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Lemma (Hölder’s inequality):
Let a, b > 0;

p, q > 1 be conjugate indices (i.e., 1

p + 1

q = 1).

Then ab ≤
ap

p
+

bq

q
.

Theorem (Minkowski for integrals):
Let f, g : [0, 1] → R be continuous.

Then

(∫ 1

0

|f + g|p dx

)1/p

≤

(∫ 1

0

|f |p dx

)1/p

+

(∫ 1

0

|g|p dx

)1/p

.

Theorem (Minkowski for sums):
Let (aj), (bj) ∈ lp.

Then (aj+bj) ∈ lp and





∞
∑

j=1

|aj + bj |
p





1/p

≤





∞
∑

j=1

|aj |
p





1/p

+





∞
∑

j=1

|bj |
p





1/p

.

Definition: Fix a metric space (X, d) and a subset A ⊆ X . Then we say z ∈ X
is a limit point of A if there is a distinct sequence xn ∈ A such that xn → z.

Definition: Let A ⊆ X . We call the closure of A in X , A, A = A ∪ {z :
z is a limit point of A in X.}

Theorem: Let A1, A2 ⊆ X.

Then A1 ∪ A2 = A1 ∪ A2.

Remark: Let A1, A2 ⊆ X.

Then A1 ∩ A2 ⊆ A1 ∩ A2.
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Theorem: Let y ∈ X;
A ⊆ X.

Then y is a limit point of A iff ∀ε > 0 B(y, ε) ∩ A contains an element 6= y.

Corollary: Let A ⊆ X;
y /∈ A.

Then y ∈ A ⇐⇒ ∀ε > 0 ∃x(6= y) ∈ B(y, ε) ∩ A.

Definition: A ⊆ X is closed in X if the closure of A in X is A.

Theorem: Let F be the collection of all closed subsets (relative to X).
Then

1. X, ∅ ∈ F ;

2. A1, . . . , An ∈ F =⇒
⋃n

j=1
Aj ∈ F ; and

3. Ai ∈ F ∀i ∈ I =⇒
⋂

i∈I Ai ∈ F .

Definition: If X \ U is closed then U is open.

Lemma: Let V ⊆ X.
Then V is open iff ∀x ∈ V ∃εx > 0 such that B(x, εx) ⊆ V .

Lemma: Let A ⊆ X.

Then A = A.

Theorem: Let Xn be a countable set of countable sets.
Then

⋃

n Xn is countable.

Definition: We say that two sets X and Y have the same “size” if ∃f : X → Y
such that f is 1-1 and onto. In this case we say X and Y have the same
cardinality or cardinal number.

Theorem: Let X be a non-void set.
Then card(X) < card(P(X)).

Theorem: R is not countable.

Remark: Let Y ⊆ X.
Then

1. ∀y ∈ Y, ε > 0 BY (y, ε) = BX(y, ε) ∩ Y ; and

2. V is open (closed) in Y iff ∃ U open (closed) in X such that Y ∩ U = V .
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Definition: A set A ⊆ B(⊆ X) is said to be dense in B if B ⊆ A. A is dense
in X if A = X .

Definition: (X, d) is said to be separable if there is a countable dense subset
of X .

Definition: (X, d) is said to have a countable base (for open sets) if there
exist V1, V2, . . . open sets such that every open set of X is a union of Vn’s.

Theorem: Let (X, d) be a metric space.
Then (X, d) is separable iff (X, d) has a countable base for open sets.

Definition: f : (X, d) → (Y, ρ) is continuous at x0 ∈ X if ∀ sequence

(zn) ∈ X we have zn
d
→ x0 =⇒ f(zn)

ρ
→ f(x0). f is continuous globally

if f is continuous at every point in X .

Theorem: f : (X, d) → (Y, ρ) is continuous at x0 iff ∀ε > 0 ∃δ > 0 such that
x ∈ B(x0, δ) =⇒ f(x) ∈ B(f(x0), ε).

Theorem: The following are equivalent (for f : X → Y ):

1. f is continuous.

2. S ⊆ Y is open =⇒ f−1(S) is open.

3. S ⊆ Y is closed =⇒ f−1(S) is closed.

Definition: A sequence (xn) ∈ X is a Cauchy sequence (or a fundamental
sequence) if ∀ε > 0 ∃N such that d(xm, xn) < ε for m, n > N .

Definition: A metric space is complete if every Cauchy sequence converges.

Theorem:

1. A convergent sequence is a Cauchy sequence.

2. If (xn) is Cauchy and it has a convergent subsequence then (xn) converges.

Theorem: Let (X, d) be a complete metric space;
Y ⊆ X.

Then (Y, d) is complete iff Y is closed in X .

Theorem: (X, d) is complete iff every sequence of nested closed spheres with
radii → 0 has a nonvoid intersection.
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Definition: Let (X, d), (X ′, d′) be metric spaces. A 1-1 and onto mapping
f : X → X ′ is said to be isometric if d(x, y) = d′(f(x), f(y)) for all x, y ∈ X .

Definition: Let X, X∗ be metric spaces, where X∗ is complete. Then X∗ is
said to be a completion of X if X ⊆ X∗ and X is dense in X∗ (with these
statements holding perhaps only under some isometry).

Theorem: Every metric space (X, d) has a unique (up to isometry) completion.

Definition: A mapping A from a metric space (X, d) onto itself is a con-

traction if d(Ax, Ay) ≤ αd(x, y) for all x, y ∈ X , where α < 1. It’s always
continuous.

Theorem (principle of contraction mapping): Every contraction map-
ping on a complete metric space has a unique fixed point.

Definition: f : (X, d) → (Y, ρ) is uniformly continuous on X if ∀ε >
0 ∃δ > 0 (independent of points in X) such that x, x′ ∈ X and d(x, x′) < δ =⇒
ρ(f(x), f(x′)) < ε.

Definition: Let (X, d) be a metric space. A set K ⊆ X is called a compact

set if ∀ sequence (xn) ∈ K there is a subsequence (xnk
) ∈ K that converges to

some element y ∈ K.

Proposition: Let K be a compact subset of X.
Then K is closed in X .

Proposition: Let K be a compact subset of X;
A ⊆ K.

Then A is closed ⇐⇒ A is compact.

Theorem: Let f : (X, d) → (Y, ρ) be a continuous map;
K ⊆ X be compact.

Then f(K) is a compact subset of Y .

Theorem: Let K ⊆ R.
Then K is compact ⇐⇒ K is bounded and closed.

Remark: The cantor set C ⊆ [0, 1] is compact since it is closed and bounded.
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Theorem: Let (X1, d1), (X2, d2) be compact.

Then X1 × X2 is compact with metrics
√

d2
1 + d2

2, max(d1, d2) or d1 + d2.

Theorem: Let (Xj , dj) be compact metric spaces with dj ≤ 1;
X =

∏∞
j=1

Xj with d =
∑∞

j=1

1

2j dj .

Then (X, d) is compact.

Theorem: Let (X, d) be a compact metric space.
Then (X, d) is complete.

Definition: Let (X, d) be a metric space and α > 0. We say that the subset
A ⊆ X is an α-net for B ⊆ X if ∀b ∈ B ∃a ∈ A such that d(a, b) < α.

Definition: A subset K ⊆ (X, d) is said to be totally bounded if ∀ε > 0 ∃
a finite set {a1, . . . , anε

} ⊆ X which is an ε-net for K.

Theorem: Let (X, d) be a metric space;
K ⊆ X be compact.

Then K is totally bounded (and (K, d) is complete).

Theorem: Let A ⊆ (X, d) be totally bounded and d-complete.
Then A is compact.

Theorem: Let (X, d) be a compact metric space.
Then X is separable.

Definition: Let (X, d) be a metric space and A ⊆ X . We say that a collection
{Vα}α∈I (where I is an arbitrary indexing set, usually uncountable) with Vα

open ∀α is an open cover for A if A ⊆
⋃

α∈I Vα.

Theorem (Lindelöff):
Let (X, d) be a separable metric space;

{Vα}α∈I be an open cover of X with I uncountable.
Then ∃ a countable set I1 ⊂ I such that ∪α∈I1Vα = X . That is, there is a

countable subcover.

Theorem: Suppose (X, d) is such that for every open cover of X there exists
a finite subcover. Then (X, d) is compact.

Theorem: Let (X, d) be a compact space;
{Vα}α∈I be an open cover of X.

Then ∃ a finite subcover.

5



Theorem (Lebesgue lemma):
Let (X, d) be compact;

{Vα}α∈I an open cover of X with I uncountable.
Then ∃ δ > 0 such that d(x, x′) < δ =⇒ ∃ Vα for some α ∈ I such that

x, x′ ∈ Vα.

Theorem: Let (X, d) be compact;
f : (X, d) → (Y, d′) be continuous.

Then f is uniformly continuous.

Theorem: Let (X, d) be a metric space.
Then the following are equivalent:

1. From every open cover of X we can get a finite subcover. (i.e., X is
compact.)

2. If Fi is closed for all i ∈ I such that ∀ finite subset J ⊆ I
⋂

i∈J Fi 6= ∅
then

⋂

i∈I Fi 6= ∅.

Theorem: A subset K ⊆ Rn is compact iff K is bounded and closed.

Theorem: Let (X, d) be a compact set;
f : X → R be continuous.

Then f is bounded and attains its bound.

Definition: Let (X, d) and (Y, d′) be compact metric spaces. Then CXY is
definied as the set of all continuous mappings X → Y . This is a metric space
with distance function ρ(f, g) = sup{d′(f(x), g(x)) : x ∈ X}.

Definition: Let (X, d), (Y, d′) be metric spaces and A ⊆ CXY . Then A is
equi-continuous at x0 ∈ X if ∀ε > 0 ∃δ > 0 (independent of f ∈ A) such that
∀y ∈ B(x0, δ) ∀f ∈ A d′(f(x0), f(y)) < ε.

Definition: Let (X, d), (Y, d′) be metric spaces and A ⊆ CXY . A is uniformly

equi-continuous if ∀ε > 0 ∃δ > 0 (independent of f ∈ A and x ∈ X) such
that ∀x′ ∈ B(x, δ) ∀f ∈ A d′(f(x), f(x′)) < ε.

Remark: Any finite set of uniformly continuous functions is uniformly equi-
continuous.

Theorem: Let (X, d) be compact;
A ⊆ CXY be equi-continuous at each x ∈ X.

Then A is uniformly equi-continuous on X .

6



Remark:

1. CXY is closed in MXY , the set of all mappings X → Y .

2. Any f ∈ CXY is uniformly continuous.

Theorem (Arzelà-Ascoli):
Let X, Y be compact metric spaces;

D ⊆ CXY .
Then D is totally bounded in CXY iff D is (uniformly) equi-continuous.

Definition: Let (X, d) be a metric space. A ⊆ X is said to be connected if @
two open sets V, W ⊆ X such that V ∩W ∩A = ∅, A ⊆ V ∪W , V ∩A 6= ∅, and
W ∩ A 6= ∅. In the case where A = X we say that X is a connected space.

Remark: X is a connected space iff @ a non-trivial clopen (closed and open)
subset of X .

Theorem: Let A ⊆ (X, d) be connected;
B ⊆ X such that A ⊆ B ⊆ A.

Then B is connected.

Theorem: Let {Ai}i∈I be connected subsets of X such that
⋂

i∈I Ai 6= ∅.
Then

⋃

i∈I Ai is connected.

Corollary: Let X be a metric space;
x0 ∈ X;
Mx0

be the union of all connected subsets of X containing x0.
Then Mx0

is the “largest” connected set of X containing x0.

Definition: The largest connected set of X containing x0 is called the con-

nected component of X containing x0.

Remark:

1. Any two connected components are disjoint or identical.

2. If A is a connected subset of X then ∃ a maximal connected set of X
containing A.

Theorem: Let (X, d), (Y, d′) be metric spaces;
f : X → Y be continuous;
A ⊆ X be connected.

Then f(A) is connected.
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Theorem: Let A ⊆ R.
Then A is connected ⇐⇒ A is an interval.

Corollary: Let f : A ⊆ R → R be continuous;
I ⊆ A be a closed and bounded interval.

Then f(I) is bounded and attains all values between the upper and lower
bounds, as well as the bounds themselves.

Definition: A metric space X is said to be locally connected if ∀x ∈ A ∀ ball
B(x, r) with r > 0 ∃ a connected open set V containing x such that V ⊆ B(x, r).

Remark: In any space X, given any connected set A, there exists a unique
maximal connected set containing A.

Theorem: Let X be a locally connected metric space.
Then every connected component is open.

Definition: A path in a metric space X is a continuous function γ : [0, 1] → X .

Definition: An arc in X is the image of a path, i.e., {γ(t) : t ∈ [0, 1]}.

Remark: A path is one parameterization of an arc.

Definition: We say that a space is arcwise connected (or pointwise con-
nected) if ∀x, y ∃ a path with all values in X , γ : [0, 1] → X , with γ(0) = x and
γ(1) = y.

Theorem: An arcwise connected space is connected.

Remark: Every convex set C ⊆ Rn is arcwise connected.

Remark: Rn is connected ∀n.

Theorem: A nonvoid open set V ⊆ Rn is connected ⇐⇒ it is arcwise
connected.

Definition: Let X, Y be vector spaces in Rd. Then L : X → Y is linear if
∀−→x ,−→x1,

−→x2 ∈ X and ∀c ∈ R we have L(−→x1 + −→x2) = L(−→x1) + L(−→x2) and L(c−→x ) =
cL(−→x ).
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Remark: If L : X → Y is linear, 1-1, and onto then Φ : Y → X = L−1 is
linear.

Theorem: Let L : X → X be linear for a vector space X.
Then L is 1-1 ⇐⇒ L is onto.

Definition: Let X, Y ⊆ Rd be two vector spaces. Then L(X, Y ) is the vector
space formed by the set of all linear mappings X → Y .

Definition: For any L ∈ L(Rn, Rm) we define the norm of L as ‖L‖ =
sup

|−→x |≤1

|L(−→x )|.

Theorem:

1. ‖L‖ < ∞ ∀L ∈ L(X, Y ).

2. ‖L‖ = sup|−→x |=1 |L(−→x )|.

3. ‖L‖ = inf{λ : |L(−→x )| ≤ λ|−→x | ∀−→x ∈ X}.

4. L is a uniformly continuous function on X for all L ∈ L(X, Y ).

Remark: (From the proof of the preceding theorem) |L(−→x )| ≤ ‖L‖|−→x | for any
L and −→x .

Proposition: Let L, L1, L2 ∈ L(Rn, Rm).
Then

1. ‖L1 + L2‖ ≤ ‖L1‖ + ‖L2‖.

2. ‖cL‖ = |c|‖L‖.

3. (L1, L2) → ‖L1 − L2‖ defines a metric on L(Rn, Rm).

4. If L : Rn → Rm and M : Rm → Rp then the composite function ML ∈
L(Rn, Rp), ML(−→x ) = M(L(−→x )), satisfies ‖ML‖ ≤ ‖M‖‖L‖.

Definition: Ω ⊆ L(Rn, Rn) is the set of all invertible elements in L(Rn, Rn).

Theorem: Let L ∈ Ω;
‖L−1‖ = 1

α ;
M ∈ L(Rn, Rn) such that ‖M − L‖ = B < α.

Then M−1 exists, i.e., M ∈ Ω (so Ω is open in L(Rn, Rn)), and L 7→ L−1 is a
continuous homomorphism.

Remark: If (aij) is the matrix representation of a linear map L : Rn → Rm,

then ‖L‖ ≤
(

∑

i,j

a2
ij

)1/2
.
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Theorem: Let X be a metric space;
aij : X → R for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Then x 7→ (aij(x)) is a function from X to L(Rn, Rm) with respect to standard
bases. Then if the aij ’s are continuous then the mapping x 7→ (aij(x)) is
continuous with respect to the norm.

Definition: Let
−→
f : V ⊆ Rn → Rm where V is open and let −→x ∈ V . Then if

there is a linear map A(−→x ) such that

|
−→
f (−→x +

−→
h ) −

−→
f (−→x ) − A

−→
h |

|
−→
h |

→ 0

as |
−→
h | → 0 then we say that

−→
f is differentiable at x and A(−→x ) is the deriva-

tive of
−→
f at −→x .

Remark: We can write
−→
f (−→x +

−→
h ) −

−→
f (−→x ) − A

−→
h = −→r (

−→
h ), where −→r (

−→
h )

is the “error” term, and the existence of the derivative implies that |−→r (
−→
h )| is

small compared to |
−→
h |.

Remark:
−→
f is continuous at −→x if it is differentiable there.

Theorem: Let
−→
f be differentiable at −→x ∈ E, where E is open;
A1, A2 be two maps satisfying the definition of the derivative..

Then A1 = A2, i.e., the derivative is unique.

Theorem (chain rule):
Let −→g : V ⊆ Rm → Rp be differentiable, with V open;

−→
f : W ⊆ Rn → Rm be differentiable, with W open;
−→
F : W → Rp be defined by

−→
F (−→x ) = −→g

(−→
f (−→x )

)

∈ Rp.

Then
−→
F is differentiable and

−→
F ′(x) = −→g ′

(−→
f (x)

)

·
−→
f ′(x).

Definition: A function
−→
f : V ⊆ Rn → Rm, where V is open, is continuously

differentiable (C1) if it is differentiable and −→x 7→
−→
f ′(−→x ), a mapping from V

to L(Rn, Rm), is a continuous map.

Theorem: Let
−→
f : V ⊆ Rn → Rm where V is open.

Then
−→
f is C1 ⇐⇒ for

−→
f = (f1, . . . , fm) and ∀i, j ∂fi

∂xj
exist and are contin-

uous on V .
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Theorem (inverse function theorem):

Let
−→
f : V ⊆ Rn → Rn be C1, where V is open;
−→a be in the domain of the definition of

−→
f ;

−→
f ′(−→a ) ∈ L(Rn, Rn) be invertible.

Then ∃ open sets U containing −→a and V containing
−→
f (−→a ) such that

−→
f : U →

V is a bijection.

Theorem (implicit function theorem):

Let f : E ⊆ Rn+m → Rn where E is open, such that
−→
f ∈ C1(E);

(−→a ,
−→
b ) be such that

−→
f (−→a ,

−→
b ) =

−→
0 ;

A =
−→
f ′(−→a ,

−→
b ) (an n × (n + m) matrix);

A be such that A(
−→
h ,

−→
0 ) =

−→
0 ⇐⇒

−→
h =

−→
0 .

Then ∃ an open set W containing
−→
b and a C1 map −→g : W → Rn such that

−→
f

(−→g (−→y ),−→y
)

=
−→
0 ∀−→y ∈ W and −→g (

−→
b ) = −→a .

Definition: C(X) is the set of all real-valued continuous functions on X and
is a metric space with metric ρ(f, g) = supx∈X |f(x) − g(x)|.

Definition: A ⊆ C(X) is an algebra (of continuous functions) if ∀f, g ∈
A ∀c ∈ R we have f + g, fg, cf ∈ A (where fg(x) = f(x)g(x)). Note that C(X)
itself is an algebra.

Lemma: If A ⊆ C(X) is an algebra then so is A ⊆ C(X).

Theorem (Stone-Weierstrass v. 1): Let X be a compact metric space
and A ⊆ C(X) be an algebra such that

1. A “separates points” of X , i.e., given x1 6= x2 in X ∃f ∈ A such that
f(x1) 6= f(x2); and

2. A “vanishes nowhere,” i.e., ∀x ∃g ∈ A such that g(x) 6= 0.

Then A = C(X) (i.e., A is uniformly dense in C(X)).

Theorem (Stone-Weierstrass v. 2): Let X be a compact metric space
and A ⊆ C(X) such that

1. A is a vector space;

2. A separates points;

3. 1 ∈ A;

4. A is a lattice for the natural order (i.e., f, g ∈ A =⇒ max(f, g), min(f, g) ∈
A); and

5. A is closed.

Then A = C(X) (i.e., A is uniformly dense in C(X)).
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