );

// the tail of the assembly

groupBy = new Each( groupBy, new SomeFunction() );

Tap lhsSource = new Hfs( new TextLine(), "lhs.txt" );

Tap rhsSource = new Hfs( new TextLine(), "rhs.txt" );

Tap sink = new Hfs( new TextLine(), "output" );

// write all data as a tab delimited file, with headers

Tap checkpointTap =

  new Hfs( new TextDelimited( true, "\t" ), "checkpoint" );

FlowDef flowDef = new FlowDef()

  .setName( "flow-name" )

  .addSource( rhs, rhsSource )

  .addSource( lhs, lhsSource )

  .addTailSink( groupBy, sink )

  .addCheckpoint( checkpoint, checkpointTap ); // bind the checkpoint tap

Flow flow = new HadoopFlowConnector().connect( flowDef );

Example 8.8 Adding a Checkpoint
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As can be seen above, we instantiate a new Checkpoint tap by passing it the previous Every Pipe. This will

be the point at which data is persisted. Since we wish to keep the data after the Flow has completed, we create a

checkpointTap that saves the data as a TAB delimited text file. We also specify that field names should be written

out into a header file on the TextDelimited constructor. Finally the Tap is bound to the Checkpoint Pipe

using the FlowDef.

8.5 Restarting a Checkpointed Flow
When using Checkpoint pipes in a Flow and the Flow fails, a future execution of the Flow can be restarted after the

last successful FlowStep writing to a checkpoint file. That is, a Flow will only restart from the last Checkpoint Pipe

location.

This feature requires that the failed Flow be planned with a runID set on the FlowDef, and the retry Flow use the

same runID value. It goes without saying, the retry Flow should be (roughly) equivant to the previous failed attempt.

FlowDef flowDef = new FlowDef()

  .setName( "flow-name" )

  .addSource( rhs, rhsSource )

  .addSource( lhs, lhsSource )

  .addTailSink( groupBy, sink )

  .addCheckpoint( checkpoint, checkpointTap )

  .setRunID( "some-unique-value" ); // re-use this id to restart this flow

Flow flow = new HadoopFlowConnector().connect( flowDef );

Example 8.9 Setting runID

Caution should be used when using restarted checkpoint Flows. If the input data has changed, or the pipe assembly

has significantly been altered, the Flow may fail or there may be undetectable errors.

Note that when using a runID, all Flow instances must use a unique value unless they are intended as a retry attempt.

The runID value is used to scope the directories for the temporary checkpoint files to prevent file name collisions.

On successful completion of a Flow with a runID, all temporary checkpoint files will be removed, if any.

8.6 Flow and Cascade Event Handling
Each Flow and Cascade has the ability to execute callbacks via an event listener. This ability is useful when an external

application needs to be notified that either a Flow or Cascade has started, halted, completed, or either has thrown an

exception.

For instance, at the completion of a flow that runs on an Amazon EC2 Hadoop cluster, an Amazon SQS message can

be sent to notify another application to fetch the job results from S3 or begin the shutdown of the cluster.

Flows support event listeners through the cascading.flow.FlowListener interface and Cascades support

event listeners through the cascading.cascade.CascadeListener, which supports four events:
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onStarting

The onStarting event is fired when a Flow or Cascade instance receives the start() message.

onStopping

The onStopping event is fired when a Flow or Cascade instance receives the stop() message.

onCompleted

The onCompleted event is fired when a Flow or Cascade instance has completed all work, regardless of success

or failure. If an exception was thrown, onThrowable will be fired before this event.

onThrowable

The onThrowable event is fired if any internal job client throws a Throwable type. This throwable is passed as

an argument to the event. onThrowable should return true if the given throwable was handled, and should not be

rethrown from the Flow.complete() or Cascade.complete() methods.

8.7 Template taps
The TemplateTap Tap class provides a simple means to break large datasets into smaller sets based on data item

values. This is commonly called partitioning or binning the data, where each "bin" of data is named after some data

value(s) shared by the members of that bin. For example, this is a simple way to organize log files by month and year.

TextDelimited scheme =

  new TextDelimited( new Fields( "year", "month", "entry" ), "\t" );

Hfs tap = new Hfs( scheme, path );

String template = "%s-%s"; // dirs named "year-month"

Tap months = new TemplateTap( tap, template, SinkMode.REPLACE );

In the example above, we construct a parent Hfs tap and pass it to the constructor of a Templatetap instance,

along with a String format "template". This format template is populated in the order in which values are declared via

the Scheme class. If more complex path formatting is necessary, you may subclass the Templatetap.

Note that you can only create sub-directories to bin data into. Hadoop must still write "part" files into each bin directory,

and there is no safe mechanism for manipulating part file names.

One last thing to keep in mind is whether binning happens during the Map phase or the Reduce phase. By doing a

GroupBy on the values used to populate the template, binning will happen during the Reduce phase, and will likely

scale much better in cases where there are a very large number of unique values used in the template resulting in a

large number of directories.

8.8 Partial Aggregation instead of Combiners
In Hadoop mode, Cascading does not support MapReduce "Combiners". Combiners are a simple optimization allowing

some Reduce functions to run on the Map side of MapReduce. Combiners are very powerful in that they reduce the I/

O between the Mappers and Reducers - why send all of your Mapper data to Reducers when you can compute some

values on the Map side and combine them in the Reducer? But Combiners are limited to Associative and Commutative

functions only, such as "sum" and "max". And the process requires that the values emitted by the Map task must be



Advanced Processing

Cascading Cascading 2.2 User Guide 69

serialized, sorted (which involves deserialization and comparison), deserialized again, and operated on - after which

the results are again serialized and sorted. Combiners trade CPU for gains in I/O.

Cascading takes a different approach. It provides a mechanism to perform partial aggregations on the Map side and

combine the results on the Reduce side, but trades memory, instead of CPU, for I/O gains by caching values (up to

a threshold limit). This bypasses the redundant serialization, deserialization, and sorting. Also, Cascading allows any

aggregate function to be implemented - not just Associative and Commutative functions.

Cascading supports a few built-in partial aggregate operations, including AverageBy, CountBy, SumBy, and FirstBy.

These are actually SubAssemblies, not Operations, and are subclasses of the AggregateBy SubAssembly. For more

on this, see the section on AggregateBy.

Using partial aggregate operations is quite easy. They are actually less verbose than a standard Aggregate operation.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

Fields valueField = new Fields( "size" );

Fields sumField = new Fields( "total-size" );

assembly =

  new SumBy( assembly, groupingFields, valueField, sumField, long.class );

Example 8.10 Using a SumBy

For composing multiple partial aggregate operations, things are done a little differently.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

// note we do not pass the parent assembly Pipe in

Fields valueField = new Fields( "size" );

Fields sumField = new Fields( "total-size", long.class );

SumBy sumBy = new SumBy( valueField, sumField );

Fields countField = new Fields( "num-events" );

CountBy countBy = new CountBy( countField );

assembly = new AggregateBy( assembly, groupingFields, sumBy, countBy );

Example 8.11 Composing partials with AggregateBy

It's important to note that a GroupBy Pipe is embedded in the resulting assemblies above. But only one GroupBy is

performed in the case of the AggregateBy, and all of the partial aggregations will be performed simultaneously. It is

also important to note that, depending on the final pipe assembly, the Map side partial aggregate functions may be

planned into the previous Reduce operation in Hadoop, further improving the performance of the application.
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9. Built-In Operations

9.1 Identity Function
The cascading.operation.Identity function is used to "shape" a tuple stream. Here are some common

patterns that illustrate how Cascading "field algebra" works. (Note that, in actual practice, some of these example

tasks might be better performed with helper subassemblies such as cascading.pipe.assembly.Rename,

cascading.pipe.assembly.Retain, and cascading.pipe.assemblyDiscard.)

Discard unused fields

Here Identity passes its arguments out as results, thanks to the Fields.ARGS field declaration.

// incoming -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity( Fields.ARGS );

Fields ipMethod = new Fields( "ip", "method" );

pipe =

  new Each( pipe, ipMethod, identity, Fields.RESULTS );

// outgoing -> "ip", "method"

In practice the field declaration can be left out, as Field.ARGS is the default declaration for the Identity function.

And Fields.RESULTs can be left off, as it is the default for the Every pipe. Thus, simpler code yields the

same result:

// incoming -> "ip", "time", "method", "event", "status", "size"

pipe = new Each( pipe, new Fields( "ip", "method" ), new Identity() );

// outgoing -> "ip", "method"

Rename all fields

Here Identity renames the incoming arguments. Since Fields.RESULTS is implied, the incoming Tuple is replaced

by the selected arguments and given new field names as declared on Identity.

// incoming -> "ip", "method"

Identity identity = new Identity( new Fields( "address", "request" ) );

pipe = new Each( pipe, new Fields( "ip", "method" ), identity );

// outgoing -> "address", "request"

In the example above, if there were more fields than "ip" and "method", it would work fine - all the extra fields

would be discarded. But if the same were true for the next example, the planner would fail.
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// incoming -> "ip", "method"

Identity identity = new Identity( new Fields( "address", "request" ) );

pipe = new Each( pipe, Fields.ALL, identity );

// outgoing -> "address", "request"

Since Fields.ALL is the default argument selector for the Each pipe, it can be left out as shown below. Again,

the above and below examples will fail unless there are exactly two fields in the tuples of the incoming stream.

// incoming -> "ip", "method"

Identity identity = new Identity( new Fields( "address", "request" ) );

pipe = new Each( pipe, identity );

// outgoing -> "address", "request"

Rename a single field

Here we rename a single field and return it, along with an input Tuple field, as the result. All other fields are

dropped.

// incoming -> "ip", "time", "method", "event", "status", "size"

Fields fieldSelector = new Fields( "address", "method" );

Identity identity = new Identity( new Fields( "address" ) );

pipe = new Each( pipe, new Fields( "ip" ), identity, fieldSelector );

// outgoing -> "address", "method"

Coerce values to specific primitive types

Here we replace the Tuple String values "status" and "size" with int and long values, respectively. All other

fields are dropped.

// incoming -> "ip", "time", "method", "event", "status", "size"

Identity identity = new Identity( Integer.TYPE, Long.TYPE );

pipe = new Each( pipe, new Fields( "status", "size" ), identity );

// outgoing -> "status", "size"

Or we can replace just the Tuple String value "status" with an int, while keeping all the other values in the

output Tuple.

// incoming -> "ip", "time", "method", "event", "status", "size"
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Identity identity = new Identity( Integer.TYPE );

pipe =

  new Each( pipe, new Fields( "status" ), identity, Fields.REPLACE );

// outgoing -> "ip", "time", "method", "event", "status", "size"

9.2 Debug Function
The cascading.operation.Debug function is a utility function (actually, it's a Filter) that prints the current

argument Tuple to either stdout or stderr. Used with one of the DebugLevel enum values (NONE, DEFAULT,

or VERBOSE), different debug levels can be embedded in a pipe assembly.

The example below inserts a Debug operation at the VERBOSE level, but configures the planner to remove all Debug

operations from the resulting Flow.

Pipe assembly = new Pipe( "assembly" );

// ...

assembly = new Each( assembly, DebugLevel.VERBOSE, new Debug() );

// ...

// head and tail have same name

FlowDef flowDef = new FlowDef()

  .setName( "debug" )

  .addSource( "assembly", source )

  .addSink( "assembly", sink )

  .addTail( assembly );

// tell the planner to remove all Debug operations

flowDef

  .setDebugLevel( DebugLevel.NONE );

// ...

FlowConnector flowConnector = new HadoopFlowConnector();

Flow flow = flowConnector.connect( flowDef );

Note that if the above Flow is run on a cluster, the stdout on the cluster nodes will be used. Nothing from the debug

output will display on the client side. Debug is only useful when testing things in an IDE or if the remote logs are

readily available.

9.3 Sample and Limit Functions
The Sample and Limit functions are used to limit the number of tuples that pass through a pipe assembly.
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Sample

The cascading.operation.filter.Sample filter allows a percentage of tuples to pass.

Limit

The cascading.operation.filter.Limit filter allows a set number of tuples to pass.

9.4 Insert Function
The cascading.operation.Insert function allows for insertion of constant literal values into the tuple stream.

This is most useful when a splitting a tuple stream and one of the branches needs some identifying value, or when

some missing parameter or value, like a date String for the current date, needs to be inserted.

9.5 Text Functions
Cascading includes a number of text functions in the cascading.operation.text package.

DateFormatter

The cascading.operation.text.DateFormatter function is used to convert a date timestamp to a

formatted String. This function expects a long value representing the number of milliseconds since January 1,

1970, 00:00:00 GMT/UTC, and formats the output using java.text.SimpleDateFormat syntax.

// "ts" -> 1188604863000

DateFormatter formatter =

  new DateFormatter( new Fields( "date" ), "dd/MMM/yyyy" );

pipe = new Each( pipe, new Fields( "ts" ), formatter );

// outgoing -> "date" -> 31/Aug/2007

The example above converts a long timestamp ("ts") to a date String.

DateParser

The cascading.operation.text.DateParser function is used to convert a text date String to a

timestamp, using the java.text.SimpleDateFormat syntax. The timestamp is a long value representing

the number of milliseconds since January 1, 1970, 00:00:00 GMT/UTC. By default, the output is a field with the

name "ts" (for timestamp), but this can be overridden by passing a declared Fields value.

// "time" -> 01/Sep/2007:00:01:03 +0000

DateParser dateParser = new DateParser( "dd/MMM/yyyy:HH:mm:ss Z" );

pipe = new Each( pipe, new Fields( "time" ), dateParser );

// outgoing -> "ts" -> 1188604863000

In the example above, an Apache log-style date-time field is converted into a long timestamp in UTC.
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FieldJoiner

The cascading.operation.text.FieldJoiner function joins all the values in a Tuple with a specified

delimiter and places the result into a new field. (For the opposite effect, see the RegexSplitter function.)

FieldFormatter

The cascading.operation.text.FieldFormatter function formats Tuple values with a given String

format and stuffs the result into a new field. The java.util.Formatter class is used to create a new

formatted String.

9.6 Regular Expression Operations
RegexSplitter

The cascading.operation.regex.RegexSplitter function splits an argument value based on a

regex pattern String. (For the opposite effect, see the FieldJoiner function.) Internally, this function uses

java.util.regex.Pattern.split(), and it behaves accordingly. By default, it splits on the TAB

character ("\t"). If it is known that a determinate number of values will emerge from this function, it can declare

field names. In this case, if the splitter encounters more split values than field names, the remaining values are

discarded. For more information, see java.util.regex.Pattern.split( input, limit ).

RegexParser

The cascading.operation.regex.RegexParser function is used to extract a regex-matched value

from an incoming argument value. If the regular expression is sufficiently complex, an int array may be provided

to specify which regex groups should be returned in which field names.

// incoming -> "line"

String regex =

  "^([^ ]*) +[^ ]* +[^ ]* +\\[([^]]*)\\] +" +

    "\\\"([^ ]*) ([^ ]*) [^ ]*\\\" ([^ ]*) ([^ ]*).*$";

Fields fieldDeclaration =

  new Fields( "ip", "time", "method", "event", "status", "size" );

int[] groups = {1, 2, 3, 4, 5, 6};

RegexParser parser = new RegexParser( fieldDeclaration, regex, groups );

assembly = new Each( assembly, new Fields( "line" ), parser );

// outgoing -> "ip", "time", "method", "event", "status", "size"

In the example above, a line from an Apache access log is parsed into its component parts. Note that the int[]

groups array starts at 1, not 0. Group 0 is the whole group, so if the first field is included, it is a copy of "line"

and not "ip".

RegexReplace

The cascading.operation.regex.RegexReplace function is used to replace a regex-matched

value with a specified replacement value. It can operate in a "replace all" or "replace first"

mode. For more information, see the methods java.util.regex.Matcher.replaceAll() and

java.util.regex.Matcher.replaceFirst().
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// incoming -> "line"

RegexReplace replace =

  new RegexReplace( new Fields( "clean-line" ), "\\s+", " ", true );

assembly = new Each( assembly, new Fields( "line" ), replace );

// outgoing -> "clean-line"

In the example above, all adjoined white space characters are replaced with a single space character.

RegexFilter

The cascading.operation.regex.RegexFilter function filters a Tuple stream based on a specified

regex value. By default, tuples that match the given pattern are kept, and tuples that do not match are filtered out.

This can be reversed by setting "removeMatch" to true. Also, by default, the whole Tuple is matched against the

given regex String (in tab-delimited sections). If "matchEachElement" is set to true, the pattern is applied to each

Tuple value individually. For more information, see the java.util.regex.Matcher.find() method.

// incoming -> "ip", "time", "method", "event", "status", "size"

Filter filter = new RegexFilter( "^68\\..*" );

assembly = new Each( assembly, new Fields( "ip" ), filter );

// outgoing -> "ip", "time", "method", "event", "status", "size"

The above keeps all lines in which "68." appears at the start of the IP address.

RegexGenerator

The cascading.operation.regex.RegexGenerator function emits a new tuple for every string

(found in an input tuple) that matches a specified regex pattern.

// incoming -> "line"

String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)";

Function function = new RegexGenerator( new Fields( "word" ), regex );

assembly = new Each( assembly, new Fields( "line" ), function );

// outgoing -> "word"

Above each "line" in a document is parsed into unique words and stored in the "word" field of each result Tuple.

RegexSplitGenerator

The cascading.operation.regex.RegexSplitGenerator function emits a new Tuple for every

split on the incoming argument value delimited by the given pattern String. The behavior is similar to the

RegexSplitter function, except that (assuming multiple matches) RegexSplitter emits a single tuple

that may contain multiple values, and RegexSplitGenerator emits multiple tuples that each contain only

one value, as does RegexGenerator.
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9.7 Java Expression Operations
Cascading provides some support for dynamically-compiled Java expressions to be used in either Functions or

Filters. This capability is provided by the Janino embedded Java compiler, which compiles the expressions into

byte code for optimal processing speed. Janino is documented in detail on its website, http://www.janino.net/.

This capability allows an Operation to evaluate a suitable one-line Java expression, such as a + 3 * 2 or a <

7, where the variable values ( a and b) are passed in as Tuple fields. The result of the Operation thus depends on the

evaluated result of the expression - in the first example, some number, and in the second, a Boolean value.

ExpressionFunction

The function cascading.operation.expression.ExpressionFunction dynamically composes a

string expression when executed, assigning argument Tuple values to variables in the expression.

// incoming -> "ip", "time", "method", "event", "status", "size"

String exp =

  "\"this \" + method + \" request was \" + size + \" bytes\"";

Fields fields = new Fields( "pretty" );

ExpressionFunction function =

  new ExpressionFunction( fields, exp, String.class );

assembly =

  new Each( assembly, new Fields( "method", "size" ), function );

// outgoing -> "pretty" = "this GET request was 1282652 bytes"

Above, we create a new String value that contains an expression containing values from the current Tuple. Note

that you must declare the type for every input Tuple field so that the expression compiler knows how to treat the

variables in the expression.

ExpressionFilter

The filter cascading.operation.expression.ExpressionFilter evaluates a Boolean expression,

assigning argument Tuple values to variables in the expression. If the expression returns true, the Tuple is

removed from the stream.

// incoming -> "ip", "time", "method", "event", "status", "size"

ExpressionFilter filter =

  new ExpressionFilter( "status != 200", Integer.TYPE );

assembly = new Each( assembly, new Fields( "status" ), filter );

// outgoing -> "ip", "time", "method", "event", "status", "size"

http://www.janino.net/
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In this example, every line in the Apache log that does not have a status of "200" is filtered out. ExpressionFilter

coerces the value into the specified type if necessary to make the comparison - in this case, coercing the status

String into an int.

As of Cascading 2.2, along with cascading.operation.expression.ExpressionFilter

and cascading.operation.expression.ExpressionFunction, two new operations have been

added to support multi-line Java code, cascading.operation.expression.ScriptFilter and

cascading.operation.expression.ScriptFunction. See the relevant Javadoc for details on usage.

9.8 XML Operations
To use XML Operations in a Cascading application, include the cascading-xml-x.y.z.jar in the project.

When using the TagSoupParser operation, this module requires the TagSoup library, which provides support for

HTML and XML "tidying". More information is available at the TagSoup website, http://home.ccil.org/~cowan/XML/

tagsoup/.

XPathParser

The cascading.operation.xml.XPathParser function uses one or more XPath expressions, passed

into the constructor, to extract one or more node values from an XML document contained in the passed Tuple

argument, and places the result(s) into one or more new fields in the current Tuple. In this way, it effectively parses

an XML document into a table of fields, creating one Tuple field value for every given XPath expression. The

Node is converted to a String type containing an XML document. If only the text values are required, search on

the text() nodes, or consider using XPathGenerator to handle multiple NodeList values. If the returned result

of an XPath expression is a NodeList, only the first Node is used for the field value and the rest are ignored.

XPathGenerator

Similar to XPathParser, the cascading.operation.xml.XPathGenerator function emits a new

Tuple for every Node returned by the given XPath expression from the XML in the current Tuple.

XPathFilter

The filter cascading.operation.xml.XPathFilter removes a Tuple if the specified XPath expression

returns false. Set the removeMatch parameter to true if the filter should be reversed, i.e., to keep only those

Tuples where the XPath expression returns true.

TagSoupParser

The cascading.operation.xml.TagSoupParser function uses the TagSoup library to convert

incoming HTML to clean XHTML. Use the setFeature( feature, value ) method to set TagSoup-

specific features, which are documented on the TagSoup website.

9.9 Assertions
Cascading Stream Assertions are used to build robust reusable pipe assemblies. If desired, they can be planned out

of a Flow instance at runtime. For more information, see the section on Stream Assertions. Below we describe the

Assertions available in the core library.

http://home.ccil.org/~cowan/XML/tagsoup/
http://home.ccil.org/~cowan/XML/tagsoup/
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AssertEquals

The cascading.operation.assertion.AssertEquals Assertion asserts that the number of values

given on the constructor is equal to the number of argument Tuple values, and that each constructor value

.equals() its corresponding argument value.

AssertNotEquals

The cascading.operation.assertion.AssertNotEquals Assertion asserts that the number of

values given on the constructor is equal to the number of argument Tuple values and that each constructor value

is not .equals() to its corresponding argument value.

AssertEqualsAll

The cascading.operation.assertion.AssertEqualsAll Assertion asserts that every value in the

argument Tuple .equals() the single value given on the constructor.

AssertExpression

The cascading.operation.assertion.AssertExpression Assertion dynamically resolves a given

Java expression (see Expression Operations) using argument Tuple values. Any Tuple that returns true for the

given expression passes the assertion.

AssertMatches

The cascading.operation.assertion.AssertMatches Assertion matches the given regular

expression pattern String against the entire argument Tuple. The comparison is made possible by concatenating

all the fields of the Tuple, separated by the TAB character (\t). If a match is found, the Tuple passes the assertion.

AssertMatchesAll

The cascading.operation.assertion.AssertMatchesAll Assertion matches the given regular

expression pattern String against each argument Tuple value individually.

AssertNotNull

The cascading.operation.assertion.AssertNotNull Assertion asserts that every position/field in

the argument Tuple is not null.

AssertNull

The cascading.operation.assertion.AssertNull Assertion asserts that every position/field in the

argument Tuple is null.

AssertSizeEquals

The cascading.operation.assertion.AssertSizeEquals Assertion asserts that the current Tuple

in the tuple stream is exactly the given size. Size, here, is the number of fields in the Tuple, as returned by

Tuple.size(). Note that some or all fields may be null.

AssertSizeLessThan

The cascading.operation.assertion.AssertSizeLessThan Assertion asserts that the current

Tuple in the stream has a size less than (<) the given size. Size, here, is the number of fields in the Tuple, as

returned by Tuple.size(). Note that some or all fields may be null.

AssertSizeMoreThan

The cascading.operation.assertion.AssertSizeMoreThan Assertion asserts that the current

Tuple in the stream has a size greater than (>) the given size. Size, here, is the number of fields in the Tuple, as

returned by Tuple.size(). Note that some or all fields may be null.
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AssertGroupSizeEquals

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is equal to (==) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

AssertGroupSizeLessThan

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is less than (<) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

AssertGroupSizeMoreThan

The cascading.operation.assertion.AssertGroupSizeEquals Group Assertion asserts that the

number of items in the current grouping is greater than (>) the given size. If a pattern String is given, only grouping

keys that match the regular expression will have this assertion applied where multiple key values are delimited

by a TAB character.

9.10 Logical Filter Operators
The logical Filter operators allow you to combine multiple filters to run in a single Pipe, instead of chaining multiple

Pipes together to get the same logical result.

And

The cascading.operation.filter.And Filter performs a logical "and" on the results of the

constructor-provided Filter instances. That is, if Filter#isRemove() returns true for all of the given

instances, this filter returns true.

Or

The cascading.operation.filter.Or Filter performs a logical "or" on the results of the constructor-

provided Filter instances. That is, if Filter#isRemove() returns true for any of the given instances,

this filter returns true.

Not

The cascading.operation.filter.Not Filter performs a logical "not" (negation) on the results

of the constructor-provided Filter instance. That is, if Filter#isRemove() returns true for the given

instance, this filter returns false, and if Filter#isRemove() returns false for the given instance, this

filter returns true.

Xor

The cascading.operation.filter.Xor Filter performs a logical "xor" (exclusive or) on the results

of the constructor-provided Filter instances. Xor can only be applied to two instances at a time. It returns

true if the two instances have different truth values, and false if they have the same truth value. That is, if

Filter.isRemove() returns true for both, or returns false for both, this filter returns false; otherwise

it returns true.
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// incoming -> "ip", "time", "method", "event", "status", "size"

FilterNull filterNull = new FilterNull();

RegexFilter regexFilter = new RegexFilter( "(GET|HEAD|POST)" );

And andFilter = new And( filterNull, regexFilter );

assembly = new Each( assembly, new Fields( "method" ), andFilter );

// outgoing -> "ip", "time", "method", "event", "status", "size"

Example 9.1 Combining Filters

The example above performs a logical "and" on the two filters. Both must be satisfied for the data to pass through

this one Pipe.

9.11 Buffers
As of Cascading 2.2, the FirstNBuffer Buffer is provided as an optimized means to determine the top N elements in

a grouping.

FirstNBuffer

The cascading.operation.buffer.FirstNBuffer Buffer returns the first N tuples

seen in a given grouping. Unlike the cascading.pipe.assembly.FirstBy AggregateBy

and cascading.operation.aggregator.First Aggregator, FirstNBuffer will stop

iterating the available tuples when the top N condition is met. FirstNBuffer is used by

cascading.pipe.assembly.Unique.
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10. Built-in Assemblies
There are a number of helper SubAssemblies provided by the core cascading library.

As of Cascading 2.2, many of the below assemblies can optionally ignore null values. This allows for an optional but

closer resemblance to how similar functions in SQL perform.

10.1 AggregateBy
The cascading.pipe.assembly.AggregateBy SubAssembly is an implementation of the Partial

Aggregation pattern, and is the base class for built-in and custom partial aggregation implementations like

AverageBy or CountBy.

Generally the AggregateBy class is used to combine multiple AggregateBy subclasses into a single Pipe.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

// note we do not pass the parent assembly Pipe in

Fields valueField = new Fields( "size" );

Fields sumField = new Fields( "total-size", long.class );

SumBy sumBy = new SumBy( valueField, sumField );

Fields countField = new Fields( "num-events" );

CountBy countBy = new CountBy( countField );

assembly = new AggregateBy( assembly, groupingFields, sumBy, countBy );

Example 10.1 Composing partials with AggregateBy

To create a custom partial aggregation, subclass the AggregateBy class and implement the appropriate internal

interfaces. See the Javadoc for details.

AverageBy

The cascading.pipe.assembly.AverageBy SubAssembly performs an average over the given

valueFields and returns the result in the averageField field. AverageBy may be combined with other

AggregateBy subclasses so they may be executed simultaneously over the same grouping.
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Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

Fields valueField = new Fields( "size" );

Fields avgField = new Fields( "avg-size" );

assembly = new AverageBy( assembly, groupingFields, valueField, avgField );

Example 10.2 Using AverageBy

CountBy

The cascading.pipe.assembly.CountBy SubAssembly performs a count over the given

groupingFields and returns the result in the countField field. CountBy may be combined with other

AggregateBy subclasses so they may be executed simultaneously over the same grouping.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

Fields countField = new Fields( "count" );

assembly = new CountBy( assembly, groupingFields, countField );

Example 10.3 Using CountBy

SumBy

The cascading.pipe.assembly.SumBy SubAssembly performs a sum over the given valueFields and

returns the result in the sumField field. SumBy may be combined with other AggregateBy subclasses so they may

be executed simultaneously over the same grouping.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

Fields valueField = new Fields( "size" );

Fields sumField = new Fields( "total-size" );

assembly =

  new SumBy( assembly, groupingFields, valueField, sumField, long.class );

Example 10.4 Using SumBy
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FirstBy

The cascading.pipe.assembly.FirstBy SubAssembly is used to return the first encountered value in the

given valueFields. FirstBy may be combined with other AggregateBy subclasses so they may be executed

simultaneously over the same grouping.

Pipe assembly = new Pipe( "assembly" );

// ...

Fields groupingFields = new Fields( "date" );

Fields valueField = new Fields( "size" );

// we want the largest size in this grouping

valueField.setComparator( "size", new LongComparator() );

assembly =

  new FirstBy( assembly, groupingFields, valueField );

Example 10.5 Using FirstBy

Note if the valueFields Fields instance has field comparators, they will be used to sort the argument values to

influence what values are seen first. Otherwise the fields will not be sorted in any deterministic order.

10.2 Coerce
The cascading.pipe.assembly.SumBy SubAssembly is used to coerce a set of values from one type to another

type - for example, to convert the field age from a String to an Integer.

// incoming -> first, last, age

assembly =

  new Coerce( assembly, new Fields( "age" ), Integer.class );

// outgoing -> first, last, age

Example 10.6 Using Coerce

10.3 Discard
The cascading.pipe.assembly.Discard SubAssembly is used to shape the Tuple stream by discarding all

fields given on the constructor. All fields not listed are retained.
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// incoming -> first, last, age

assembly = new Discard( assembly, new Fields( "age" ) );

// outgoing -> first, last

Example 10.7 Using Discard

10.4 Rename
The cascading.pipe.assembly.Rename SubAssembly is used to rename a field.

// incoming -> first, last, age

assembly =

  new Rename( assembly, new Fields( "age" ), new Fields( "years" ) );

// outgoing -> first, last, years

Example 10.8 Using Rename

10.5 Retain
The cascading.pipe.assembly.Retain SubAssembly is used to shape the Tuple stream by retaining all

fields given on the constructor. All fields not listed are discarded.

// incoming -> first, last, age

assembly = new Retain( assembly, new Fields( "first", "last" ) );

// outgoing -> first, last

Example 10.9 Using Retain

10.6 Unique
The cascading.pipe.assembly.Unique SubAssembly is used to remove duplicate values in a Tuple stream.

Uniqueness is determined by the values of all fields listed in uniqueFields. Thus to find all distinct Tuples in a

Tuple stream, use Fields.ALL as the uniqueFields argument.
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// incoming -> first, last

assembly = new Unique( assembly, new Fields( "first", "last" ) );

// outgoing -> first, last

Example 10.10 Using Unique

As of Cascading 2.2, Unique uses the FirstNBuffer to more efficiently determine unique values.
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11. Best Practices

11.1 Unit Testing
Discrete testing of all Operations, pipe assemblies, and applications is a must. The

cascading.CascadingTestCase provides a number of static helper methods.

When testing custom Operations, use the invokeFunction(), invokeFilter(), invokeAggregator(),

and invokeBuffer() methods.

When testing Flows, use the validateLength() methods. There are quite a few of them, and collectively they

offer great flexibility. All of them read the sink tap, validate that it is the correct length and has the correct Tuple size,

and check to see whether the values match a given regular expression pattern.

As of Cascading 2, it is possible to write tests that are independent of the underlying platform. Any unit test should

subclass cascading.PlatformTestCase located in the cascading-platform-x.y.z-tests.jar jar

file. Any platform to be tested against should be added to the CLASSPATH as well. PlatformTestCase will search

the CLASSPATH for all available platforms and run each test on the subclass against each platform found.

See the Cascading platform unit tests for examples.

For Maven users, be sure to add the tests classifier to any dependencies. Note that the cascading-platform

project has no main code, but does have only tests, so it must be retrieved via the tests classifier.

11.2 Flow Granularity
Although using one large Flow may result in slightly more efficient performance, it's advisable to use a more

modular and flexible approach, creating medium or small Flows with well-defined responsibilities, and passing all

the resulting interdependent Flows to a Cascade to sequence and execute as a single unit. Similarly, using the

TextDelimited Scheme (or any custom format for long-term archival) between Flow instances allows you to

hand off intermediate data to other systems for reporting or QA purposes, incurring a minimal performance penalty

while remaining compatible with other tools.

11.3 SubAssemblies, not Factories
When developing your applications, use SubAssembly subclasses, not "factory" methods. The resulting code is

much easier to read and test.

It's worth noting that the Object constructors are "factories", so there isn't much reason to build frameworks to

duplicate what a constructor already does. Of course there are exceptional cases in which you don't have the option

to use a SubAssembly, but in practice they are rare.



Best Practices

Cascading Cascading 2.2 User Guide 87

11.4 Logical Responsibilities for
SubAssemblies
SubAssembies provide a very convenient means to co-locate similar or related responsibilities into a single place. For

example, it's simple to use a ParsingSubAssembly and a RulesSubAssembly, where the first is responsible

solely for parsing incoming Tuple streams (log files for example), and the second applies rules to decide whether a

given Tuple should be discarded or marked as bad.

Additionally, in your unit tests you can create a TestAssertionsSubAssembly that simply inlines various

ValueAssertions and GroupAssertions. The practice of inlining Assertions directly in your SubAssemblies

is also important, but sometimes it makes sense to have more tests outside of the business logic.

11.5 Java Operators in Field Names
There are a few Operations in Cascading (e.g., ExpressionFunction and ExpressionFilter) that compile

and apply Java expressions on the fly. In these expressions, Operation argument field names are used as variable

names in the expression. For this reason, take care to create field names that don't contain characters which will cause

compilation errors if they are used in an expression. For example, "first-name" is a valid field name for use with

Cascading, but might result in the expression first-name.trim(), which will cause a compilation error.

11.6 Debugging Planner Failures
The FlowConnector will sometimes fail when attempting to plan a Flow. If the error message given by

PlannerException is vague, use the method PlannerException.writeDOT() to export a representation

of the internal pipe assembly. DOT files can be opened by GraphViz and OmniGraffle. These plans are only partial,

but you will be able to see where the Cascading planner failed.

Note that you can also create a DOT file from a Flow, by using Flow.writeDOT().

See Debugging Hadoop.

11.7 Optimizing Joins
When joining two streams via a CoGroup Pipe, try to put the largest of the streams in the leftmost argument to

the CoGroup. The reason for this is that joining multiple streams requires some accumulation of values before the

join operator can begin, but the leftmost stream is not accumulated, so this technique should improve the performance

of most joins.

11.8 Debugging Streams
When creating complex assemblies, it's safe to embed Debug operations (see Debug Function) at appropriate debug

levels as needed. Use the planner to remove them at runtime for production and staging runs, to avoid wasting resources.

See Debugging Hadoop.
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11.9 Handling Good and Bad Data
It's very common when processing raw data streams to encounter data that is corrupt or malformed in some way. For

instance, bad content may be fetched from the web via a crawler upstream, or a bug may have leaked into a browser

widget somewhere that sends user behavior information back for analysis. Whatever the cause, it's a good practice to

define a set of rules for identifying and discarding questionable records.

It is tempting to simply throw an exception and have a Trap capture the offending Tuple, but Traps were not designed

as a filtering mechanism, and consequently much valuable information would be lost.

Instead of traps, use filters. Create a SubAssembly that applies rules to the stream by setting a binary field that

marks the tuple as good or bad. After all the rules are applied, split the stream based on the value of the good or bad

Boolean value. Consider setting a reason field that states why the Tuple was marked bad.

11.10 Maintaining State in Operations
When creating custom Operations (Function, Filter, Aggregator, or Buffer) do not store operation state

in class fields.

For example, if implementing a custom "counter" Aggregator, do not create a field named "count" and increment it

on every Aggregator.aggregate() call. There is no guarantee that your Operation will be called from a single

thread in a JVM - and future versions of Hadoop or Cascading local mode might execute the same operation from

multiple threads.

11.11 Custom Types
Passing a custom class through a Tuple stream is generally frowned upon. It leads to the coupling of custom Operations

to particular types, and it removes opportunities for reducing the amount of data that passes over the network.

The first objection can be overcome with a little work. When using a custom type that has multiple instance fields, try to

provide Functions that can promote a value from the custom object to a position in a Tuple, or demote the Tuple value

for a particular field back into the custom type. This lets you use existing operations like ExpressionFunction

or RegexFilter to operate on values owned by a custom type.

For example, if you have a Person object, create a Function named GetPersonAge that takes Person as an

argument and returns just the age. The next operation can then Filter all Persons based on their age. This may seem

more difficult and less effiicient, but it keeps your application flexible and avoids duplicating existing operations. (The

only alternative here is to create a PersonAgeFilter, which becomes one more thing to test.)

11.12 Fields Constants
Instead of having String field names strewn about, create an Interface that holds a constant value for each field name:

public static Fields FIRST_NAME = new Fields( "firstname" );

Using the Fields class, instead of String, allows for building more complex constants:
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public static Fields NAME = FIRST_NAME.append( LAST_NAME );

11.13 Checking the Source Code
When in doubt, look at the Cascading source code. If something is not documented in this User Guide or Javadoc, and

it's a feature of Cascading, the feature source code or unit tests will give you clear instructions on what to do or expect.
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12. Extending Cascading

12.1 Scripting
The Cascading API was designed with scripting in mind. Any Java-compatible scripting language can import and

instantiate Cascading classes, create pipe assemblies and flows, and execute those flows. And if the scripting language

in question supports Domain Specific Language (DSL) creation, users can create their own DSLs to handle common

idioms.

The Cascading website includes information on scripting language bindings that are publicly available.

12.2 Custom Types and Serialization
The Tuple class is a generic container for all java.lang.Object instances. Thus any primitive value or custom

Class can be stored in a Tuple instance - that is, returned by a Function, Aggregator, or Buffer as a result

value.

But for this to work when using the Cascading Hadoop mode, any Class that isn't a primitive type or a Hadoop

Writable type requires a corresponding Hadoop serialization class registered in the Hadoop configuration files for

your cluster. Hadoop Writable types work because there is already a generic serialization implementation built

into Hadoop. See the Hadoop documentation for information on registering a new serialization helper or creating

Writable types. Registered serialization implementations are automatically inherited by Cascading.

During serialization and deserialization of Tuple instances that contain custom types, the Cascading Tuple

serialization framework must store the class name (as a String) before serializing the custom object. This can be

very space-inefficient. To overcome this, custom types can add the SerializationToken Java annotation to the

custom type class. The SerializationToken annotation expects two arrays - one of integers that are used as

tokens, and one of Class name strings. Both arrays must be the same size. The integer tokens must all have values of

128 or greater, since the first 128 values are reserved for internal use.

During serialization and deserialization, the token values are used instead of the String Class names, in order to

reduce the amount of storage used.

Serialization tokens may also be stored in the Hadoop config files or set as a property passed to the FlowConnector,

with the property name cascading.serialization.tokens. The value of this property is a comma separated

list of token=classname values.

Note that Cascading natively serializes/deserializes all primitives and byte arrays

(byte[]), if the developer registers the BytesSerialization class by using

TupleSerializationProps.addSerialization(properties,

BytesSerialization.class.getName(). The token 127 is used for the Hadoop BytesWritable class.

By default, Cascading uses lazy deserialization on Tuple elements during comparisons when Hadoop sorts keys during

the "shuffle" phase.
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Cascading supports custom serialization for custom types, as well as lazy deserialization of custom types during

comparisons. This is accomplished by implementing the StreamComparator interface. See the Javadoc for detailed

instructions on implemention, and the unit tests for examples.

12.3 Custom Comparators and Hashing
Frequently, objects in one Tuple are compared to objects in a second Tuple. This is especially true during the sort

phase of GroupBy and CoGroup in Cascading Hadoop mode . By default, Hadoop and Cascading use the native

Object methods equals() and hashCode() to compare two values and get a consistent hash code for a given

value, respectively.

To override this default behavior, you can create a custom java.util.Comparator class to perform comparisons

on a given field in a Tuple. For instance, to secondary-sort a collection of custom Person objects in a GroupBy,

use the Fields.setComparator() method to designate the custom Comparator to the Fields instance that

specifies the sort fields.

Alternatively, you can set a default Comparator to be used by a Flow, or used locally on a given Pipe

instance. There are two ways to do this. Call FlowProps.setDefaultTupleElementComparator() on a

Properties instance, or use the property key cascading.flow.tuple.element.comparator.

If the hash code must also be customized, the custom Comparator can implement the interface

cascading.tuple.Hasher. For more information, see the Javadoc.
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13. Cookbook
This chapter demonstrates some common idioms used in Cascading applications.

13.1 Tuples and Fields
Copy a Tuple instance

Tuple original = new Tuple( "john", "doe" );

// call copy constructor

Tuple copy = new Tuple( original );

assert copy.getObject( 0 ).equals( "john" );

assert copy.getObject( 1 ).equals( "doe" );

Nest a Tuple instance within a Tuple

Tuple parent = new Tuple();

parent.add( new Tuple( "john", "doe" ) );

assert ( (Tuple) parent.getObject( 0 ) ).getObject( 0 ).equals( "john" );

assert ( (Tuple) parent.getObject( 0 ) ).getObject( 1 ).equals( "doe" );

Build a longer Fields instance

Fields first = new Fields( "first" );

Fields middle = new Fields( "middle" );

Fields last = new Fields( "last" );

Fields full = first.append( middle ).append( last );

Remove a field from a longer Fields instance

Fields full = new Fields( "first", "middle", "last" );

Fields firstLast = full.subtract( new Fields( "middle" ) );

13.2 Stream Shaping
Split (branch) a Tuple Stream

Pipe pipe = new Pipe( "head" );
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pipe = new Each( pipe, new SomeFunction() );

// ...

// split left with the branch name 'lhs'

Pipe lhs = new Pipe( "lhs", pipe );

lhs = new Each( lhs, new SomeFunction() );

// ...

// split right with the branch name 'rhs'

Pipe rhs = new Pipe( "rhs", pipe );

rhs = new Each( rhs, new SomeFunction() );

// ...

Copy a field value

Fields argument = new Fields( "field" );

Identity identity = new Identity( new Fields( "copy" ) );

// identity copies the incoming argument to the result tuple

pipe = new Each( pipe, argument, identity, Fields.ALL );

Discard (drop) a field

// incoming -> "keepField", "dropField"

pipe = new Discard( pipe, new Fields( "dropField" ) );

// outgoing -> "keepField"

Retain (keep) a field

// incoming -> "keepField", "dropField"

pipe = new Retain( pipe, new Fields( "keepField" ) );

// outgoing -> "keepField"

Rename a field

// a simple SubAssembly that uses Identity internally

pipe = new Rename( pipe, new Fields( "from" ), new Fields( "to" ) );

Coerce field values from Strings to primitives

Fields fields = new Fields( "longField", "booleanField" );

Class types[] = new Class[]{long.class, boolean.class};

// convert to given type

pipe = new Coerce( pipe, fields, types );



Cookbook

Cascading Cascading 2.2 User Guide 94

Insert constant values into a stream

Fields fields = new Fields( "constant1", "constant2" );

Insert function = new Insert( fields, "value1", "value2" );

pipe = new Each( pipe, function, Fields.ALL );

13.3 Common Operations
Parse a String date/time value

// convert string date/time field to a long

// milliseconds "timestamp" value

String format = "yyyy:MM:dd:HH:mm:ss.SSS";

DateParser parser = new DateParser( new Fields( "ts" ), format );

pipe = new Each( pipe, new Fields( "datetime" ), parser, Fields.ALL );

Format a time-stamp to a date/time value

// convert a long milliseconds "timestamp" value to a string

String format = "HH:mm:ss.SSS";

DateFormatter formatter =

  new DateFormatter( new Fields( "datetime" ), format );

pipe = new Each( pipe, new Fields( "ts" ), formatter, Fields.ALL );

13.4 Stream Ordering
Remove duplicate tuples in a stream

// remove all duplicates from the stream

pipe = new Unique( pipe, Fields.ALL );

Create a list of unique values

// narrow stream to just ips

pipe = new Retain( pipe, new Fields( "ip" ) );

// find all unique 'ip' values

pipe = new Unique( pipe, new Fields( "ip" ) );

Find first occurrence in time of a unique value

// group on all unique 'ip' values

// secondary sort on 'datetime', natural order is in ascending order
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pipe = new GroupBy( pipe, new Fields( "ip" ), new Fields( "datetime" ) );

// take the first 'ip' tuple in the group which has the

// oldest 'datetime' value

pipe = new Every( pipe, Fields.ALL, new First(), Fields.RESULTS );

13.5 API Usage
Pass properties to a custom Operation

// set property on Flow

Properties properties = new Properties();

properties.put( "key", "value" );

FlowConnector flowConnector = new HadoopFlowConnector( properties );

// ...

// get the property from within an Operation (Function, Filter, etc)

String value = (String) flowProcess.getProperty( "key" );

Bind multiple sources and sinks to a Flow

Pipe headLeft = new Pipe( "headLeft" );

// do something interesting

Pipe headRight = new Pipe( "headRight" );

// do something interesting

// merge the two input streams

Pipe merged = new GroupBy( headLeft, headRight, new Fields( "common" ) );

// ...

// branch the merged stream

Pipe tailLeft = new Pipe( "tailLeft", merged );

// filter out values to the left

tailLeft = new Each( tailLeft, new SomeFilter() );

Pipe tailRight = new Pipe( "tailRight", merged );

// filter out values to the right

tailRight = new Each( tailRight, new SomeFilter() );

// source taps

Scheme inLeftScheme =

  new TextDelimited( new Fields( "some-fields" ) );

Tap sourceLeft = new Hfs( inLeftScheme, "some/path" );

Scheme inRightScheme =
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  new TextDelimited( new Fields( "some-fields" ) );

Tap sourceRight = new Hfs( inRightScheme, "some/path" );

// sink taps

Scheme outLeftScheme =

  new TextDelimited( new Fields( "some-fields" ) );

Tap sinkLeft = new Hfs( outLeftScheme, "some/path" );

Scheme outRightScheme =

  new TextDelimited( new Fields( "some-fields" ) );

Tap sinkRight = new Hfs( outRightScheme, "some/path" );

FlowDef flowDef = new FlowDef()

  .setName( "flow-name" );

// bind source Taps to Pipe heads

flowDef

  .addSource( headLeft, sourceLeft )

  .addSource( headRight, sourceRight );

// bind sink Taps to Pipe tails

flowDef

  .addSink( tailLeft, sinkLeft )

  .addTailSink( tailRight, sinkRight );

// ALTERNATIVELY ...

// add named source Taps

// the head pipe name to bind to

flowDef

  .addSource( "headLeft", sourceLeft )    // headLeft.getName()

  .addSource( "headRight", sourceRight ); // headRight.getName()

// add named sink Taps

flowDef

  .addSink( "tailLeft", sinkLeft )    // tailLeft.getName()

  .addSink( "tailRight", sinkRight ); // tailRight.getName()

// add tails -- heads are reachable from the tails

flowDef

  .addTail( tailLeft )

  .addTail( tailRight );

// set property on Flow

FlowConnector flowConnector = new HadoopFlowConnector();
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Flow flow = flowConnector.connect( flowDef );
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14. How It Works

14.1 MapReduce Job Planner
The Hadoop MapReduce Job Planner is an internal feature of Cascading.

When a collection of functions, splits, and joins are all tied up together into a "pipe assembly", the FlowConnector

object is used to create a new Flow instance against input and output data paths. This Flow is a single Cascading job.

Internally, the FlowConnector employs an intelligent planner to convert the pipe assembly to a graph of dependent

MapReduce jobs that can be executed on a Hadoop cluster.

All this happens behind the scenes - as does the scheduling of the individual MapReduce jobs, and the cleanup of

intermediate data sets that bind the jobs together.

Map

CoGroupfunc aggr SinkSource GroupBy

func

aggr

Source func

functemp

Reduce Map Reduce

The diagram above shows how a typical Flow is partitioned into MapReduce jobs. Every job is delimited by a

temporary file that serves as the sink from the first job and the source for the next.

To create a visualization of how your Flows are partitioned, call the Flow#writeDOT() method. This writes a DOT

[http://en.wikipedia.org/wiki/DOT_language] file out to the path specified, which can be viewed in a graphics package

like OmniGraffle or Graphviz.

14.2 The Cascade Topological Scheduler
Cascading has a simple class, Cascade , that executes a collection of Cascading Flows on a target cluster in

dependency order.

Consider the following example.

• Flow 1 reads input file A and outputs B.

• Flow 2 expects input B and outputs C and D.

• Flow 3 expects input C and outputs E.

A Cascade is constructed through the CascadeConnector class, by building an internal graph that makes each

Flow a "vertex", and each file an "edge". A topological walk on this graph will touch each vertex in order of its

dependencies. When a vertex has all its incoming edges (i.e., files) available, it is scheduled on the cluster.

In the example above, Flow 1 goes first, Flow 2 goes second, and Flow 3 is last.

http://en.wikipedia.org/wiki/DOT_language
http://en.wikipedia.org/wiki/DOT_language
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If two or more Flows are independent of one another, they are scheduled concurrently.

And by default, if any outputs from a Flow are newer than the inputs, the Flow is skipped. The assumption is that the

Flow was executed recently, since the output isn't stale. So there is no reason to re-execute it and use up resources or

add time to the job. This is similar behavior a compiler would exhibit if a source file wasn't updated before a recompile.

This is very handy if you have a large set of jobs, with varying interdependencies between them, that needs to be

executed as a logical unit. Just pass them to the CascadeConnector and let it sort them all out.
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