
JCrypt: Towards Computation over Encrypted Data

Yao Dong
Rensselaer Polytechnic

Institute
Troy, New York

dongy6@rpi.edu

Ana Milanova
Rensselaer Polytechnic

Institute
Troy, New York

milanova@cs.rpi.edu

Julian Dolby
IBM Thomas J. Watson

Research Center
Yorktown Heights, New York

dolby@us.ibm.com

ABSTRACT
Cloud computing allows clients to upload data and com-
putation to untrusted servers, which leads to potential vi-
olations to the confidentiality of client data. We propose
JCrypt, a static program analysis which transforms a Java
program into an equivalent one, so that it performs com-
putation over encrypted data and preserves data confiden-
tiality. JCrypt minimizes computation over encrypted data.
It consists of two stages. The first stage is a type-based
information flow analysis which partitions the program so
that only sensitive parts need to be encrypted. The second
stage is an inter-procedural data-flow analysis, similar to the
classical Available Expressions. It deduces the appropriate
encryption scheme for sensitive variables. We implemented
JCrypt for Java and showed that our analysis is effective
and practical using five benchmark suites. JCrypt encrypts
a significantly larger percentage of benchmarks compared to
MrCrypt, the closest related work.

CCS Concepts
•Security and privacy → Information flow control;
•Theory of computation → Program analysis;

Keywords
Information Flow, Encryption Scheme Inference, Polymor-
phism, Data Confidentiality, Security

1. INTRODUCTION
With the booming of internet-based business, the total

number of applications developed over the Cloud has in-
creased dramatically over the past few years. These appli-
cations have created a new challenge. Cloud-based applica-
tions usually outsource the computation and data storage to
third parties such as Amazon EC2 and S3 which can lead
to violations of the confidentiality and integrity of sensitive
data.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’16, August 29-September 02, 2016, Lugano, Switzerland
c© 2016 ACM. ISBN 978-1-4503-4135-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2972206.2972209

One approach to address this problem is to encrypt sensi-
tive data before sending to the cloud server and perform all
computation (application functionality) back on the trusted
client side [5, 16]. However, this approach is not suitable
for all kinds of applications. Furthermore, it is difficult to
transform an existing server-side application into this form.
In addition, this approach gives away the advantage of cloud
computing. A theoretical solution is fully homomorphic en-
cryption (FHE) [6]. This cryptographic scheme makes it
possible to compute arbitrary functions over encrypted data
on the server. Unfortunately, current implementations of
fully homomorphic encryption schemes are prohibitively ex-
pensive by orders of magnitude [3, 7, 8]. Furthermore, FHE
“is a theoretical achievement” but putting it into practice re-
quires design of circuits specific to the algorithm [23]. There-
fore, execution of arbitrary programs over encrypted data
remains an open problem.

Another approach is to encrypt data using specialized en-
cryption schemes. Some specialized encryption schemes are
more efficient for specific computations over encrypted data.
Therefore, if some data is only involved in certain opera-
tions (e.g., addition), it can be encrypted using a special-
ized (and efficient) encryption scheme as in CryptDB [22]
and MrCrypt [26]. Shah et al. [25] conjectured that program
partitioning [2, 27] and other program analysis techniques
can help (1) minimize computation on the untrusted server,
(2) deduce efficient encryption schemes (for data that is in-
volved only in operations supported by a given scheme) and
(3) deduce re-encryption points (for data that is involved in
multiple operations, not all supported by any given scheme).

We propose novel program analysis techniques to address
this problem. Specifically, we present JCrypt, a type-based
approach that automatically analyzes and transforms a Java
program into an equivalent one that performs secure compu-
tations over encrypted data on an untrusted server. Given
a Java program in which the user has marked certain vari-
ables as sensitive, JCrypt deduces the appropriate encryp-
tion schemes for the sensitive variables based on the opera-
tions performed on those variables. Like CryptDB [22] and
MrCrypt [26], JCrypt chooses more efficient schemes instead
of fully homomorphic encryption scheme to encrypt sensitive
data.

JCrypt uses explicit information flow analysis and para-
metric polymorphism to minimize encryption. The infor-
mation flow analysis guarantees that the sensitive source
propagates to as few variables as possible. Parametric poly-
morphism enables context-sensitive methods which is instru-
mental for precision. In addition, JCrypt uses an Avail-

able Expressions-like analysis to infer what kind of encryp-
tion scheme (perhaps more than one) is needed of sensitive
sources; this helps minimize costly conversions between en-
cryption schemes.

There are two stages of analysis in JCrypt. The first stage
is information flow analysis. It partitions the variables in the
program into two parts: sensitive variables, which must be
encrypted, and cleartext ones which may remain in cleart-
ext. The key insight is that if there is information flow from
the user-provided sensitive data (i.e., the sources) to a vari-
able, then this variable must be encrypted. Conversely, if
there is no flow from sensitive data to a variable, then this
variable and its operations may remain in cleartext form.
JCrypt maximizes the part that remains in cleartext.

The second stage is data-flow analysis where JCrypt deter-
mines which encryption schemes should be used to encrypt
sensitive data according to the operations performed on the
variables. One efficient encryption scheme only supports
one specific operation, such as addition, equality check or
order comparison. If the same data is involved in multiple
operations, a decryption and re-encryption process, which
we call conversion, will be needed. JCrypt can reduce and
even avoid such conversions through inter-procedural data-
flow analysis. The key idea is that if there is no definition
of a variable between two different operations, then there
is no need of conversion at the second operation. The ap-
proach is that we can provide the variable with two versions
of ciphertext which are encrypted by the two corresponding
encryption schemes.

JCrypt requires annotations only on sources. Once the
sources are marked in a program, JCrypt performs com-
pletely automatic analysis without any input from the user.
We have implemented JCrypt for Java programs and evalu-
ated it on five sets of benchmarks, which include 18 general
Java programs and 35 MapReduce programs. The MapRe-
duce benchmarks are highly relevant for cloud computing.
The experimental results show that our approach is effec-
tive: JCrypt can identify encryption schemes for a large
number of programs (29 out of 35 MapReduce benchmarks)
to perform operations on encrypted data without requiring
conversions.

In summary, we make the following contributions:

• JCrypt, a novel type-based analysis. It combines in-
formation flow analysis with cryptography towards the
problem of running computations over encrypted data.
The advantage of information flow analysis is that it is
not necessary to encrypt all data in a program. This
can save the cost of encrypted computation without
hurting security.

• JCrypt is context-sensitive, which allows for the same
method to be applied on encrypted values and on clear-
text values.

• JCrypt leverages data-flow analysis to minimize con-
versions between different encryption schemes.

• JCrypt handles full Java, including standard object-
oriented features unlike prior work.

• Publicly available implementation and evaluation of
JCrypt.

The remainder of the paper is structured as follows. Sect. 2
gives an overview of JCrypt. Sect. 3 describes the infor-

1 public class Data {
2 poly int d;
3 poly int get(poly Data this) {
4 if (this.d < 0)
5 this.d = this.d + 1;
6 return this.d;
7 }
8 void set(poly Data this, poly int p) {
9 this.d = p;

10 }
11 }
12 public class Example {
13 public void main() {
14 sensitive Data ds = new Data();
15 sensitive int s = ...; // sensitive source
16 ds.set(s);
17 sensitive int ss = ds.get();
18 clear Data dc = new Data();
19 clear int c = ...;
20 dc.set(c);
21 clear int cc = dc.get();
22 ...
23 }
24 }

Figure 1: A sample Java program.

mation flow analysis, and Sect. 4 describes the data-flow
analysis. Sect. 5 presents the implementation and experi-
mental results. Sect. 6 discusses related work, and Sect. 7
concludes.

2. OVERVIEW
This section provides an illustrative example and gives an

overview of JCrypt. There are two stages of analysis. The
first stage is information flow analysis where JCrypt deter-
mines which variables should be marked as sensitive. Es-
sentially, this stage partitions the variables in the program
into two parts: sensitive variables, which must be encrypted,
and cleartext ones which may remain in cleartext. Consider
the program in Fig. 1. Only variable s of line 15 in main is
marked sensitive by the user, meaning that it contains sen-
sitive information and must be manipulated in encrypted
form. Since there is information flow from s to ss, the vari-
able ss becomes sensitive. Variable c is clear and cc is clear
as well. Note that the method set and get are polymorphic,
as they operate over a sensitive argument at line 16, and
over a clear argument at line 20. In order to preserve con-
fidentiality, s and ss must be encrypted while c and cc may
remain in cleartext. More details about our information flow
analysis appear in Sect. 3.

The second stage is encryption analysis where JCrypt de-
termines which encryption schemes should be used to en-
crypt sensitive variables. For example, variable s flows to
field d which undergoes a comparison operation in line 4.
Therefore s should be encrypted by an order-preserving en-
cryption scheme (OPE) which supports comparisons over
encrypted data (but does not support addition or multipli-
cation). In line 5, d is incremented by 1 so we should use
an additively homomorphic encryption scheme (AH) which
allows for the addition operation (but does not allow for

1 public class Data {
2 int d;
3 int d OPE, d AH;
4 int get Sen(Data this) {
5 if (this.d OPE < 0)
6 this.d AH = this.d AH + 1;
7 return this.d AH;
8 }
9 void set Sen(int[] p) {

10 this.d OPE = p[0];
11 this.d AH = p[1];
12 }
13 int get(Data this) {
14 if (this.d < 0) this.d = this.d + 1;
15 return this.d;
16 }
17 void set(int p) { this.d = p; }
18 }
19 public class Example {
20 public void main() {
21 Data ds = new Data();
22 int[] s = ...; // s[0] is OPE and s[1] is AH
23 ds.set Sen(s);
24 int ss = ds.get Sen();
25 Data dc = new Data();
26 int c = ...;
27 dc.set(c);
28 int cc = dc.get();
29 ...
30 }
31 }

Figure 2: The transformed program. Methods
get Sen and set Sen are the sensitive versions of get
and set. The array s has two elements which are the
ciphertext encrypted by the two encryption schemes
(OPE and AH). Fields d OPE and d AH store the two
versions of the encrypted data.2

comparison or multiplication). It is worth noting that the
same data in d is involved in two different operations. A
straight-forward approach would encrypt s and d using a sin-
gle encryption scheme. However, no matter which encryp-
tion scheme we use to encrypt the data, we must decrypt
the ciphertext and re-encrypt it using the other scheme. We
call this a conversion or re-encryption. Our goal is to mini-
mize and even completely eliminate conversions because the
re-encryption process is expensive. The key observation is
that in this case, we can avoid conversion if we encrypted
the value of sensitive s by both OPE and AH on the se-
cure client end and then send the two versions of ciphertext
to the untrusted server. This is possible because the new
value of d obtained after the addition in line 5 is not needed
for the comparison. Or in other words, the original OPE-
encrypted value of sensitive input s is available at line 4.
The program will choose the OPE version at line 4 and the
AH version at line 5 without any conversion. We have de-
veloped a data-flow analysis, inspired by classical Available
expressions analysis, to perform this task. The details ap-
pear in Sect. 4.

After the two stages of analysis, JCrypt transforms the

original program in Fig. 1 into a functionally equivalent one
which performs computation entirely over encrypted data
using only efficient encryption schemes. The transformed
program is shown in Fig. 2.

There are two notable parts in the transformed program
of Fig. 2. The first one is that we have two versions of
method set and get. The encrypted versions in line 4 and
9 are necessary to compute over the encrypted data of sen-
sitive source s. The cleartext versions in line 13 and 17
remain the same as in Fig. 1 which are used to compute
over the cleartext data in variable c. The merit of the clear-
text version is that it reduces the computation overhead:
first, it avoids unnecessary encryption (e.g., if set had only
the encrypted version, encryption of the cleartext c becomes
necessary), and second, computation over cleartext is more
efficient than computation over encrypted values (c does not
require encryption and can be operated in cleartext). Corre-
spondingly, we have two versions of field d. The encrypted
version in line 3 stores the ciphertext data, which is used
in encrypted versions of methods get Sen and set Sen. The
clear version in line 2 stores the cleartext data which is used
in the clear versions of those methods. The second notable
part is that we have two versions of encrypted field d. The
OPE version d OPE is used for comparison in line 5 while
the AH version d AH is used for addition in line 6. There-
fore, no conversion is required for the encrypted data at the
two different operations.

As in CryptDB [22], we use 4 efficient encryption schemes:
(1) RND: a randomized encryption scheme for variables not
used in any operations; (2) AH: an additively homomorphic
encryption scheme for variables only used in addition oper-
ations; (3) DET: a deterministic encryption scheme for vari-
ables involved in equality checking; and (4) OPE: an order-
preserving encryption scheme for variables used in compar-
ison operations.

3. INFORMATION FLOW TYPE SYSTEM
This section describes the information flow type system

and type inference of JCrypt. Given a program where a set
of variables are marked as sensitive by the user (i.e, a set of
sources), the system automatically infers types for the rest
of the variables aiming to maximize the number of cleartext
variables.

This type system is built upon our previous work on taint
analysis for Android and the DFlow/DroidInfer system [12].
Both DFlow/DroidInfer and JCrypt are instances of our
framework for inference and checking of pluggable types [9,
18], which we have used to define and implement many prac-
tical type-based analyses [9, 13, 10, 12].

There are important differences. DFlow/DroidInfer takes
a set of sources and sinks and either types the program,
which guarantees the absence of explicit flow from sources to
sinks, or conversely, issues type errors that signal potential
flow from sources to sinks. In contrast, in JCrypt there are
no sinks. The goal of the information flow is to propagate
the sensitive sources minimally, affecting as few variables
as possible, thus maximizing the cleartext portion of the
program. Sect. 3.3 states the delta to DroidInfer that is
necessary to make this work.

2The types of all sensitive variables are not int in the real program
since variables holding ciphertext could be any type depending on
specific Java implementation of encryption schemes. The common
cases are byte[] and BigInteger. We use int here for brevity.

cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y | x = y.f statement

| y.f = x | x = y.m(z)
t ::= q C qualified type
q ::= sensitive | poly | clear qualifier

Figure 3: Syntax. C and D are class names, f is a
field name, m is a method name, and x, y, and z
are names of local variables, formal parameters, or
parameter this. For simplicity, we assume all names
are unique.

The section begins with the type qualifiers (Sect. 3.1) and
proceeds to define the typing rules (Sect. 3.2) and the infer-
ence analysis (Sect. 3.3). To keep the paper self-contained,
we have included some description similar to [12].

3.1 Type Qualifiers
As it is typical for type-based approaches, each variable

is typed by a type qualifier. There are three qualifiers: sen-
sitive, clear, and poly.

• sensitive: A variable x is sensitive, if there is flow from
a sensitive source to x. The sensitive sources are a set
of initial variables that the client marked as sensitive
and these values should be in encrypted form.

• clear: A variable x is clear, if there is no flow from any
sensitive sources. A clear variable holds a cleartext
value.

• poly: The polymorphic qualifier is used to achieve con-
text sensitivity. It is interpreted as sensitive in some
contexts and as clear in other contexts.

The subtyping relation between the qualifiers is

clear <: poly <: sensitive

where q1 <: q2 denotes q1 is a subtype of q2. For example,
it is allowed to assign a clear variable to a poly or sensitive
one, but it is not allowed to assign a sensitive variable to a
poly or clear one.

3.1.1 Context Sensitivity
JCrypt expresses context sensitivity using the polymor-

phic type qualifier, poly, and viewpoint adaptation [4]. The
concrete value of poly is interpreted by the viewpoint adap-
tation operation. Viewpoint adaptation of a type q′ from the
viewpoint of another type q, results in the adapted type q′′.
This is written as q� q′ = q′′. Viewpoint adaptation adapts
fields, formal parameters, and method return values from
the viewpoint of the context at the field access or method
call. JCrypt defines viewpoint adaptation below:

� sensitive = sensitive
� clear = clear

q � poly = q

The underscore denotes a “don’t care” value. Qualifiers sen-
sitive and clear do not depend on the viewpoint (context).

(tnew)

Γ(x) = qx q <: qx

Γ ` x = new q C

(tassign)

Γ(x) = qx Γ(y) = qy qy <: qx

Γ ` x = y
(twrite)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qx <: qy � qf

Γ ` y.f = x

(tread)

Γ(y) = qy typeof (f) = qf Γ(x) = qx qy � qf <: qx

Γ ` x = y.f

(tcall)

typeof (m) = qthis, qp → qret Γ(y) = qy Γ(x) = qx Γ(z) = qz
qy <: qi � qthis qz <: qi � qp qi � qret <: qx

Γ ` x = y.mi(z)

Figure 4: Typing rules for information the flow type
system. Function typeof retrieves the JCrypt types
of fields and methods, Γ is a type environment that
maps variables to one of clear, poly or sensitive. Callsite
qualifier qi is the context of adaptation at call site i.

Qualifier poly depends on the viewpoint: e.g., if the view-
point (context) is sensitive, then poly is interpreted as sensi-
tive.

The type of a poly field f is interpreted from the viewpoint
of the receiver at the field access. If the receiver x is sensitive,
then x.f is sensitive. If the receiver x is clear, then x.f is clear.

The type of a poly parameter or return value is interpreted
from the viewpoint of qi, the context at the method call.
Consider the example in Fig. 1, where method set is typed
as follows:

void set(poly int p)

This enables context sensitivity because set can take as input
a sensitive int as well as a clear one. poly is interpreted as
sensitive at callsite 16, and as clear at callsite 20.

3.2 Typing Rules
We define our typing rules over a syntax in “named form”

where the results of field accesses, method calls, and instan-
tiations are immediately stored in a variable. The syntax is
shown in Fig. 3. Without loss of generality, we assume that
methods have parameter this, and exactly one other formal
parameter. The JCrypt type system is orthogonal to (i.e.
independent of) the Java type system, which allows us to
specify typing rules over type qualifiers q alone.

The typing rules are defined in Fig. 4. Rules (tnew) and
(tassign) enforce the expected subtyping constraints. The
rules for field access, (tread) and (twrite), adapt field f from
the viewpoint of receiver y and then enforce the subtyping
constraints. Recall that the type of a poly field f is inter-
preted in the context of the receiver y. If the receiver y is
sensitive, then y.f is sensitive. If the receiver y is clear, then
y.f is clear.

The rule for method call, (tcall), adapts formal parame-
ters this and p and return value ret from the viewpoint of
callsite context qi, and enforces the subtyping constraints
that capture flows from actual arguments to formal param-
eters, and from return value to the left-hand-side of the call

assignment.
The callsite context qi is any of {sensitive, poly, clear}. Con-

sider the example in Fig. 1. At callsite 17, q17 is sensitive
and q17 � poly is interpreted as sensitive. The following con-
straints generated at callsite 17 are satisfied3:

ds <: q17 � poly q17 � poly <: sensitive

At callsite 21, q21 is clear and q21 � poly is interpreted as
clear. Therefore, the constraints at callsite 21 are satisfied:

dc <: q21 � poly q21 � poly <: clear

We compose JCrypt with ReIm, a reference immutability
type system [13]. This is necessary to overcome known issues
with subtyping in the presence of mutable references [1, 24].
If the left-hand-side of an assignment (explicit or implicit)
is immutable according to ReIm, we enforce a subtyping
constraint; otherwise, we enforce an equality constraint. For
example, at (tassign) x = y, if x is immutable, i.e. x is not
used to modify the referenced object, we enforce qy <: qx;
otherwise, we enforce qy = qx. The more variables are proven
immutable, the more subtyping constraints there are, and
hence, the more precise JCrypt is [19].

Method overriding is handled by the standard constraints
for function subtyping. If n overrides m, we require typeof (n)
<: typeof (m) and thus

(qthisn , qpn → qretn) <: (qthism , qpm → qretm)

This entails qthism <:qthisn , qpm <:qpn , and qretn <:qretm .
The type system guarantees that there is no explicit flow

from a sensitive variable to a cleartext one. Soundness is ar-
gued exactly as in [11]. We focus on explicit flows because it
enables lightweight and efficient analysis. Furthermore, im-
plicit flows are rarely seen in our benchmarks. The only re-
lated work in this space that we are aware of, MrCrypt [26],
considers explicit flows as well.

3.3 Type Inference
Given a set of sources, that is, a set of sensitive variables,

type inference derives a valid typing, i.e. an assignment from
program variables to type qualifiers that type checks with
the typing rules in Fig. 4. Unfortunately, there are many
valid typings. For example, one trivial (and completely use-
less) typing assigns sensitive to every variable in the pro-
gram. We derive a typing that maximizes the number of
clear variables.

The inference first computes a set-based solution S, which
maps variables to sets of potential type qualifiers. Then it
uses method summary constraints, a technique that refines
the set-based solution to derive a valid typing.

3.3.1 Set-Based Solution
The set-based solution is a mapping S from variables to

sets of qualifiers. For instance, if S(x) = {sensitive, poly},
that means variable x can be sensitive or poly, but not clear.
Programmer-annotated sensitive variables (i.e., the sources)
are initialized to the singleton set {sensitive}. Fields f are
initialized to S(f) = {clear, poly}. All other variables and
callsite contexts qi are initialized to the maximal set of qual-
ifiers, i.e. S(x) = {sensitive, poly, clear}.

The inference then creates constraints for all program
statements according to the typing rules in Fig. 4. It takes

3For brevity and clarity, we omit q when dealing with variables
from code examples, i.e., we write y instead of qy.

1 class Example {
2 static poly int min(poly int[] list) {
3 poly int m = list[0];
4 for (clear int i = 1; i < list.length; i++) {
5 if (list[i] < m) {
6 m = list[i];
7 }
8 }
9 return m;

10 }
11 public static void main(String[] args) {
12 sensitive int[] list1 = ...; // marked by user
13 clear int[] list2 = ...;
14 sensitive int min1 = min(list1);
15 clear int min2 = min(list2);
16 sensitive int ans = min1 + min2;
17 ...
18 }
19 }

Figure 5: Method summary constrains example.

into account the mutability of the left-hand-side of assign-
ments as discussed in the end of Sect. 3.2. The set-based
solver iterates over constraints c and removes infeasible qual-
ifiers from the set of variables in c [13]. Consider constraint
c: qy <: qx where S(y) = {sensitive} and S(x) = {sensitive,
poly, clear} before solving the constraint. The solver removes
poly and clear from S(x), because there does not exist a
qy ∈ S(y) that satisfies qy <: poly and qy <: clear. The solver
keeps removing infeasible qualifiers for each constraint until
it reaches a fixpoint.

3.3.2 Method Summary Constraints
Unfortunately, the set-based solver reaches fixpoint before

it has removed all infeasible qualifiers, and in general we
cannot derive a typing from that fixpoint solution. There-
fore, we derive additional constraints called method sum-
mary constraints to remove additional infeasible qualifiers.
The algorithm for generating and solving method summary
constraints is described in detail in [11]. Below, we give the
intuition.

The method summary constraints “connect” the formal
parameter to the return value of a method. These summary
constraints are then instantiated at call sites to connect the
actual argument to the left-hand-side of the call assignment.
Consider the min method in Fig. 5. Based on the typing
rules in Fig. 4, we have constraints list <: m and m <:
ret for statements at line 3 and 6, and line 9 respectively.
(In the following paragraph, we explain what happens with
the subscript operator list[] at these statements.) Due do
transitivity, we have list <: ret, which implies q14 � list <:
q14 � ret. Therefore

list1 <: q14 � list <: q14 � ret <: min1

which gives us list1 <: min1. The inference adds list1 <:
min1, connecting the actual argument list1 and the left-hand
side min1 at callsite 14 and since list1 is sensitive, min1 be-
comes sensitive. Similarly, the inference adds list2 <: min2
at callsite 21. Such new constraints remove additional in-
feasible qualifiers: in the example, this constraint removes

1 public class Data {
2 int d;
3 int get(Data this) {
4 if (this.d < 0) {
5 this.d = this.d + 1;
6 }
7 return this.d;
8 }
9 void set(Data this, int p) {

10 this.d = p;
11 }
12 }
13 public class Example {
14 public void main() {
15 Data ds = new Data();
16 sensitive int s = ...;
17 ds.set(s);
18
19 int ss = ds.get();
20
21 Data dc = new Data();
22 int c = ...;
23 dc.set(c);
24
25 int cc = dc.get();
26 ...
27 }
28 }

thisget � d <: retget
∗thisget <: retget

p <: thisset � d
∗p <: thisset

s <: q17 � p

ds = q17 � thisset
ds <: q19 � thisget
q19 � retget <: ss
∗s <: ds
∗ds <: ss

c <: q23 � p

dc = q23 � thisset
dc <: q25 � thisget
q25 � retget <: cc
∗c <: dc ∗dc <: cc

S(d) = {poly}
S(retget) = {clear, poly, sensitive}
∗S(retget) = {poly, sensitive}
S(thisget) = {clear, poly, sensitive}
∗S(thisget) = {poly, sensitive}

S(p) = {poly, sensitive}

S(thisset) = {poly, sensitive}

S(ds) = {clear, poly, sensitive}
S(s) = {sensitive}
∗S(ds) = {sensitive}

S(ss) = {clear, poly, sensitive}
∗S(ss) = {sensitive}
S(dc) = {clear, poly, sensitive}
S(c) = {clear, poly, sensitive}

S(cc) = {clear, poly, sensitive}

Figure 6: The example to explain the type inference for information flow analysis. The first column is the
Java program. The second column shows the corresponding constraints the statement generates. Those
starting with * are the method summary constraints. The third column is the set-based solution. Those
starting with * are the solutions updated based on method summary constraints.

qualifiers clear and poly from S(list1).
Array access is handled as field access with the array com-

ponent treated as a special field, which is standard. The
“field”of array list1 is poly because sensitive values are stored
into the array. (This part is elided from the code in Fig. 5.)
The array reads at line 3 and 6 are handled by rule (TREAD)

resulting in constraint m <: list � poly which is m <: list.
When the algorithm terminates, the inference derives a

concrete typing by picking up the maximal element of S(x)
for each variable x according to the ranking clear > poly >
sensitive. This results in a typing, called a maximal typ-
ing [9], with a maximal number of clear variables [9]. This
works towards the goal of performing as much computation
on cleartext values as possible. We note that the ranking in
the opposite direction of subtyping and the argument that
this maximal typing type checks, are major differences with
DFlow/DroidInfer.

The value of a callsite qualifier qi is not selected according
to the above ranking because this could cause the program
not type checked. For example, for the method call x =
y.m(z), if S(z) = {sensitive}, then based on the constraint
z <: qi � p, only clear can be removed from S(p). The
inference result is that S(qi) = {sensitive, poly, clear} and
S(p) = {sensitive, poly}. We pick up the maximal element
poly as the type of p. But if we select clear for qi in the same
way, the constraint will become sensitive <: clear�poly which
fails to satisfy the subtyping relation.

For each callsite qualifier qi, we select the maximal value
from S(qi) which is able to satisfy all related constrains.
This is done after we have selected the types for all variables
as described above. Thus, in the above example, this maxi-
mal value is sensitive. In theory, it is possible that no value
exists for qi to satisfy all related constraints. For example,
suppose ret is poly and x is clear in constraint qi�ret <: x for
the same method call, then sensitive qi cannot satisfy this
constraint. One can handle this problem by relaxing method
call constraints to z <: qi1 � p and qi2 � ret <: x, i.e., qi1 and
qi2 need not be the same [20]. Fortunately, in the real world
programs rarely require this relaxation. In our experiments
qi always exists.

Our type inference can be useful in other type systems.
For example, EnerJ [24] has a similar goal to ours. En-
erJ gives each variable an approximate or precise type (an
approximate variable indicates that computation over that
variable can be done approximately, thus achieving energy
savings). It enforces precise <: approximate meaning that
a precise variable can flow to an approximate one, but an
approximate variable cannot flow to a precise one.

The programmer annotates certain variables as approxi-
mate; these are the sources. The goal is to minimize the
impact of approximate variables on the precise partition of
the program. Currently, EnerJ does not perform type in-
ference; therefore it burdens the programmer to manually
propagate the initial approximate annotations until the pro-

gram type checks. Our inference system can be applied di-
rectly to EnerJ, which would ease the annotation burden
and make EnerJ more practical.

3.3.3 Inference Example
Consider the example in Fig. 6 which is copied from Fig. 1.

The Data object at line 15 stores sensitive values, while the
one at line 21 stores cleartext values. Therefore, class Data
is polymorphic; it is interpreted as sensitive in the context
of the first Data object, and as clear in the context of the
second one.

At line 16, s is annotated as sensitive by the program-
mer. Therefore, line 17 forces p to be {poly, sensitive}, then
10 forces thisset to be {poly, sensitive} and d to be {poly}.
(Recall that field d is initialized to {poly, clear }; 10 re-
moves clear.) Now the set-based solver reaches a fixpoint
and no more infeasible qualifiers can be removed. If we
picked the maximal type from each set, the program will
not type-check.

Therefore, we use method summary constraints to remove
additional infeasible qualifiers. Since field d is poly, con-
straint thisget � d <: retget leads to method summary con-
straint thisget <: retget, which in turn leads to ds <: ss due to
the call at 19. Similarly, p <: thisset � d leads to p <: thisset,
which in turn leads to s <: ds due to the call at 17. Since
s is {sensitive}, ds is updated to {sensitive} and then ss is
updated to {sensitive} as well. Similarly, we can derive the
method summary constraints c <: dc and dc <: cc in line 27
and 28 from the constraints of line 23-26. We update all so-
lutions based on the new constraints. In the end we choose
the maximal typing from each set as the concrete type for
each variable. We can see that variable ss has a type of
sensitive which is expected since sensitive s propagates to it
through methods set and get in class Data. On the other
hand, variable cc remains clear since c is clear even though it
flows through the same methods. Callsite qualifiers q17 and
q19 are inferred as sensitive, and qualifiers q23 and q25 are
inferred as clear (for clarity these are not shown in Fig. 6).
The example demonstrates the importance of polymorphism
in our analysis.

After the information flow analysis of the first stage, every
variable has a type sensitive, poly or clear. All methods that
have poly parameters (include implicit parameter this) will
have two versions, one for computation over encrypted data
and the other for computation over cleartext data. The
transformed program is shown in Fig. 7.

4. DATA-FLOW ANALYSIS
This section describes the data-flow analysis for the sec-

ond stage of JCrypt. In this stage, JCrypt determines the
encryption scheme for each sensitive variable and minimize
conversions using an inter-procedural data-flow analysis.

As mentioned in the overview section, we can eliminate
conversions by encrypting the sensitive input data with sev-
eral efficient encryption schemes. The program would choose
the appropriate available version of ciphertext, as in Fig. 2.
In this example, the OPE version of the data is available at
line 5, that is, there are no operation expressions to change d
before the point. Similarly, the AH version is also available
at line 6. However, the addition expression at line 6 rede-
fines d which “kills” all other encryption schemes except AH.
Therefore, if there is any operations on d other than addition
afterwards, then conversions there will be unavoidable. Our

1 public class Data {
2 int d;
3 int d Sen;
4 int get Sen(Data this) {
5 if (d Sen < 0)
6 this.d Sen = this.d Sen + 1;
7 return this.d Sen;
8 }
9 void set Sen(int p) { this.d Sen = p; }

10 int get(Data this) {
11 if (this.d < 0) this.d = this.d + 1;
12 return this.d;
13 }
14 void set(int p) { this.d = p; }
15 }
16 public class Example {
17 public void main() {
18 Data ds = new Data();
19 int s = ...;
20 ds.set Sen(s);
21 int ss = ds.get Sen();
22 Data dc = new Data();
23 int c = ...;
24 dc.set(c);
25 int cc = dc.get();
26 ...
27 }
28 }

Figure 7: The partitioned program. The methods
get Sen and set Sen are the sensitive versions of get
and set. The field d Sen stores the encrypted data
which is used in sensitive versions of methods.

analysis is similar to classical Available Expressions data-
flow analysis. The difference is that our lattice elements are
sets of available encrypted data, rather than sets of available
expressions.

While the analysis in the first stage Sect. 3 is context-
sensitive and flow-insensitive, the analysis in the second
stage is context-insensitive and flow-sensitive. One way to
think of the analysis is as a classical intra-procedural Avail-
able Expression where the sensitive partition of the program
constitutes the one ”procedure”. Sect. 4.1 defines the stan-
dard components of the data-flow analysis. Sect. 4.2 illus-
trates the analysis with a detailed example.

4.1 Definitions
We say that an encrypted version (RND, AH, DET or

OPE) is available for variable x at program point p if there
are no operations to recompute the value of x in every path
from the entry node of the program to p. An assignment
statement x = y + z kills RND, DET and OPE for x and
generates AH for x. The expressions for equality checking
and comparison do not kill or generate any encryption ver-
sion since they do not change any involved variable. Ini-
tially, each variable x is initialized to all four versions S(x) =
{RND, AH, DET, OPE}. The transfer functions, defined
over the named form syntax from Sect. 3, are as follows:

• x = y ⇒ S(x) = S(y)

• x = y.f ⇒ S(x) = S(f)

• x.f = y ⇒ S(f) = S(f) ∩ S(y)

• x = y + z ⇒ S(x) = {AH}

• x = y.m(z) ⇒ S(p) = S(p) ∩ S(z), S(x) = S(retm)

retm and p are the return value and parameter of m. The
analysis is field-based, that is, field f is considered as a global
variable.

For local variables, the set of available encryption versions
is equal to the right-hand-side of the assignment. However,
for fields and method parameters, we use intersection to up-
date their sets because the analysis is context-insensitive.
Therefore, field writes and method calls are treated as stan-
dard merge points. There is no rule for this in these transfer
function since this is of reference type while our available en-
cryption analysis only apply to the data stored in a variable.

All other components of the data-flow analysis are as in
standard Available Expressions. That is, the direction of
the data-flow is Forward, and the meet operator is the in-
tersection, by virtue of Available Expressions being a Must
data-flow analysis.

JCrypt examines the operands of arithmetic operations. If
the corresponding encryption version is available then there
is no need for conversion. If it is not available, then we
cannot avoid the type conversion.

As we mentioned, the first stage of the analysis, i.e., the
information flow analysis in Sect. 3, partitions a program
into two parts, as in Fig. 7. The data-flow analysis is only
applied to the sensitive partition, that is, methods set Sen
and get Sen. The clear versions of methods set and get are
not analyzed. Therefore, partitioning a program not only
reduces the need for encryption (by marking a large number
of variables clear), but it also aids the data-flow analysis
by minimizing the part of the program that needs to be
processed.

4.2 Example
Consider the example of Fig. 7 which is partitioned based

on the result of the first stage analysis. The control flow
graphs are shown in Fig. 8. The figure does no include the
clear part, that is, variable dc, c and cc and method set
and get. The initial value for the entry point of main is a
map of all local variables and fields to a set of all encryp-
tion schemes, that is S(ds) = S(s) = S(ss) = {RND, AH,
DET, OPE}. There is no fields in class Example. Block n1

and n2 do not modify the data-flow value. The call-entry of
set Sen has an initial value for its local variable p and field
d Sen, and S(p) is updated by the intersection of its ini-
tial set and the set of argument s according to the transfer
function. Here the set keeps unchanged. Similarly, the call-
entry flow value of get Sen is S(d Sen) = {RND, AH, DET,
OPE}. Note here, if the previous method set Sen modifies
the set of field d Sen, then the value here should have the
same change since fields are considered global for the whole
program. Block n5 changes the set of d Sen to {AH} based
on the transfer function for addition operation. At block n6

we intersect the two sets obtained from the two paths and
get S(d Sen) = {AH}. The return value propagates to ss at
call site c2 which forces S(ss) ={AH}. At block n4 we check
if OPE is available for the comparison. Similarly, we check
the availability of AH at block n5. Both of them are avail-
able, hence the program does not require any conversion to
execute over encrypted data.

main()

ds	=	new	Data()

s	=	…

ds.set_Sen(s)

ss =	ds.get_Sen()

exit

set_Sen(p)

d_Sen =	p

exit

get_Sen()

if	(d_Sen <	0)

d_Sen =	d_Sen +	1

return	d_Sen

S(ds)=S(s)=S(ss)={RND,AH,DET,OPE}

S(ds)=S(s)=S(ss)={RND,AH,DET,OPE}

S(ds)=S(s)=S(ss)={RND,AH,DET,OPE}

S(ds)=S(s)=S(ss)={RND,AH,DET,OPE}

S(ds)=S(s)={RND,AH,DET,OPE}
S(ss)={AH}

S(p)=S(d_Sen)={RND,AH,DET,OPE}

S(p)=S(d_Sen)={RND,AH,DET,OPE}

S(d_Sen)={RND,AH,DET,OPE}

S(d_Sen)={RND,AH,DET,OPE}

S(d_Sen)={AH}

S(d_Sen)={RND,AH,DET,OPE}

S(d_Sen)={AH}

!"

!#

$"

$#

!%

!&

!'

!(

!)

Figure 8: The control flow graphs annotated with
data-flow values.

Suppose the piece of code of line 5 and 6 in Fig. 7 becomes
a loop instead of a condition as follows:

while (this.d < 0) {
this.d = this.d + 1;
}

Then a conversion is necessary since there will be a control
flow from the addition statement back to the condition so
that OPE is no longer available at the comparison.

5. EXPERIMENTS
We built the first stage analysis of JCrypt in our type

inference and checking framework [18]. Using the frame-
work, programmers provide parameters to instantiate their
own type system. Then the framework infers the “best” typ-
ing. We have instantiated several type systems and their
corresponding inferences [13, 9, 17, 10, 12]. Our framework
includes two front-ends. One takes as input the Java source
code while the other takes the Jimple code transformed by
Soot. JCrypt uses the Soot-based front-end. We built the
second stage analysis of JCrypt on top of a general-purpose
inter-procedural analysis framework for Soot [21]. The call
graph is built by the SPARK engine [14] in Soot with a
context-insensitive pointer analysis. The framework pro-
vides program representations for Soot’s Jimple IR which
is compatible with our checker framework used in the first
stage analysis.

The work flow of JCrypt is shown in Fig. 9. First, users
mark certain variables as sensitive sources in the Java pro-
gram to be analyzed. Next, the JCrypt information flow
analysis module takes as input the compiled Java class files
and outputs the intermediate result showing the inferred
type (sensitive, poly or clear) for each variable. This mod-
ule consists of two components: (1) the JCrypt front-end
takes as input the Jimple files transformed by Soot and out-
puts the constraints generated according to the typing rules
in Fig. 4, and (2) the JCrypt type inference engine takes the
constraints and infers a valid typing for the analyzed pro-
gram. Then the transformer module utilizes the interme-
diate result to transform the original program into a parti-
tioned one as shown in Fig. 7. In the end, the data-flow anal-
ysis engine analyzes the transformed program to determine

JCrypt Front-End (Soot)

JCrypt Type Inference
Engine

Java Compiler

JCrypt Transformer

JCrypt Data-Flow
Analysis Engine

Java Program (.java)
with @Sensitive Source

Java Bytecode (.class)

Constraints

Intermediate Result
(Sensitive/Poly Variables)

Transformed Java
Bytecode (.class)

In
fo

rm
at

io
n

Fl
ow

 A
na

ly
si

s

Result
(Number of Conversions)

Figure 9: The work flow of JCrypt.

Benchmark #Line #Conversion #Conversion/100-line
bh 1136 8 0.7
bisort 355 0 0.0
em3d 467 0 0.0
health 569 0 0.0
mst 471 0 0.0
power 773 126 16.3
treeadd 200 0 0.0
tsp 563 12 2.1
voronoi 1003 4 0.4

Figure 10: Results on the JOlden benchmarks.
#Line shows the number of lines of the benchmarks,
including blank lines and comments. #Conversion
gives the number of conversions required by the
benchmarks. #Conversion/100-line shows the av-
erage number of conversions per 100 line of code.

encryption schemes for each sensitive variable and identify
conversions, if any. The source code of JCrypt is publicly
available at https://github.com/proganalysis/type-inference.

All experiments run on a MacBook Pro with IntelR© Core
i5 CPU @2.6GHz and 8 GB RAM. The software environ-
ment consists of Oracle JDK 1.7 and the Soot 2.5.0 nightly
build.

5.1 Benchmarks
We evaluate JCrypt on five benchmark suites which are

respectively listed in Fig. 10, 11, 12, 13 and 14. For each
benchmark, we list the number of source lines of code.

Java Olden (JOlden)4 is a benchmark suite of 10 programs
which implement different algorithms using the tree data
structure. If these programs are used on a server to provide
clients with computations, we can consider the values in
the tree nodes as sensitive. Therefore, we added sensitive
annotations on the data fields of the tree node classes. We
analyzed 9 of the 10 programs because we could not identify
meaningful sensitive data in the one remaining benchmark,
perimeter. This benchmark computes the total perimeter of
a region in a binary image by counting the number of tree
nodes which represent blocks of the image and there is no
data stored in tree nodes.

4https://github.com/farseerfc/purano/tree/master/src/jolden

Benchmark #Line #Conversion #Conversion/100-line
FFT 168 8 4.8
SOR 36 5 13.9
MonteCarlo 59 3 5.1
SparseMatMult 38 1 2.6
LU 283 9 3.2
ZXing 26171 297 1.1
jMonkeyEngine 5962 159 2.7
ImageJ 156 16 10.3
Raytracer 174 29 16.7

Figure 11: Results on the EnerJ benchmarks.

Benchmark #Line #Conversion #Conversion/100-line
L1 137 0 0.0
L2 148 0 0.0
L3 185 0 0.0
L4 141 0 0.0
L5 169 0 0.0
L6 139 0 0.0
L7 158 0 0.0
L8 170 1 0.6
L9 196 0 0.0
L10 245 0 0.0
L11 184 0 0.0
L12 218 0 0.0
L13 182 0 0.0
L14 183 0 0.0
L15 188 0 0.0
L16 134 0 0.0
L17 259 3 1.2

Figure 12: Results on the PIGMIX2 benchmarks.

Sampson et al. [24] propose EnerJ, a type system for en-
ergy efficient computation. EnerJ partitions the program
into a precise and an approximate components where the
approximate component can be processed more cheaply re-
alizing energy savings. They evaluate EnerJ by annotating
9 Java programs, which we refer to as ”the EnerJ suite.” The
authors of EnerJ explicitly annotated certain variables with
the maximal @Approx qualifier. We reuse these annotations
by replacing @Approx with sensitive.

The remaining three benchmark suites come from Mr-
Crypt [26]. They include the PIGMIX2 suite (17 programs),
the Brown suite (5 programs) and the PUMA suite (13 pro-
grams). These benchmarks are Hadoop MapReduce pro-
grams widely used in cloud computing [15]. Since clients
upload MapReduce programs and input data together to the
server, we consider all input data as sensitive. Each MapRe-
duce program has a map method that passes the input file
through a parameter of type org.apache.hadoop.io.Text. Hence,
we mark this parameter as the sensitive source.

5.2 Experimental Result
In our experiments, we aim to evaluate the benefits of

JCrypt. Specifically, we would like to answer two questions:
(1) How often can programs be executed over efficiently en-
crypted data without any conversions? (2) How many con-
versions does a program require when conversion cannot be
avoided?

We consider a decryption and re-encryption process as one
conversion. For example, the expression x < y needs two
conversions if S(x) = {AH} and S(y) = {AH}. Assuming
that only AH is available before the expression, x and y
each need one conversion from AH to OPE. In addition, we
count the number of conversions statically. For example, if
the above expression is inside a loop, we still count it as

Benchmark #Line #Conversion #Conversion/100-line
Grep 214 0 0.0
Benchmark1 113 0 0.0
Benchmark2 162 0 0.0
Benchmark3 855 4 0.5
Benchmark4 95 0 0.0

Figure 13: Results on the Brown benchmarks.

Benchmark #Line #Conversion #Conversion/100-line
Word Count 88 0 0.0
Inverted Index 126 0 0.0
Term Vector 187 0 0.0
Self Join 136 0 0.0
Adjacency List 157 0 0.0
K-Means 428 7 1.6
Classification 228 5 2.2
Histogram Movies 132 3 2.3
Histogram Ratings 115 0 0.0
Sequence Count 124 0 0.0
Ranked Inverted Index 127 0 0.0
Tera Sort 192 0 0.0
Grep 55 0 0.0

Figure 14: Results on the PUMA benchmarks.

two conversions no matter how many times the expression
is executed at run time.

JCrypt takes 109 seconds per benchmark on average. It
takes less than 2 minutes on 36 of the 53 benchmarks, and
between 2 and 3 minutes on 15 benchmarks. The 2 outliers
run in 5 and 9 minutes.

5.2.1 Results
The result on JOlden (Fig. 10) shows that 56% of the

programs (5 out of 9) do not require conversions. This
shows that JCrypt is applicable achieves very good result
on general-purpose Java programs. Except for one bench-
mark, power, which requires 126 conversions, the remaining
3 programs require only a few conversions (less than 3 per
100 lines).

All EnerJ benchmarks require conversion (Fig. 11). This
is because these programs are computationally intensive re-
quired to evaluate EnerJ from the point of view of power
saving. However, if we consider the size of each benchmark,
the number of conversions is relatively small (less than 17
per 100 lines).

The result on MapReduce is shown in Fig. 12, 13 and
14. 29 out of 35 benchmarks (83%) require no conversions.
A typical example of conversion is shown in Fig. 15 which
is from the benchmark Histogram Movies from the PUMA
suite. Here rating comes from an array of sensitive data.

1 ...
2 while (...) {
3 sumRatings += rating; // rating is sensitive
4 totalReviews++;
5 }
6 avgReview = sumRatings / totalReviews;
7 absReview = Math.floor(avgReview);
8 fraction = avgReview − absReview;
9 if (fraction < (division ∗ i)) {

10 outValue = absReview + division ∗ i;
11 }

Figure 15: A slice of program requiring conversions.

The addition operation makes S(sumRatings) = {AH}. The
type for the division 5 is not available at sumRatings / to-
talReviews; hence, a conversion from AH to the division en-
cryption version is necessary at line 6. Similarly, another
conversion from AH to OPE is also required at line 9 for
variable fraction.

We manually examined all conversions reported by JCrypt.
Our analysis result is optimal in the sense that the conver-
sions are unavoidable even if we had the most precise static
analysis. E.g., consider the conversion in Fig. 15. Our re-
sults show that for a significant percentage of programs data
is separable; therefore, these programs can benefit from ef-
ficient encryption schemes. Unfortunately, for an equally
significant percentage of programs, data is not separable. In
our future work, we will investigate program analysis and
partitioning techniques for efficient conversion.

5.2.2 Comparison with MrCrypt
To illustrate the benefit of our data-flow analysis, we com-

pare out result with MrCrypt on the three MapReduce bench-
mark suites, PIGMIX2, Brown and PUMA. MrCrypt infers
encryption schemes for input data in the program. If the
program performs multiple operations on the same data,
MrCrypt considers that the data requires fully homomorphic
encryption (FH). This has the same meaning as conversion
in JCrypt.

In MrCrypt, 66.7% of the programs (24 of 36) can be exe-
cuted without requiring FH. In JCrypt, 83% of the programs
(29 of 35) can be executed without conversion. The bench-
marks used in JCrypt are the same as in MrCrypt, except
for the Brown suite where 3 benchmarks may be different.
Among the common benchmarks, 5 need FH in MrCrypt
but no conversion in JCrypt.

For example, the two benchmarks L15 and L16 require
FH in MrCrypt because the sensitive data involves two op-
erations: equality checking and addition. The relevant piece
of code is as follows:

HashSet<Text> hash = new HashSet<Text>();
while (iter.hasNext()) {

List<Text> vals = Library.splitLine(iter.next(), ’ ’);
hash.add(vals.get(0));
}
for (Text t : hash) rev += Double.valueOf(t.toString());

The equality check is implicit from the hashset. JCrypt
results show that these two benchmarks do not need any
conversion because DET is available at hash.add and AH is
also available at the addition.

MrCrypt is not publicly available and we cannot compare
directly on the JOlden and EnerJ benchmarks. Based on the
paper [26], we can extrapolate that MrCrypt only works on
a functional subsets of Java programs, such as MapReduce.
In contrast, JCrypt can handle any Java programs.

In addition, MrCrypt is context-insensitive which could
lead to imprecise inference result. Consider the example
in Fig. 1 again. Just like the earlier discussion, MrCrypt con-
cludes that the program requires FH since the field i.nvolves
two operations (comparison and addition) in method get.

5We do not specify an encryption type for the division operation
in order to simplify our description. We can extend our system
with any other operation. For example, we can simply add a DIV
type for the division operation to the initial set and a transfer
function S(x) = {DIV} for statement x = y / z.

However, even if we remove the operations for the sensitive
data, MrCrypt would still get the same conclusion. Suppose
we modify the example of Fig. 1 as follows:

1 public class Data {
2 int d;
3 int get(Data this) {return this.d;}
4 void set(Data this, int p) {this.d = p;}
5 }
6 public class Example {
7 public void main() {
8 Data ds = new Data();
9 sensitive int s = ...; // sensitive source

10 ds.set(s);
11 sensitive int ss = ds.get();
12 Data dc = new Data();
13 clear int c = ...;
14 dc.set(c);
15 clear int cc = dc.get();
16 if (cc < 0) cc++;
17 }
18 }

We remove the if block from method get and add a similar
block to the end of method main. Now the program does
not require FH or conversion because it performs operations
only over clear data. However, due to MrCrypt is context-
insensitive, it detects flow from sensitive source to field d at
line 10, which flows to cc at line 15 by calling method get. In
the end, MrCrypt finds the two operations on cc and comes
to the conclusion that it needs FH to encrypt sensitive data.
In contrast, JCrypt is able to identify that cc is clear through
the first stage of information flow analysis and directly con-
cludes that the program does not require conversions, even
without the second stage of data-flow analysis.

6. RELATED WORK
JCrypt is related to MrCrypt [26], a system that pro-

vides secure computations over encrypted data on the cloud
server. MrCrypt statically analyzes Java programs and in-
fers the encryption type for each variable which is similar
to JCrypt. The key difference between these two systems
is that JCrypt performs analysis on arbitrary Java program
while MrCrypt handles only a small functional subset of
Java, such as MapReduce programs which require only a
small set of operations. Furthermore, JCrypt uses infor-
mation flow analysis and parametric polymorphism to min-
imize the computation of encryption, while MrCrypt has
to encrypt the entire program which results in a relatively
larger encryption overhead. Finally, JCrypt uses Available
Expressions analysis to avoid conversions so that it can han-
dle programs where more than one operations apply on the
same variable, while MrCrypt fails on such programs.

CryptDB [22] is another system that can peform compu-
tation over encrypted data. It analyzes SQL queries and
rewrites them to execute on SQL databases. CryptDB en-
crypts data using all necessary encryption schemes and stores
them in the database so that it can choose different encypted
data according to different operations. This is similar to
JCrypt for the cases where a program performs multiple op-
erations on the same sensitive data. However, like MrCrypt,
CryptDB is also limited to a specific application — database
queries, while JCrypt is applicable to any Java program.

Program partitioning techniques have been used to pro-
vide efficient computation in other domains. EnerJ [24] is a
type-based system that partitions a program into a precise
component and an approximate component. Computing on
approximate data is less expensive than computing on pre-
cise data. Therefore running the program can save energy at
some accuracy cost. Similarly to EnerJ, JCrypt partitions
the program based on information flow. One key difference
is that EnerJ requires significant amount of programmer-
provided annotations, while JCrypt automatically infers a
partition with a maximal number of cleartext variables.

Another work related to program partitioning is Swift [2],
an approach to partition a program into two parts, one run-
ning on the client and the other running on the server. The
difference between JCrypt and Swift is that Swift physically
isolates security-critical code from the untrusted environ-
ment to provide security, while JCrypt marks sensitive code
and encrypts the data so that the whole program can run on
the untrusted server. Further, Swift requires programmers
to use a security-typed programming language, Jif/split [27]
to write programs. This increases the burden on program-
mers and it may not be suitable for existing programs. In
contrast, JCrypt only requires a few annotations by the pro-
grammer to indicate sensitive sources.

7. CONCLUSIONS
We presented JCrypt, a system to provide data confiden-

tiality for programs running in an untrusted environment.
JCrypt performs two stages of analysis on Java programs to
minimize the encrypted computing and identify encryption
schemes for sensitive data. Our experiments show that the
approach is effective.

One limitation of our work is that JCrypt assumes that
library calls do not perform operations on encrypted data.
While this is largely the case for our benchmarks, which op-
erate on integer data, in general it may be unsafe. Another
limitation is that currently we do not measure overhead of
the encrypted version over the unencrypted one. At this
point our goal was to establish that program analysis en-
ables encryption for a large number of programs. We plan
to address these limitations in future work.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feed-

back on our work. This work was supported by NSF Award
CCF-1319384.

9. REFERENCES
[1] J. A. Bank, A. C. Myers, and B. Liskov.

Parameterized types for Java. In Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’97,
pages 132–145, New York, NY, USA, 1997. ACM.

[2] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 31–44, New York, NY,
USA, 2007. ACM.

[3] M. Cooney. IBM touts encryption innovation: New
technology performs calculations on encrypted data
without decrypting it. Network World, June 2009.

[4] W. Dietl and P. MÃijller. Universes: Lightweight
ownership for JML. Journal of Object Technology,
4(8):5–32, 2005.

[5] A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten. SPORC: Group collaboration using
untrusted cloud resources. In Proceedings of the 9th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, Berkeley, CA, USA,
2010. USENIX Association.

[6] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[7] C. Gentry. Computing arbitrary functions of encrypted
data. Commun. ACM, 53(3):97–105, Mar. 2010.

[8] C. Gentry and S. Halevi. Implementing Gentry’s
fully-homomorphic encryption scheme. In Proceedings
of the 30th Annual International Conference on
Theory and Applications of Cryptographic Techniques:
Advances in Cryptology, EUROCRYPT’11, pages
129–148, Berlin, Heidelberg, 2011. Springer-Verlag.

[9] W. Huang, W. Dietl, A. Milanova, and M. D. Ernst.
Inference and checking of object ownership. In
Proceedings of the 26th European Conference on
Object-Oriented Programming, ECOOP’12, pages
181–206, Berlin, Heidelberg, 2012. Springer-Verlag.

[10] W. Huang, Y. Dong, and A. Milanova. Type-based
taint analysis for Java web applications. In
Proceedings of the 17th International Conference on
Fundamental Approaches to Software Engineering -
Volume 8411, pages 140–154, New York, NY, USA,
2014. Springer-Verlag New York, Inc.

[11] W. Huang, Y. Dong, and A. Milanova. Type-based
taint analysis for Java web applications. Technical
report, Rensselaer Polytechnic Institute, Department
of Computer Science, 2014.

[12] W. Huang, Y. Dong, A. Milanova, and J. Dolby.
Scalable and precise taint analysis for Android. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages
106–117, New York, NY, USA, 2015. ACM.

[13] W. Huang, A. Milanova, W. Dietl, and M. D. Ernst.
Reim & ReImInfer: Checking and inference of
reference immutability and method purity. In
Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and
Applications, OOPSLA ’12, pages 879–896, New York,
NY, USA, 2012. ACM.

[14] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using SPARK. In Proceedings of the 12th
International Conference on Compiler Construction,
CC’03, pages 153–169, Berlin, Heidelberg, 2003.
Springer-Verlag.

[15] N. Liu, X. Yang, X. H. Sun, J. Jenkins, and R. Ross.
YARNsim: Simulating Hadoop YARN. In Cluster,
Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on, pages
637–646, May 2015.

[16] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud storage
with minimal trust. ACM Trans. Comput. Syst.,
29(4):12:1–12:38, Dec. 2011.

[17] A. Milanova and W. Huang. Dataflow and type-based
formulations for reference immutability. In 19th
International Workshop on Foundations of
Object-Oriented Languages, FOOL’12, 2012.

[18] A. Milanova and W. Huang. Inference and checking of
context-sensitive pluggable types. In Proceedings of
the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, FSE ’12,
pages 26:1–26:4, New York, NY, USA, 2012. ACM.

[19] A. Milanova and W. Huang. Composing polymorphic
information flow systems with reference immutability.
In Proceedings of the 15th Workshop on Formal
Techniques for Java-like Programs, FTfJP ’13, pages
5:1–5:7, New York, NY, USA, 2013. ACM.

[20] A. Milanova, W. Huang, and Y. Dong.
CFL-reachability and context-sensitive integrity types.
In Proceedings of the 2014 International Conference
on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and
Tools, PPPJ ’14, pages 99–109, New York, NY, USA,
2014. ACM.

[21] R. Padhye and U. P. Khedker. Interprocedural data
flow analysis in Soot using value contexts. In
Proceedings of the 2Nd ACM SIGPLAN International
Workshop on State Of the Art in Java Program
Analysis, SOAP ’13, pages 31–36, New York, NY,
USA, 2013. ACM.

[22] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidentiality
with encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 85–100, New York, NY,
USA, 2011. ACM.

[23] S. Rass and D. Slamanig. Cryptography for Security
and Privacy in Cloud Computing. Artech House, Inc.,
Norwood, MA, USA, 2013.

[24] A. Sampson, W. Dietl, E. Fortuna,
D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:
Approximate data types for safe and general
low-power computation. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11,
pages 164–174, New York, NY, USA, 2011. ACM.

[25] M. Shah, E. Stark, R. A. Popa, and N. Zeldovich.
Language support for efficient computation over
encrypted data. In Off the Beaten Track Workshop:
Underrepresented Problems for Programming Language
Researchers, Philadelphia, PA, January 2012.

[26] S. D. Tetali, M. Lesani, R. Majumdar, and
T. Millstein. MrCrypt: Static analysis for secure cloud
computations. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object
Oriented Programming Systems Languages &
Applications, OOPSLA ’13, pages 271–286, New York,
NY, USA, 2013. ACM.

[27] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers.
Untrusted hosts and confidentiality: Secure program
partitioning. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, SOSP
’01, pages 1–14, New York, NY, USA, 2001. ACM.

