
Writing a Programming Language Handbook
A Brief Introduction to Jupyter for Language Acquisition

Daniel Szelogowski
Independent Programming Literacy

Jupyter & Computational Essays

Jupyter is a tool frequently used by computer and data scientists, engineers,
and physicists to create “computational essays” (a type of essay that includes
text, computational tools, interactive diagrams, and small programs to
express an idea or small application, see https://uio-
ccse.github.io/computational-essay-showroom/ for examples). These essays,
or notebooks, allow the use of live code integration, along with computational
output, LaTeX equations, explanatory text/documentation, multimedia
resources, etc., to create and share complex computational documents.

Jupyter Lab & Jupyter Notebooks

Jupyter can be installed in a number of ways, but perhaps the most common
is to use the Python package manager “pip” with the command “pip install
jupyterlab” entered in the Command Line (sometimes Terminal, CMD, etc.)
– see https://jupyter.org/install for additional options, and
https://www.python.org/downloads/ to install the latest version of Python.
This can then be launched with the command “jupyter-lab” which starts a
live web server that can be accessed in the browser through the URL
http://localhost:8888/lab, which provides a robust interface for numerous
languages. To close the server, simply press “Control + C” in the Terminal or
press “Quit” on the web page.

For a simpler (more focused) interface, use Jupyter Notebooks instead, which
can be installed using “pip install notebook” and launched with “jupyter
notebook”. This again opens web server on the same port as Jupyter Lab,
which can be accessed by the URL http://localhost:8888/notebooks/.

The variance between these two is that of comparing a simple text editor to a
rich-text editing suite (e.g., Notepad to Microsoft Word) – Jupyter Lab contains
a more thorough interface as well as an in-built tutorial system, whereas
Jupyter Notebook is much like that of a hand-written notebook. For the rest
of this guide, we will use Jupyter Notebook for its simplicity and ease of use,
though Jupyter Lab is recommended for more complex projects.

https://uio-ccse.github.io/computational-essay-showroom/
https://uio-ccse.github.io/computational-essay-showroom/
https://jupyter.org/install
https://www.python.org/downloads/
http://localhost:8888/lab
http://localhost:8888/notebooks/

Getting Started with Jupyter Notebooks

Upon launching Notebook, you will be greeted by a File Tree where you can
navigate to the desired location where you want your notebook to be stored.

Press the “New” button in the upper right corner to create a new Notebook.
You will be prompted to choose either a specific programming language
(Kernel) or create a new text file, folder, or launch a new terminal. If the
programming language of your choice is not listed, you need to install the
kernel for it, which can be found on
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels (ideally look for a
kernel beginning with “I” for Interactive, such as IElixir, IGo, IScala, etc.).
Otherwise, choose the desired kernel and a new notebook blank notebook file
will be created at the desired location.

A more thorough guide to Jupyter can be found on
https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html if desired, as
this guide will briefly discuss installing a new kernel and getting started writing
a simple formatted computational essay for the purpose of programming
language acquisition.

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html

Installing a Language Kernel

For this guide, we will use C#; navigate the list to the “ICSharp” kernel – the
link will take you to a GitHub page containing the source code for the kernel.
Scroll down to find the “Readme” which contains the installation instructions.
Note that these installation instructions will differ greatly between
operating systems – some kernels may only support installation through
Docker on Windows especially. Close Jupyter first, then carefully follow the
instructions for installation specific to your operating system. An example for
install ICSharp on Windows can be seen below (from
https://github.com/zabirauf/icsharp/wiki/Installation).

https://github.com/zabirauf/icsharp
https://github.com/zabirauf/icsharp/wiki/Installation

If you do not have git installed, you can navigate to the main page of the
kernel on GitHub and press the green “Code” button, which will allow you to
download the source code as a Zip file, then extract the folder to a location
such as your desktop. You can also open it directly through Visual Studio. After
following the installation instructions, you should see the new language added
to your list of available kernels in Jupyter when you make a new notebook.

Writing Notebooks

You can rename a handbook at the top of the page to change it from “Untitled”
to something like “C# Handbook” (or whatever language you chose). By
default, each notebook starts with a single empty code cell. You can change
this classification to text for writing notes by clicking the dropdown menu with
the word “Code” (between the keyboard icon and �� arrows) and switching it
to “Markdown” which allows for rich-text formatting.

To write a first-level header, use “# Some Header Name” – i.e., the header
name of your choice, preceded by the # symbol. You can also use HTML or
LaTeX code for formatting as well (see https://towardsdatascience.com/write-
markdown-latex-in-the-jupyter-notebook-10985edb91fd), but we will use
Markdown for its simplicity for now. LaTeX is highly recommended for
mathematical equations, however.

https://towardsdatascience.com/write-markdown-latex-in-the-jupyter-notebook-10985edb91fd
https://towardsdatascience.com/write-markdown-latex-in-the-jupyter-notebook-10985edb91fd

To see the formatted heading, press the “▶ Run” button which executes the
code or markdown language in the cell. This will also create a new cell below.
You can also use the hotkey “Control + Enter” to execute a cell
without creating a new cell below.

Likewise, to create a second, third, fourth-level heading (subheading/sub-
subheading, …), etc., simply add additional # symbols before the header title.
Remember to change the cell type to Markdown – all cells are Code by default.

To easily add new cells, click off the textbox of the cell (such as on the “In [
]:” text preceding it) and hit A on the keyboard to add a new cell above, or B
to add a new cell below, likewise. You can also hit D twice (type DD) to delete
a cell. You can also add a table using Markdown (see
https://www.markdownguide.org/extended-syntax/).

https://www.markdownguide.org/extended-syntax/

From there, simply start writing your code as desired, and switch between
using Markdown and Code cells to document your programming language (or
program!) as desired. You can write your code either directly inside the cell or
copy and paste it in as desired for formatting. Also note that code does not
have to be written/structured as a typical program, but as an
interactive script – you can print variables and display values simply
by typing their name. This is very similar to how Python Interactive (or
other interactive interpreters) would be used.

(Source: https://tinyurl.com/2fbycnv2)

See “Go Handbook.pdf” (which can be found at
http://danielszelogowski.com/resources/Go%20Handbook.pdf) for a full
example. You may use this for reference, but you must write your own
handbook from scratch (including code, comments, and documentation) if you
choose to use Golang for an assignment or it will be considered plagiarism.

https://nbviewer.org/urls/gist.githubusercontent.com/zabirauf/a0d4aa22b383afaa1e23/raw/65e539dc98b2cf3e38cc26faf3575e50f4ac9108/iCSharp%20Sample.ipynb
http://danielszelogowski.com/resources/Go%20Handbook.pdf

Writing Notebooks in VS Code

One of the best solutions for efficiently writing a Jupyter notebook is using the
popular text editor Visual Studio Code (which can be downloaded from
https://code.visualstudio.com/Download), which has great support for
notebooks (see the Jupyter extension:
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter).

This is essentially the same as using the Jupyter notebook app itself, but
allows for the syntax highlighting, code-completion, and additional
programming support provided by VS Code (and a nice dark theme). This
allows enables the usage of remote Jupyter servers with additional kernels
such as for C++ (i.e., with xeus-cling, found here:
https://github.com/jupyter-xeus/xeus-cling). Additional resources and guides
for using Jupyter in VS Code (locally and remotely) can be found at
https://code.visualstudio.com/docs/datascience/jupyter-notebooks.

The Binder Project and NBViewer

Binder is a project and web tool (found at https://mybinder.org/) that allows
a GitHub repository containing a Jupyter notebook (or set of notebooks) to be
“bound” into a live, shareable page (an example of which can be found at
https://mybinder.org/v2/gh/binder-examples/julia_python/master). Another
similar project which is also very popular is nbviewer (found at
https://nbviewer.org/) which renders the notebook (or set of notebooks) as a
static HTML web page and generates a shareable static link for the notebook.

https://code.visualstudio.com/Download
https://marketplace.visualstudio.com/items?itemName=ms-toolsai.jupyter
https://github.com/jupyter-xeus/xeus-cling
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://mybinder.org/
https://mybinder.org/v2/gh/binder-examples/julia_python/master
https://nbviewer.org/

Language Acquisition – A Universal Curricula

When learning a programming language, there are hundreds of possible
factors to consider – hence, it is important to narrow down the most important
language aspects based on the type of language (dynamic/duck/static typed,
explicit/implicitly typed, functional, procedural, object-oriented, imperative,
reactive, etc.), its applications, and the goals of using the language. However,
there are numerous factors that are universal to nearly all programming
languages – these can be used to learn the basics of the language and
scaffolded to learn more advanced aspects. While a variety of permutations is
possible, the following is one of the most applicable orders of learning syntax
and is highly recommended before tackling more difficult problems:

1. Compiling the language by hand (in a terminal)/running the interpreter
2. Common/primitive data types (int, float, char, …) OR mutable/immutable

type declarations (let, var, …), acceptable variable names/naming rules
3. Console I/O: printing variables with and without type formatting (print

vs. printf vs. println, …), user input (scanf, input, readline/readkey, …)
4. Arithmetic operators (+, -, *, /, %, **, …), type casting (float), literals,

math functions
5. Assignment operators (+=, ++, --, /=, …)
6. Comments and block comments (//, /*, #, (*, """, …)
7. Conditional statement syntax (if, else, elif, unless, …)
8. Conditional operators (<, >, != or <>, ==, …), equals(), language scope
9. Logic operators (&& or AND, || or OR, ! or NOT, …)
10. Nested/compound conditionals (switch), the ternary operator (?:)
11. String functions (comparing strings, substring, insert, …)
12. Random generation (int and float)
13. Loops (for, foreach, while, do-while, …), break, continue
14. Functions/methods, parameters, recursion, anonymous functions,

passing by reference vs. by value (ref, out, &, *, this, …)
15. Arrays and matrices (multidimensional/jagged array), enums, tuples
16. Major keywords (static, const, import/using, namespace, …)
17. Error handling (try-catch, raise/throw, creating Exceptions)
18. Working with files, binary file I/O (write, read, append, create, …)
19. IF APPLICABLE (if included in the language):

a. Classes (structs/unions) and object declaration, destructors,
namespaces/packages, class accessors (public/private/protected)

b. Inheritance, function/argument/operator overloading/overriding,
abstraction (virtual, interface, abstract, friend), polymorphism

c. Generic typing/templates (classes and functions), default(T)
d. Pointers, function pointers, void pointer, etc., sizeof/typeof

20. Importing libraries/namespaces from files and/or DLLs
21. Working with time (calculating date/times, measuring runtime)
22. Importing libraries using package managers (pip, NuGet, conda, Git, …)
23. Bitwise and bitwise assignment operators (&=, !, ^, |, &, <<, &&=, …)
24. Common data structures (vectors, list, dictionary, set, ArrayList,

HashMap/table, stack, etc.), hashing, and iterators (if applicable)
25. ADVANCED, IF APPLICABLE/DESIRED (any order):

a. Indexing, slicing, and pattern matching
b. Memory management and dynamic memory allocation
c. Preprocessor directives, scope, headers, and operators
d. Conditional compilation directives, symbols, macros, typedef
e. Getter and setter shorthand
f. Prototyping, subroutines
g. Serialization
h. Variadic functions
i. Null operators (null coalescing, null forgiving, optional chaining)
j. Ranges, map/filter, reduce, closures (functional programming)
k. Fields, records, tables, databases, and other functional types
l. Static members and static classes
m. GUI development (if possible/useful, including video games)
n. Abstract data structures
o. Sorting algorithms
p. Parallel processing, multithreading, asynchronous functions,

defer, mutex, semaphores, routines/channels, yield
q. Networking methods (TCP/UDP messages, web servers, hosting a

web page, etc.)
r. Encryption and security methods

This curriculum is very similar to many academic classes, textbooks, online
learning platforms, tutorial series, among others. By learning these specified
language features in the given order, it is much easier to maximize both the
learning efficiency (in terms of both speed and degree of comprehension) and
the ability to learn new language concepts in the given programming language
and others due to the scaffolded approach. The learning path also covers most
modern languages, including the skills necessary for everyday application, as
the listed concepts are present (either by the language design, standard
library, or extensions) in nearly every programming language – not including
some esoteric and/or code golfing languages, however, as these are limited
by design. As well, this guide can be applied to the development of a language
when teaching compiler design/grammars, as these should almost always be
possible in a language intended for everyday use and/or universal application.

	Jupyter & Computational Essays
	Jupyter Lab & Jupyter Notebooks
	Getting Started with Jupyter Notebooks
	Installing a Language Kernel
	Writing Notebooks
	Writing Notebooks in VS Code
	The Binder Project and NBViewer

	Language Acquisition – A Universal Curricula

