Analysis 3 Review

notes taken by Christopher Hundt

from lectures by K. GowriSankaran MATH 354, McGill University, Fall 2004

Updated December 4, 2004

LEMMA (HÖLDER'S INEQUALITY):

Let a, b > 0; p, q > 1 be conjugate indices (i.e., $\frac{1}{p} + \frac{1}{q} = 1$). Then $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.

Theorem (Minkowski for integrals): Let $f, g: [0, 1] \to \mathbb{R}$ be continuous.

Then
$$\left(\int_0^1 |f+g|^p \, dx\right)^{1/p} \le \left(\int_0^1 |f|^p \, dx\right)^{1/p} + \left(\int_0^1 |g|^p \, dx\right)^{1/p}.$$

THEOREM (MINKOWSKI FOR SUMS): Let $(a_i), (b_i) \in l_p$.

Then
$$(a_j+b_j) \in l_p$$
 and $\left(\sum_{j=1}^{\infty} |a_j+b_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{\infty} |a_j|^p\right)^{1/p} + \left(\sum_{j=1}^{\infty} |b_j|^p\right)^{1/p}$.

DEFINITION: Fix a metric space (X, d) and a subset $A \subseteq X$. Then we say $z \in X$ is a **limit point** of A if there is a distinct sequence $x_n \in A$ such that $x_n \to z$.

DEFINITION: Let $A \subseteq X$. We call the **closure** of A in X, \overline{A} , $\overline{A} = A \cup \{z : z \text{ is a limit point of } A \text{ in } X.\}$

THEOREM: Let $A_1, A_2 \subseteq X$. Then $\overline{A_1 \cup A_2} = \overline{A_1} \cup \overline{A_2}$.

 $\begin{array}{l} \text{Remark: Let } A_1, A_2 \subseteq X.\\ \text{Then } \overline{A_1 \cap A_2} \subseteq \overline{A_1} \cap \overline{A_2}. \end{array}$

THEOREM: Let $y \in X$; $A \subseteq X$. Then y is a limit point of A iff $\forall \varepsilon > 0 \ B(y, \varepsilon) \cap A$ contains an element $\neq y$.

 $\begin{array}{ll} \text{COROLLARY: Let } A \subseteq X; \\ y \notin A. \\ \text{Then } y \in \overline{A} \iff \forall \varepsilon > 0 \ \exists x (\neq y) \in B(y, \varepsilon) \cap A. \end{array}$

DEFINITION: $A \subseteq X$ is closed in X if the closure of A in X is A.

THEOREM: Let F be the collection of all closed subsets (relative to X).

Then 1. $X, \emptyset \in F;$ 2. $A_1, \dots, A_n \in F \implies \bigcup_{j=1}^n A_j \in F;$ and 3. $A_i \in F \ \forall i \in I \implies \bigcap_{i \in I} A_i \in F.$

DEFINITION: If $X \setminus U$ is closed then U is **open**.

LEMMA: Let $V \subseteq X$. Then V is open iff $\forall x \in V \exists \varepsilon_x > 0$ such that $B(x, \varepsilon_x) \subseteq V$.

LEMMA: Let $A \subseteq X$. Then $\overline{\overline{A}} = \overline{A}$.

THEOREM: Let X_n be a countable set of countable sets. Then $\bigcup_n X_n$ is countable.

DEFINITION: We say that two sets X and Y have the same "size" if $\exists f : X \to Y$ such that f is 1-1 and onto. In this case we say X and Y have the same **cardinality** or **cardinal number**.

THEOREM: Let X be a non-void set. Then $\operatorname{card}(X) < \operatorname{card}(\mathcal{P}(X))$.

Theorem: $\mathbb R$ is not countable.

REMARK: Let $Y \subseteq X$. Then 1. $\forall y \in Y, \varepsilon > 0$ $B_Y(y, \varepsilon) = B_X(y, \varepsilon) \cap Y$; and 2. V is open (closed) in Y iff $\exists U$ open (closed) in X such that $Y \cap U = V$. DEFINITION: A set $A \subseteq B \subseteq X$ is said to be **dense** in B if $B \subseteq \overline{A}$. A is dense in X if $\overline{A} = X$.

DEFINITION: (X, d) is said to be **separable** if there is a countable dense subset of X.

DEFINITION: (X, d) is said to have a **countable base** (for open sets) if there exist V_1, V_2, \ldots open sets such that every open set of X is a union of V_n 's.

THEOREM: Let (X, d) be a metric space.

Then (X, d) is separable iff (X, d) has a countable base for open sets.

DEFINITION: $f : (X,d) \to (Y,\rho)$ is **continuous** at $x_0 \in X$ if \forall sequence $(z_n) \in X$ we have $z_n \xrightarrow{d} x_0 \implies f(z_n) \xrightarrow{\rho} f(x_0)$. f is continuous globally if f is continuous at every point in X.

THEOREM: $f : (X, d) \to (Y, \rho)$ is continuous at x_0 iff $\forall \varepsilon > 0 \exists \delta > 0$ such that $x \in B(x_0, \delta) \implies f(x) \in B(f(x_0), \varepsilon).$

THEOREM: The following are equivalent (for $f: X \to Y$):

- 1. f is continuous.
- 2. $S \subseteq Y$ is open $\implies f^{-1}(S)$ is open.
- 3. $S \subseteq Y$ is closed $\implies f^{-1}(S)$ is closed.

DEFINITION: A sequence $(x_n) \in X$ is a **Cauchy sequence** (or a fundamental sequence) if $\forall \varepsilon > 0 \exists N$ such that $d(x_m, x_n) < \varepsilon$ for m, n > N.

DEFINITION: A metric space is **complete** if every Cauchy sequence converges.

THEOREM:

- 1. A convergent sequence is a Cauchy sequence.
- 2. If (x_n) is Cauchy and it has a convergent subsequence then (x_n) converges.

THEOREM: Let (X, d) be a complete metric space; $Y \subseteq X$. Then (Y, d) is complete iff Y is closed in X.

THEOREM: (X, d) is complete iff every sequence of nested closed spheres with radii $\rightarrow 0$ has a nonvoid intersection.

DEFINITION: Let (X, d), (X', d') be metric spaces. A 1-1 and onto mapping $f: X \to X'$ is said to be **isometric** if d(x, y) = d'(f(x), f(y)) for all $x, y \in X$.

DEFINITION: Let X, X^* be metric spaces, where X^* is complete. Then X^* is said to be a **completion** of X if $X \subseteq X^*$ and X is dense in X^* (with these statements holding perhaps only under some isometry).

THEOREM: Every metric space (X, d) has a unique (up to isometry) completion.

DEFINITION: A mapping A from a metric space (X, d) onto itself is a **contraction** if $d(Ax, Ay) \leq \alpha d(x, y)$ for all $x, y \in X$, where $\alpha < 1$. It's always continuous.

THEOREM (PRINCIPLE OF CONTRACTION MAPPING): Every contraction mapping on a complete metric space has a unique fixed point.

DEFINITION: $f : (X, d) \to (Y, \rho)$ is **uniformly continuous** on X if $\forall \varepsilon > 0 \exists \delta > 0$ (independent of points in X) such that $x, x' \in X$ and $d(x, x') < \delta \implies \rho(f(x), f(x')) < \varepsilon$.

DEFINITION: Let (X, d) be a metric space. A set $K \subseteq X$ is called a **compact** set if \forall sequence $(x_n) \in K$ there is a subsequence $(x_{n_k}) \in K$ that converges to some element $y \in K$.

PROPOSITION: Let K be a compact subset of X. Then K is closed in X.

PROPOSITION: Let K be a compact subset of X; $A \subseteq K$. Then A is closed $\iff A$ is compact.

THEOREM: Let $f : (X, d) \to (Y, \rho)$ be a continuous map; $K \subseteq X$ be compact. Then f(K) is a compact subset of Y.

THEOREM: Let $K \subseteq \mathbb{R}$. Then K is compact $\iff K$ is bounded and closed.

REMARK: The cantor set $C \subseteq [0, 1]$ is compact since it is closed and bounded.

THEOREM: Let $(X_1, d_1), (X_2, d_2)$ be compact. Then $X_1 \times X_2$ is compact with metrics $\sqrt{d_1^2 + d_2^2}, \max(d_1, d_2)$ or $d_1 + d_2$.

THEOREM: Let (X_j, d_j) be compact metric spaces with $d_j \leq 1$; $X = \prod_{j=1}^{\infty} X_j$ with $d = \sum_{j=1}^{\infty} \frac{1}{2^j} d_j$. Then (X, d) is compact.

THEOREM: Let (X, d) be a compact metric space. Then (X, d) is complete.

DEFINITION: Let (X, d) be a metric space and $\alpha > 0$. We say that the subset $A \subseteq X$ is an α -net for $B \subseteq X$ if $\forall b \in B \exists a \in A$ such that $d(a, b) < \alpha$.

DEFINITION: A subset $K \subseteq (X, d)$ is said to be **totally bounded** if $\forall \varepsilon > 0 \exists$ a finite set $\{a_1, \ldots, a_{n_{\varepsilon}}\} \subseteq X$ which is an ε -net for K.

THEOREM: Let (X, d) be a metric space; $K \subseteq X$ be compact. Then K is totally bounded (and (K, d) is complete).

THEOREM: Let $A \subseteq (X, d)$ be totally bounded and *d*-complete. Then A is compact.

THEOREM: Let (X, d) be a compact metric space. Then X is separable.

DEFINITION: Let (X, d) be a metric space and $A \subseteq X$. We say that a collection $\{V_{\alpha}\}_{\alpha \in I}$ (where I is an arbitrary indexing set, usually uncountable) with V_{α} open $\forall \alpha$ is an **open cover** for A if $A \subseteq \bigcup_{\alpha \in I} V_{\alpha}$.

THEOREM (LINDELÖFF):

Let (X, d) be a separable metric space;

 $\{V_{\alpha}\}_{\alpha\in I}$ be an open cover of X with I uncountable.

Then \exists a countable set $I_1 \subset I$ such that $\bigcup_{\alpha \in I_1} V_\alpha = X$. That is, there is a countable subcover.

THEOREM: Suppose (X, d) is such that for every open cover of X there exists a finite subcover. Then (X, d) is compact.

THEOREM: Let (X, d) be a compact space; $\{V_{\alpha}\}_{\alpha \in I}$ be an open cover of X. Then \exists a finite subcover. THEOREM (LEBESGUE LEMMA):

Let (X, d) be compact;

 $\{V_{\alpha}\}_{\alpha\in I}$ an open cover of X with I uncountable.

Then $\exists \delta > 0$ such that $d(x, x') < \delta \implies \exists V_{\alpha}$ for some $\alpha \in I$ such that $x, x' \in V_{\alpha}$.

THEOREM: Let (X, d) be compact;

 $f:(X,d) \to (Y,d')$ be continuous. Then f is uniformly continuous.

THEOREM: Let (X, d) be a metric space. Then the following are equivalent:

- 1. From every open cover of X we can get a finite subcover. (i.e., X is compact.)
- 2. If F_i is closed for all $i \in I$ such that \forall finite subset $J \subseteq I \bigcap_{i \in J} F_i \neq \emptyset$ then $\bigcap_{i \in I} F_i \neq \emptyset$.

THEOREM: A subset $K \subseteq \mathbb{R}^n$ is compact iff K is bounded and closed.

THEOREM: Let (X, d) be a compact set; $f: X \to \mathbb{R}$ be continuous. Then f is bounded and attains its bound.

DEFINITION: Let (X, d) and (Y, d') be compact metric spaces. Then C_{XY} is definied as the set of all continuous mappings $X \to Y$. This is a metric space with distance function $\rho(f, g) = \sup\{d'(f(x), g(x)) : x \in X\}$.

DEFINITION: Let (X, d), (Y, d') be metric spaces and $A \subseteq C_{XY}$. Then A is **equi-continuous** at $x_0 \in X$ if $\forall \varepsilon > 0 \exists \delta > 0$ (independent of $f \in A$) such that $\forall y \in B(x_0, \delta) \forall f \in A \ d'(f(x_0), f(y)) < \varepsilon$.

DEFINITION: Let (X, d), (Y, d') be metric spaces and $A \subseteq C_{XY}$. A is **uniformly** equi-continuous if $\forall \varepsilon > 0 \ \exists \delta > 0$ (independent of $f \in A$ and $x \in X$) such that $\forall x' \in B(x, \delta) \ \forall f \in A \ d'(f(x), f(x')) < \varepsilon$.

REMARK: Any finite set of uniformly continuous functions is uniformly equicontinuous.

THEOREM: Let (X, d) be compact; $A \subseteq C_{XY}$ be equi-continuous at each $x \in X$. Then A is uniformly equi-continuous on X. **REMARK:**

1. C_{XY} is closed in M_{XY} , the set of all mappings $X \to Y$.

2. Any $f \in C_{XY}$ is uniformly continuous.

THEOREM (ARZELÀ-ASCOLI):

Let X, Y be compact metric spaces;

 $D \subseteq C_{XY}.$

Then D is totally bounded in C_{XY} iff D is (uniformly) equi-continuous.

DEFINITION: Let (X, d) be a metric space. $A \subseteq X$ is said to be **connected** if \nexists two open sets $V, W \subseteq X$ such that $V \cap W \cap A = \emptyset$, $A \subseteq V \cup W$, $V \cap A \neq \emptyset$, and $W \cap A \neq \emptyset$. In the case where A = X we say that X is a **connected space**.

REMARK: X is a connected space iff \nexists a non-trivial clopen (closed and open) subset of X.

THEOREM: Let $A \subseteq (X, d)$ be connected; $B \subseteq X$ such that $A \subseteq B \subseteq \overline{A}$. Then B is connected.

THEOREM: Let $\{A_i\}_{i \in I}$ be connected subsets of X such that $\bigcap_{i \in I} A_i \neq \emptyset$. Then $\bigcup_{i \in I} A_i$ is connected.

COROLLARY: Let X be a metric space; $x_0 \in X$; M_{x_0} be the union of all connected subsets of X containing x_0 . Then M_{x_0} is the "largest" connected set of X containing x_0 .

DEFINITION: The largest connected set of X containing x_0 is called the **connected component** of X containing x_0 .

REMARK:

- 1. Any two connected components are disjoint or identical.
- 2. If A is a connected subset of X then \exists a maximal connected set of X containing A.

THEOREM: Let (X, d), (Y, d') be metric spaces; $f: X \to Y$ be continuous; $A \subseteq X$ be connected. Then f(A) is connected. THEOREM: Let $A \subseteq \mathbb{R}$. Then A is connected $\iff A$ is an interval.

COROLLARY: Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ be continuous;

 $I \subseteq A$ be a closed and bounded interval.

Then f(I) is bounded and attains all values between the upper and lower bounds, as well as the bounds themselves.

DEFINITION: A metric space X is said to be **locally connected** if $\forall x \in A \forall$ ball B(x, r) with $r > 0 \exists$ a connected open set V containing x such that $V \subseteq B(x, r)$.

REMARK: In any space X, given any connected set A, there exists a unique maximal connected set containing A.

THEOREM: Let X be a locally connected metric space. Then every connected component is open.

DEFINITION: A **path** in a metric space X is a continuous function $\gamma : [0, 1] \to X$.

DEFINITION: An **arc** in X is the image of a path, i.e., $\{\gamma(t) : t \in [0, 1]\}$.

REMARK: A path is one parameterization of an arc.

DEFINITION: We say that a space is **arcwise connected** (or pointwise connected) if $\forall x, y \exists$ a path with all values in $X, \gamma : [0, 1] \to X$, with $\gamma(0) = x$ and $\gamma(1) = y$.

THEOREM: An arcwise connected space is connected.

REMARK: Every convex set $C \subseteq \mathbb{R}^n$ is arcwise connected.

REMARK: \mathbb{R}^n is connected $\forall n$.

THEOREM: A nonvoid open set $V \subseteq \mathbb{R}^n$ is connected \iff it is arcwise connected.

DEFINITION: Let X, Y be vector spaces in \mathbb{R}^d . Then $L : X \to Y$ is **linear** if $\forall \vec{x}, \vec{x_1}, \vec{x_2} \in \mathbb{X}$ and $\forall c \in \mathbb{R}$ we have $L(\vec{x_1} + \vec{x_2}) = L(\vec{x_1}) + L(\vec{x_2})$ and $L(c\vec{x}) = cL(\vec{x})$.

REMARK: If $L: X \to Y$ is linear, 1-1, and onto then $\Phi: Y \to X = L^{-1}$ is linear.

THEOREM: Let $L: X \to X$ be linear for a vector space X. Then L is 1-1 $\iff L$ is onto.

DEFINITION: Let $X, Y \subseteq \mathbb{R}^d$ be two vector spaces. Then L(X, Y) is the vector space formed by the set of all linear mappings $X \to Y$.

DEFINITION: For any $L \in L(\mathbb{R}^n, \mathbb{R}^m)$ we define the **norm** of L as $||L|| = \sup_{|\vec{x}| \leq 1} |L(\vec{x})|$.

THEOREM:

- 1. $||L|| < \infty \ \forall L \in L(X, Y).$
- 2. $||L|| = \sup_{|\overrightarrow{x}|=1} |L(\overrightarrow{x})|.$
- 3. $||L|| = \inf\{\lambda : |L(\overrightarrow{x})| \le \lambda |\overrightarrow{x}| \ \forall \overrightarrow{x} \in X\}.$
- 4. L is a uniformly continuous function on X for all $L \in L(X, Y)$.

REMARK: (From the proof of the preceding theorem) $|L(\vec{x})| \leq ||L|||\vec{x}|$ for any L and \vec{x} .

PROPOSITION: Let $L, L_1, L_2 \in L(\mathbb{R}^n, \mathbb{R}^m)$.

Then

- 1. $||L_1 + L_2|| \le ||L_1|| + ||L_2||.$
- 2. ||cL|| = |c|||L||.
- 3. $(L_1, L_2) \rightarrow ||L_1 L_2||$ defines a metric on $L(\mathbb{R}^n, \mathbb{R}^m)$.
- 4. If $L : \mathbb{R}^n \to \mathbb{R}^m$ and $M : \mathbb{R}^m \to \mathbb{R}^p$ then the composite function $ML \in L(\mathbb{R}^n, \mathbb{R}^p), ML(\overrightarrow{x}) = M(L(\overrightarrow{x}))$, satisfies $||ML|| \leq ||M|| ||L||$.

DEFINITION: $\Omega \subseteq L(\mathbb{R}^n, \mathbb{R}^n)$ is the set of all invertible elements in $L(\mathbb{R}^n, \mathbb{R}^n)$.

THEOREM: Let $L \in \Omega$; $\|L^{-1}\| = \frac{1}{\alpha}$; $M \in L(\mathbb{R}^n, \mathbb{R}^n)$ such that $\|M - L\| = B < \alpha$.

Then M^{-1} exists, i.e., $M \in \Omega$ (so Ω is open in $L(\mathbb{R}^n, \mathbb{R}^n)$), and $L \mapsto L^{-1}$ is a continuous homomorphism.

REMARK: If (a_{ij}) is the matrix representation of a linear map $L : \mathbb{R}^n \to \mathbb{R}^m$, then $||L|| \leq \left(\sum_{i,j} a_{ij}^2\right)^{1/2}$. THEOREM: Let X be a metric space;

 $a_{ij}: X \to \mathbb{R}$ for all $1 \le i \le m, 1 \le j \le n$.

Then $x \mapsto (a_{ij}(x))$ is a function from X to $L(\mathbb{R}^n, \mathbb{R}^m)$ with respect to standard bases. Then if the a_{ij} 's are continuous then the mapping $x \mapsto (a_{ij}(x))$ is continuous with respect to the norm.

DEFINITION: Let $\overrightarrow{f}: V \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where V is open and let $\overrightarrow{x} \in V$. Then if there is a linear map $A(\vec{x})$ such that

$$\frac{|\overrightarrow{f}(\overrightarrow{x}+\overrightarrow{h})-\overrightarrow{f}(\overrightarrow{x})-\overrightarrow{A}\overrightarrow{h}|}{|\overrightarrow{h}|} \to 0$$

as $|\overrightarrow{h}| \to 0$ then we say that \overrightarrow{f} is **differentiable** at x and $A(\overrightarrow{x})$ is the **deriva**tive of \overrightarrow{f} at \overrightarrow{x} .

REMARK: We can write $\overrightarrow{f}(\overrightarrow{x} + \overrightarrow{h}) - \overrightarrow{f}(\overrightarrow{x}) - A\overrightarrow{h} = \overrightarrow{r}(\overrightarrow{h})$, where $\overrightarrow{r}(\overrightarrow{h})$ is the "error" term, and the existence of the derivative implies that $|\vec{r}(\vec{h})|$ is small compared to $|\dot{h}|$.

REMARK: \overrightarrow{f} is continuous at \overrightarrow{x} if it is differentiable there.

THEOREM: Let \overrightarrow{f} be differentiable at $\overrightarrow{x} \in E$, where E is open; A_1, A_2 be two maps satisfying the definition of the derivative. Then $A_1 = A_2$, i.e., the derivative is unique.

THEOREM (CHAIN RULE):

Let $\overrightarrow{g}: V \subseteq \mathbb{R}^m \to \mathbb{R}^p$ be differentiable, with V open;

 $\overrightarrow{f}: W \subseteq \mathbb{R}^n \to \mathbb{R}^m \text{ be differentiable, with } W \text{ open;} \\ \overrightarrow{F}: W \to \mathbb{R}^p \text{ be defined by } \overrightarrow{F}(\overrightarrow{x}) = \overrightarrow{g}(\overrightarrow{f}(\overrightarrow{x})) \in \mathbb{R}^p.$

Then \overrightarrow{F} is differentiable and $\overrightarrow{F'}(x) = \overrightarrow{g'}(\overrightarrow{f}(x)) \cdot \overrightarrow{f'}(x)$.

DEFINITION: A function $\overrightarrow{f}: V \subseteq \mathbb{R}^n \to \mathbb{R}^m$, where V is open, is **continuously** differentiable (C^1) if it is differentiable and $\overrightarrow{x} \mapsto \overrightarrow{f'}(\overrightarrow{x})$, a mapping from V to $L(\mathbb{R}^n, \mathbb{R}^m)$, is a continuous map.

THEOREM: Let $\overrightarrow{f}: V \subseteq \mathbb{R}^n \to \mathbb{R}^m$ where V is open. Then \overrightarrow{f} is $C^1 \iff$ for $\overrightarrow{f} = (f_1, \dots, f_m)$ and $\forall i, j \ \frac{\partial f_i}{\partial x_j}$ exist and are continuous on V.

THEOREM (INVERSE FUNCTION THEOREM):

Let $\vec{f}: V \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be C^1 , where V is open; \vec{a} be in the domain of the definition of \vec{f} ; $\vec{f}'(\vec{a}) \in L(\mathbb{R}^n, \mathbb{R}^n)$ be invertible.

Then \exists open sets U containing \overrightarrow{a} and V containing $\overrightarrow{f}(\overrightarrow{a})$ such that $\overrightarrow{f}: U \to V$ is a bijection.

THEOREM (IMPLICIT FUNCTION THEOREM):

Let $f: E \subseteq \mathbb{R}^{n+m} \to \mathbb{R}^n$ where E is open, such that $\overrightarrow{f} \in C^1(E)$; $(\overrightarrow{a}, \overrightarrow{b})$ be such that $\overrightarrow{f}(\overrightarrow{a}, \overrightarrow{b}) = \overrightarrow{0}$; $A = \overrightarrow{f}'(\overrightarrow{a}, \overrightarrow{b})$ (an $n \times (n+m)$ matrix); A be such that $A(\overrightarrow{h}, \overrightarrow{0}) = \overrightarrow{0} \iff \overrightarrow{h} = \overrightarrow{0}$.

Then \exists an open set W containing \overrightarrow{b} and a C^1 map $\overrightarrow{g} : W \to \mathbb{R}^n$ such that $\overrightarrow{f}(\overrightarrow{g}(\overrightarrow{y}), \overrightarrow{y}) = \overrightarrow{0} \ \forall \overrightarrow{y} \in W$ and $\overrightarrow{g}(\overrightarrow{b}) = \overrightarrow{a}$.

DEFINITION: $\mathcal{C}(X)$ is the set of all real-valued continuous functions on X and is a metric space with metric $\rho(f,g) = \sup_{x \in X} |f(x) - g(x)|$.

DEFINITION: $A \subseteq C(X)$ is an **algebra** (of continuous functions) if $\forall f, g \in A \ \forall c \in \mathbb{R}$ we have $f + g, fg, cf \in A$ (where fg(x) = f(x)g(x)). Note that C(X) itself is an algebra.

LEMMA: If $A \subseteq \mathcal{C}(X)$ is an algebra then so is $\overline{A} \subseteq \mathcal{C}(X)$.

THEOREM (STONE-WEIERSTRASS V. 1): Let X be a compact metric space and $A \subseteq \mathcal{C}(X)$ be an algebra such that

1. A "separates points" of X, i.e., given $x_1 \neq x_2$ in $X \exists f \in A$ such that $f(x_1) \neq f(x_2)$; and

2. A "vanishes nowhere," i.e., $\forall x \exists g \in A$ such that $g(x) \neq 0$.

Then $\overline{A} = \mathcal{C}(X)$ (i.e., A is uniformly dense in $\mathcal{C}(X)$).

THEOREM (STONE-WEIERSTRASS V. 2): Let X be a compact metric space and $A \subseteq \mathcal{C}(X)$ such that

- 1. A is a vector space;
- 2. A separates points;
- 3. $1 \in A;$
- 4. A is a lattice for the natural order (i.e., $f, g \in A \implies \max(f, g), \min(f, g) \in A$); and
- 5. A is closed.

Then $\overline{A} = \mathcal{C}(X)$ (i.e., A is uniformly dense in $\mathcal{C}(X)$).

Index

C(X), 11 $C^{1}, 10$ $C_{XY}, 6$ L(X,Y), 9 $\Omega, 9$ algebra, 11 alpha-net, 5 arc, 8 arcwise connected, 8 Arzelà-Ascoli, 7 cardinality, 2 Cauchy sequence, 3 chain rule, 10 closed set, 2closure, 1 compact, 4 complete, 3 completion, 4 connected, 7 connected component, 7 continuous, 3 continuously differentiable, 10 contraction, 4 countable base, 3 dense, 3 derivative, 10 differentiable, 10 equi-continuous, 6 Hölder's inequality, 1 implicit function theorem, 11 inverse function theorem, 11 isometric, 4 Lebesgue lemma, 6

limit point, 1 Lindelöff, 5 linear map, 8 locally connected, 8 Minkowski for integrals, 1 Minkowski for sums, 1 norm, 9 open cover, 5 open set, 2 path, 8 principle of contraction mapping, 4 separable, 3 Stone-Weierstrass v. 1, 11 Stone-Weierstrass v. 2, 11 totally bounded, 5 uniformly continuous, 4 uniformly equi-continuous, 6