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LEMMA (HOLDER’S INEQUALITY):
Let a,b > 0;
p,q > 1 be conjugate indices (i.e.,
aP  b?
Then ab < — + —.
p q

THEOREM (MINKOWSKI FOR INTEGRALS):
Let f,g :[0,1] — R be continuous.

1/p
Then (/1|f+g|pdx) §</1|f|pdm>
0 0

THEOREM (MINKOWSKI FOR SUMS):
Let (a;), (b)) € lp.

1/p 1/p
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1/p 1/p 1/p
o0 o o

Then (a;+b;) € I, and Z |a; + b;|P < Z la;|P + Z |b;|P
j=1 j=1 j=1

DEFINITION: Fix a metric space (X, d) and a subset A C X. Then we say z € X
is a limit point of A if there is a distinct sequence z,, € A such that z, — z.

DEFINITION: Let A C X. We call the closure of Ain X, A, A = AU {z:
z is a limit point of A in X.}

THEOREM: Let A1, A C X.
Then A1 U Ay :A_1UA_2

REMARK: Let A1,As C X.
Then A1 N Ay C A_lﬁA_g



THEOREM: Let y € X
ACX.
Then y is a limit point of A iff Ve > 0 B(y,e) N A contains an element # y.

COROLLARY: Let A C X;

y ¢ A
Then y € A <= Ve >0 3z(#y) € B(y,e) N A.

DEFINITION: A C X is closed in X if the closure of A in X is A.

THEOREM: Let F be the collection of all closed subsets (relative to X).
Then

1. X, 0 e F;
2. Ay,..., A, € F = U?ZIAJ-EF; and
3. AjeFYiel = (), Ai€F.

DEFINITION: If X \ U is closed then U is open.

LEMMA: Let V C X.
Then V is open iff Vo € V' Je, > 0 such that B(z,e,) C V.

LEMMA: Let A C X.
Then A = A.

THEOREM: Let X,, be a countable set of countable sets.
Then | J,, X, is countable.

DEFINITION: We say that two sets X and Y have the same “size” if 3f : X — Y
such that f is 1-1 and onto. In this case we say X and Y have the same
cardinality or cardinal number.

THEOREM: Let X be a non-void set.
Then card(X) < card(P(X)).

THEOREM: R is not countable.

REMARK: Let Y C X.
Then

1. Yy €Y, e >0 By(y,e) = Bx(y,e) NY; and
2. V is open (closed) in Y iff 3 U open (closed) in X such that Y NU = V.



DEFINITION: A set A C B(C X) is said to be dense in B if B C A. Ais dense
in XifA=X.

DEFINITION: (X, d) is said to be separable if there is a countable dense subset
of X.

DEFINITION: (X, d) is said to have a countable base (for open sets) if there
exist V1, V3, ... open sets such that every open set of X is a union of V,,’s.

THEOREM: Let (X, d) be a metric space.
Then (X, d) is separable iff (X, d) has a countable base for open sets.

DEFINITION: f : (X,d) — (Y,p) is continuous at zg € X if V sequence

(zn) € X we have z, Loy = f(zn) 2 f(zo). f is continuous globally
if f is continuous at every point in X.

THEOREM: [ : (X,d) — (Y,p) is continuous at xg iff Ve > 0 3§ > 0 such that
Z‘EB(%Q,(S) = (.I‘)EB(f(Jfo),é‘)

THEOREM: The following are equivalent (for f: X — Y):
1. f is continuous.

2. SCYisopen = f~1(9) is open.
3. SCYisclosed = f~1(9) is closed.

DEFINITION: A sequence (z,) € X is a Cauchy sequence (or a fundamental
sequence) if Ve > 0 3N such that d(x,,,x,) < e for m,n > N.

DEFINITION: A metric space is complete if every Cauchy sequence converges.

THEOREM:
1. A convergent sequence is a Cauchy sequence.

2. If (x,,) is Cauchy and it has a convergent subsequence then (x,,) converges.

THEOREM: Let (X, d) be a complete metric space;
Y CX.
Then (Y, d) is complete iff Y is closed in X.

THEOREM: (X,d) is complete iff every sequence of nested closed spheres with
radii — 0 has a nonvoid intersection.



DEFINITION: Let (X,d),(X’,d’) be metric spaces. A 1-1 and onto mapping
f:X — X’ is said to be isometric if d(z,y) = d'(f(z), f(y)) for all z,y € X.

DEFINITION: Let X, X* be metric spaces, where X* is complete. Then X* is
said to be a completion of X if X C X* and X is dense in X* (with these
statements holding perhaps only under some isometry).

THEOREM: Every metric space (X, d) has a unique (up to isometry) completion.

DEFINITION: A mapping A from a metric space (X,d) onto itself is a con-
traction if d(Az, Ay) < ad(z,y) for all z,y € X, where o < 1. It’s always
continuous.

THEOREM (PRINCIPLE OF CONTRACTION MAPPING): Every contraction map-
ping on a complete metric space has a unique fixed point.

DEFINITION: f : (X,d) — (Y,p) is uniformly continuous on X if Ve >
0 36 > 0 (independent of points in X) such that z,2" € X and d(z,2') < =

p(f(x), f(a")) <e.

DEFINITION: Let (X, d) be a metric space. A set K C X is called a compact
set if ¥ sequence (z,,) € K there is a subsequence (z,,) € K that converges to
some element y € K.

PROPOSITION: Let K be a compact subset of X.
Then K is closed in X.

PROPOSITION: Let K be a compact subset of X;
ACK.
Then A is closed <= A is compact.

THEOREM: Let f: (X,d) — (Y, p) be a continuous map;
K C X be compact.
Then f(K) is a compact subset of Y.

THEOREM: Let K C R.
Then K is compact <= K is bounded and closed.

REMARK: The cantor set C' C [0, 1] is compact since it is closed and bounded.



THEOREM: Let (X1,d1), (X2,d2) be compact.
Then X; x X5 is compact with metrics \/d% + d3, max(dy,dz) or di + da.

THEOREM: Let (Xj,d;) be compact metric spaces with d; < 1;
X = H;il Xj with d = Z;il %dj
Then (X, d) is compact.

THEOREM: Let (X,d) be a compact metric space.
Then (X, d) is complete.

DEFINITION: Let (X, d) be a metric space and a > 0. We say that the subset
A C X is an a-net for B C X if Vb € B Ja € A such that d(a,b) < a.

DEFINITION: A subset K C (X,d) is said to be totally bounded if Ve > 0 3
a finite set {a1,...,an.} C X which is an e-net for K.

THEOREM: Let (X, d) be a metric space;
K C X be compact.
Then K is totally bounded (and (K, d) is complete).

THEOREM: Let A C (X, d) be totally bounded and d-complete.
Then A is compact.

THEOREM: Let (X, d) be a compact metric space.
Then X is separable.

DEFINITION: Let (X, d) be a metric space and A C X. We say that a collection
{Va}aer (where I is an arbitrary indexing set, usually uncountable) with V,
open Vo is an open cover for A if A C UaeI V.

THEOREM (LINDELOFF):
Let (X, d) be a separable metric space;
{Va}aer be an open cover of X with I uncountable.
Then 3 a countable set Iy C I such that Uyer, Voo = X. That is, there is a
countable subcover.

THEOREM: Suppose (X, d) is such that for every open cover of X there exists
a finite subcover. Then (X, d) is compact.

THEOREM: Let (X, d) be a compact space;
{Va}aer be an open cover of X.
Then 3 a finite subcover.



THEOREM (LEBESGUE LEMMA):
Let (X, d) be compact;
{Va}aer an open cover of X with I uncountable.
Then 3 § > 0 such that d(z,2') < § = 3V, for some « € I such that
z, 2’ € V,.

THEOREM: Let (X, d) be compact;
f:(X,d) — (Y,d') be continuous.
Then f is uniformly continuous.

THEOREM: Let (X, d) be a metric space.
Then the following are equivalent:
1. From every open cover of X we can get a finite subcover. (i.e., X is
compact.)

2. If F; is closed for all 4 € I such that V finite subset J C I (,o; F; # 1]
then (o, F; # 0.

THEOREM: A subset K C R™ is compact iff K is bounded and closed.

THEOREM: Let (X, d) be a compact set;
f: X — R be continuous.
Then f is bounded and attains its bound.

DEFINITION: Let (X, d) and (Y,d’) be compact metric spaces. Then Cxy is
definied as the set of all continuous mappings X — Y. This is a metric space
with distance function p(f, g) = sup{d’'(f(z),g(z)) : z € X}.

DEFINITION: Let (X,d), (Y,d’) be metric spaces and A C Cxy. Then A is
equi-continuous at zg € X if Ve > 0 30 > 0 (independent of f € A) such that
Vy € B(xo,0) Vf € Ad'(f(x0), fy)) <e.

DEFINITION: Let (X, d), (Y, d’) be metric spaces and A C Cxy. A is uniformly
equi-continuous if Ve > 0 36 > 0 (independent of f € A and x € X) such
that Va’ € B(z,d) Vf € Ad'(f(z), f(z')) < e.

REMARK: Any finite set of uniformly continuous functions is uniformly equi-
continuous.

THEOREM: Let (X, d) be compact;
A C Cxy be equi-continuous at each z € X.
Then A is uniformly equi-continuous on X.



REMARK:
1. Cxvy is closed in Mxy, the set of all mappings X — Y.

2. Any f € Cxy is uniformly continuous.

THEOREM (ARZELA-ASCOLI):
Let X,Y be compact metric spaces;
D C ny.
Then D is totally bounded in Cxy iff D is (uniformly) equi-continuous.

DEFINITION: Let (X, d) be a metric space. A C X is said to be connected if 7
two open sets V,W C X such that VNWNA=0, ACVUW,VNA#0D, and
W N A#0D. In the case where A = X we say that X is a connected space.

REMARK: X is a connected space iff 3 a non-trivial clopen (closed and open)
subset of X.

THEOREM: Let A C (X, d) be connected;
B C X such that A C B C A.
Then B is connected.

THEOREM: Let {4;};cr be connected subsets of X such that (,.; A; # 0.
Then J;c; Ai is connected.
COROLLARY: Let X be a metric space;
xo € X;
M, be the union of all connected subsets of X containing xg.
Then M,, is the “largest” connected set of X containing .

DEFINITION: The largest connected set of X containing xq is called the con-
nected component of X containing .

REMARK:
1. Any two connected components are disjoint or identical.

2. If A is a connected subset of X then 3 a maximal connected set of X
containing A.

THEOREM: Let (X,d), (Y,d') be metric spaces;
f+ X — Y be continuous;
A C X be connected.
Then f(A) is connected.



THEOREM: Let A C R.
Then A is connected <= A is an interval.

COROLLARY: Let f: A CR — R be continuous;
I C A be a closed and bounded interval.
Then f(I) is bounded and attains all values between the upper and lower
bounds, as well as the bounds themselves.

DEFINITION: A metric space X is said to be locally connected if Vx € AV ball
B(z,r) with > 0 3 a connected open set V' containing x such that V' C B(z,r).

REMARK: In any space X, given any connected set A, there exists a unique
maximal connected set containing A.

THEOREM: Let X be a locally connected metric space.
Then every connected component is open.

DEFINITION: A path in a metric space X is a continuous function 7 : [0,1] — X.
DEFINITION: An arc in X is the image of a path, i.e., {y(¢): t € [0,1]}.
REMARK: A path is one parameterization of an arc.

DEFINITION: We say that a space is arcwise connected (or pointwise con-
nected) if V,y 3 a path with all values in X, v :[0,1] — X, with v(0) = = and
(1) =y.

THEOREM: An arcwise connected space is connected.

REMARK: Every convex set C' C R"” is arcwise connected.

REMARK: R" is connected Vn.

THEOREM: A nonvoid open set V' C R™ is connected <= it is arcwise
connected.

DEFINITION: Let X,Y be vector spaces in R4, Then L : X — Y is linear if
VZ,Z1,75 € X and Ve € R we have L(z] + Z3) = L(z;) + L(Z3) and L(cZ) =
cL(7T).



REMARK: If L : X — Y is linear, 1-1, and onto then ® : ¥ — X = L~ is
linear.

THEOREM: Let L : X — X be linear for a vector space X.
Then L is 1-1 <= L is onto.

DEFINITION: Let X,Y C R? be two vector spaces. Then L(X,Y) is the vector
space formed by the set of all linear mappings X — Y.

DEFINITION: For any L € L(R",R™) we define the norm of L as ||L| =

sup |L(T)|.
|Z|<1

THEOREM:
1. | L] < 0 VL € L(X,Y).
2. |ILl| = supjz—y [L(T)].
3. IL|| = inf{\: |L(T)| <\ 7| VT € X}.
4. L is a uniformly continuous function on X for all L € L(X,Y).

REMARK: (From the proof of the preceding theorem) |L(Z')| < ||L||| | for any
Land 7.

ProrosITION: Let L, Ly, Ly € L(R™,R™).
Then
L |[L1+ Lo|| < [[Laf| + || L2|-
2. |[eL|l = [ell| LI
3. (L1,L2) — ||L1 — Lz|| defines a metric on L(R™,R™).
4. f L :R* - R™ and M : R™ — RP then the composite function ML €
L(R", R?), ML(T) = M(L(T)), satisfies [ ML < | M| L]

DEFINITION: 2 C L(R™,R"™) is the set of all invertible elements in L(R"™,R").

THEOREM: Let L € §;
L7 =
M e L(R™,R"™) such that |M — L|| = B < a.
Then M 1! exists, i.e., M € Q (so Q is open in L(R™, R")), and L +— L~ !isa

continuous homomorphism.

REMARK: If (a;;) is the matrix representation of a linear map L : R — R™,
1/2
then [|L]| < (> a3;) "

2%



THEOREM: Let X be a metric space;
aj : X = Rforall1<i<m,1<j<n.
Then & — (a;;(x)) is a function from X to L(R™,R™) with respect to standard
bases. Then if the a;;’s are continuous then the mapping = — (a;;(x)) is
continuous with respect to the norm.

DEFINITION: Let f : V C R” — R™ where V is open and let @ € V. Then if
there is a linear map A(7) such that

- =

(@ +1) - F@) - AR
7|

0

as |E)| — 0 then we say that 7 is differentiable at x and A(7') is the deriva-
—
tive of f at 7.

REMARK: We can write 7(? + 7) - 7(?) — AT = 7(7), where 7(7)
—
is the “error” term, and the existence of the derivative implies that |7 ( h)]| is
—
small compared to | h |.

-
REMARK: f is continuous at 7 if it is differentiable there.

_
THEOREM: Let f be differentiable at 2° € E, where E is open;
Aq, Ay be two maps satisfying the definition of the derivative..
Then A; = A, i.e., the derivative is unique.

THEOREM (CHAIN RULE):
Let g : V C R™ — RP be differentiable, with V open;
=
f W CR™ — R™ be differentiable, with W open;
= = — 7 —
: W — RP be defined by F (7)) =g ( f(Z)) € R

—

Then F' is differentiable and F'(z) = ¢"'( f (2)) - f'(2).

=l

-

DEFINITION: A function f : V CR™ — R™, where V is open, is continuously
—

differentiable (C*) if it is differentiable and @ — f’(7), a mapping from V

to L(R™,R™), is a continuous map.

_
THEOREM: Let f :V CR™ — R™ where V is open.
— —
Then f is C' <= for f = (f1,..., fm) and Vi, j gwj_ exist and are contin-
uous on V.
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THEOREM (INVERSE FUNCTION THEOREM):
Let 7 :V CR® - R” be C!, where V is open;
@ be in the domain of the definition of 7;
7’(7) € L(R™,R"™) be invertible.
Then 3 open sets U containing @ and V containing 7(7) such that 7 U —
V' is a bijection.

THEOREM (IMPLICIT FUNCTION THEOREM):
_
Let f: E C R*™™ — R"™ where E is open, such that f € C*(E);
_, = -, = —
(d’, b) be such that f (@, b)= 0;
—
A= f'(@, b) (an n x (n+m) matrix);
— — — g —
A be such that A(h,0)=0 < h =0.
Then 3 an open set W containing b and a C!' map g : W — R”™ such that

— ?)2—7

F(T(7), 7)) =0 vy eW and g( a.

i

DEFINITION: C(X) is the set of all real-valued continuous functions on X and
is a metric space with metric p(f,g) = sup,cx |f(x) — g(2)].

DEFINITION: A C C(X) is an algebra (of continuous functions) if Vf,g €
A Ve e R we have f+g, fg,cf € A (where fg(z) = f(x)g(z)). Note that C(X)
itself is an algebra.

LEMMA: If A C C(X) is an algebra then so is A C C(X).

THEOREM (STONE-WEIERSTRASS V. 1): Let X be a compact metric space
and A C C(X) be an algebra such that

1. A “separates points” of X, i.e., given x1 # x2 in X Jf € A such that

f(z1) # f(22); and
2. A “vanishes nowhere,” i.e., Vo Jg € A such that g(x) # 0.
Then A = C(X) (i.e., A is uniformly dense in C(X)).

THEOREM (STONE-WEIERSTRASS V. 2): Let X be a compact metric space
and A C C(X) such that

1. A is a vector space;
2. A separates points;
3. 1€ A
4. Ais alattice for the natural order (i.e., f,g € A = max(f, g), min(f, g) €
A); and
5. A is closed.
Then A = C(X) (i.e., A is uniformly dense in C(X)).
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C(X), 11 Minkowski for integrals, 1
Ct, 10 Minkowski for sums, 1
CXY, 6
L(X,Y), 9 norm, 9
Q,9
open cover, 5
algebra, 11 open set, 2
alpha-net, 5
arc, 8 path, 8

arcwise connected. 8 principle of contraction mapping, 4
)

Arzela-Ascoli, 7 separable, 3

Stone-Weierstrass v. 1, 11

cardinality, 2 .
Stone-Weierstrass v. 2, 11

Cauchy sequence, 3
chain rule, 10

closed set, 2

closure, 1

compact, 4

complete, 3

completion, 4
connected, 7

connected component, 7
continuous, 3
continuously differentiable, 10
contraction, 4
countable base, 3

totally bounded, 5

uniformly continuous, 4
uniformly equi-continuous, 6

dense, 3
derivative, 10
differentiable, 10

equi-continuous, 6
Holder’s inequality, 1

implicit function theorem, 11
inverse function theorem, 11
isometric, 4

Lebesgue lemma, 6
limit point, 1
Lindeloft, 5

linear map, 8
locally connected, 8
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