
�e Soot-based Toolchain For Analyzing Android Apps
Steven Arzt

Fraunhofer SIT

Darmstadt, Germany

Steven.Arzt@sit.fraunhofer.de

Siegfried Rasthofer

Fraunhofer SIT

Darmstadt, Germany

Siegfried.Rasthofer@sit.fraunhofer.de

Eric Bodden

Heinz Nixdorf Insitute at Paderborn

University & Fraunhofer IEM

Paderborn, Germany

Eric.Bodden@iem.fraunhofer.de

Abstract
Due to the quality and security requirements that come with an

always-on mobile device processing large amounts of highly sen-

sitive information, Android apps are an important target for au-

tomated program analysis. Yet, research on new approaches in

this �eld o�en requires a signi�cant amount of work to be spent

on engineering tasks that are not central to the concrete research

question at hand. �ese programming and debugging tasks can

signi�cantly delay the progress of the �eld. We therefore argue

that research in the �eld greatly bene�ts from having a universal

platform of readily usable components and well-tested fundamen-

tal algorithms on top of which researchers can build their own

prototypes. Besides decreasing the required engineering e�ort for

each new piece of research, such a platform also provides a base for

comparing di�erent approaches within one uniform framework,

thereby fostering comparability and reproducibility.

In this paper, we present the Soot framework for program analy-

sis and various highly integrated open-source tools and components

built on top of it that were designed with re-usability in mind. �ese

artifacts are already at the core of many research and commercial

projects worldwide. Due to the shared platform, results from one

tool can not only be used as inputs for the others, but individual

data objects can be passed around to form one large API with which

one can build new research prototypes with ease.

CCSConcepts •So�ware and its engineering→Development
frameworks and environments; So�ware libraries and reposito-
ries;

Keywords Soot, Android, Program Analysis, Data Flow, Repro-

ducibility, Infrastructure

ACM Reference format:
Steven Arzt, Siegfried Rasthofer, and Eric Bodden. 2017. �e Soot-based

Toolchain For Analyzing Android Apps. In Proceedings of 4th IEEE/ACM
International Conference on Mobile So�ware Engineering and Systems, Buenos
Aires, Argentinia, May 2017 (MOBILESo�’17), 10 pages.

DOI: 10.475/123 4

1 Introduction
Smartphone apps are ubiquitous nowadays. According to data from

Yahoo, the average user has 95 apps installed on her phone, 35

of which she uses on a daily basis [41]. Many users rely on apps

for important daily tasks such as reading their business and pri-

vate e-mails, mantaining their calendars, or giving them directions

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MOBILESo�’17, Buenos Aires, Argentinia
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

while on the road. With these reliance on mobile apps, the quality

and reliability of these apps is of great importance. �is requires

developers to maintain high standards in checking their apps for

potential bugs and incompatibilities.

On the other hand, managing all this data on a single device

also a�racts criminals who try to exploit vulnerabilities in existing

apps or deploy outright malicious apps to unsuspecting users. With

highly accurate sensors for GPS and acceleration built into the

devices, data the� goes beyond classical desktop concerns and

allows for full user pro�ling. Even benign apps can pose signi�cant

challenges to user privacy. Developers can gain revenue from apps

by embedding advertisement libraries into their code that then take

care of showing advertisements to the user. Each display of an

ad bene�ts the developer �nancially. �ese libraries, on the other

hand, o�en collect various pieces of information about the user for

the purpose of building user pro�les for targeted advertisement.

�is can include location data, the set of installed apps on the phone,

and various unique identi�ers [19, 36]. �e concrete behavior of

these libraries is o�en unknown not only to the end user, but also

to the app developer who uses the advertisement library as a black

box.

All these challenges require approaches for analyzing so�ware,

be it mobile apps as a whole or libraries that are to be embedded into

such apps. In this paper, we address static and hybrid approaches as

well as dynamic analyses based on instrumentation. Although the

concrete analysis goals di�er for the various stakeholders (develop-

ers, malware analysts, end users), they all have some requirements

in common. In most cases, source code is either completely un-

available or missing for at least some portions of the app, such as

the advertisement libraries. Consequently, one requires an analysis

approach that works on binaries, not just on source code. Secondly,

since most analysis tasks are complex, developing a single tool from

scratch would incur a prohibitive e�ort. �erefore, it is paramount

that new analyses can be built on top of existing, well-maintained,

stable and mature frameworks and toolkits with open interfaces.

Many analyses, for example, require binary app code to be parsed,

a callgraph to be constructed, or speci�c data �ows to be detected.

If basic frameworks for these tasks are available, researchers can fo-

cus on their contribution instead of engineering e�orts on building

blocks outside of their primary research question. �is observation

leads to another requirement: Tight integration requires common

abstractions. For instance, if the tool for reading in Android byte-

code were to use a di�erent output format than what is expected

as an input by the callgraph-construction system, one would have

to spend tedious e�ort on creating suitable interfaces.

In this paper, we present an ecosystem of analysis tools and

frameworks built on the Soot framework for program analysis and

transformation [24, 37] as their shared base with the Jimple inter-

mediate representation [38] as the common language level for all

analyses. �e Soot ecosystem allows researchers and practitioners

MOBILESo�’17, May 2017, Buenos Aires, Argentinia S. Arzt et al.

to quickly develop and evaluate new approaches by building on

existing, well-tested building blocks, some of which have been un-

der development for over a decade, long before Android or mobile

systems in general even entered the �eld. �e tools presented in

this paper have not only been used in a variety of research projects

all around the world, but have also become central building blocks

of industry projects with major companies. In addition, commercial

products such as CodeInspect
1

are based on these tools. Still, the

basic libraries presented herein are and will remain open source

and free for all to use.

�e remainder of this paper is structured as follows. In Section 2,

we give an overview over the architecture of the Soot analysis

ecosystem. In Section 3, we present Soot itself and the various tools

that form the Soot ecosystem. In Section 4, we then show how

these tools can be applied to solve various common code analysis

problems with regard to Android apps, before we conclude the

paper in Section 5.

2 Overview
Figure 1 presents an overview over how the various tools interact

to cover di�erent aspects of static analysis for Android. Soot is

the central platform on which all tools are based. It provides the

front-end for reading in the bytecode and the Jimple intermediate

representation on which the analyses are conducted. On top of

Soot, FlowDroid is the core technique for computing data �ows.

All other approaches and tools that require data �ows integrate

FlowDroid for this purpose. �e other tools, however, not only

extend FlowDroid, but can also give back data for improving the

quality of the data �ow analysis. StubDroid, for example, uses

FlowDroid to compute data �ows inside libraries. FlowDroid

can then use these summaries to improve the analysis performance

for apps that use the pre-analyzed and pre-summarized libraries.

Figure 2 presents how the tools interact, i.e., which data is pro-

duced and consumed by which tool. Since all tools are based on

Soot, the �gure does not contain explicit edges for this basic technol-

ogy. FlowDroid is grouped together with StubDroid and ICCTA,

because the la�er two tools extend FlowDroid. For an external

user, they are usually integrated as a package. In combination, the

three tools provide a highly e�cient static data �ow tracker that

can deal with inter-component communication and large libraries.

Flows from this integrated “meta-tool” are then used in FuzzDroid

and Harvester. SuSi, on the other hand, provides the inputs (i.e.,

the sources and sinks), for the data �ow analysis. As we will point

out in the subsequent sections, the tools presented in this paper are

applicable and widely used beyond data �ow analysis, though. Each

of the following sections focuses on one of the tools and describes

the respective tool as well as its integration into our tool suite.

3 Tools
In this section, we present the toolchain based on Soot that can

be used to solve various common analysis problems with regard

to Android apps. Section 3.1 focuses on Soot and its Jimple inter-

mediate representation. We further explain the FlowDroid static

data �ow tracker in Section 3.2. For automatically determining

sensitive sources and sinks that can serve as inputs to the data �ow

analysis, we present the SuSi approach in Section 3.3. When deal-

ing with apps that contain large libraries, to maintain scalability

1www.codeinspect.de

it is advisable to abstract from the concrete library implementa-

tions. StubDroid implements an approach that allows for such

abstraction without any loss of precision (Section 3.4). While these

building blocks focus on intra-component analyses, ICCTA (Sec-

tion 3.5) extends FlowDroid and Soot to inter-component analysis.

For some apps, it is relevant to know under which circumstances

a certain statement is executed. If an action, for example, is only

performed under dubious conditions, this can indicate targeted mal-

ware. FuzzDroid enables such analyses (Section 3.6). In Section 3.7,

we present a hybrid approach for extracting runtime values from

(potentially obfuscated) Android apps called Harvester. �e tool

can e�ectively be used for de-obfuscating apps and rewriting them

to improve the results of the other tools presented here. All these

approaches are building blocks of one large ecosystem. �ey are

all available as inter-linked open-source projects
2
, and have been

re-used for custom analyses, both in academic research and for

building commercial analysis tools.

3.1 Soot
Soot is the core framework on which all other tools are built. Orig-

inally, Soot was designed as a framework for the analysis and

transformation of Java programs [37]. At a time when the Java

Virtual Machine (JVM) was still purely based on emulation, the

main purpose of using Soot was to implement ahead-of-time opti-

mizations via bytecode-to-bytecode transformations. �e introduc-

tion of JIT compilers into modern JVMs reduced the importance

of static ahead-of-time optimizations and Soot was evolved into

a more generic analysis tool. In addition to �nding performance

problems [6, 8, 43], Soot-based analyses are now, among other areas,

applied to bug �nding [10], as well as the identi�cation of security

problems [20, 26] and privacy issues [3, 44]. With the introduction

of the Dexpler component [5], Soot gained the ability to process

Android’s Dalvik �le format.

All input code is translated to the Jimple intermediate representa-

tion [38], regardless of its original format. �is concept allows client

analyses to work on di�erent platforms, for example by combining

the code of an Android app with the Java-based implementation of

the Android framework. �is provides a more complete view of the

app’s execution than what would be possible by representing the

app alone. Jimple is a three-address language of low complexity.

It features only 15 di�erent types of statements that can contain

29 di�erent types of expressions. In comparison to approaches

directly based on a disassembler such as Baksmali [13, 42], this

greatly reduces the e�ort to build an analysis. Additionally, Jimple

is typed and provides typed local variables, which frees the analysis

designer from having to deal with registers (as they exist in Dalvik

code) or even stack operations (as in Java bytecode).

Furthermore, we have started to implement front-ends for other

bytecode languages such as the Microso� Intermediate Language

(MSIL) as well [2]. �ese additional front-ends extend the applica-

bility of Jimple beyond Java and Android with the hope that many

existing analyses can be re-used for new platforms with minimal

e�ort. Having a single integrated intermediate representation also

allows a client analysis to process code from mixed sources, e.g.,

an Android app that references a Java library. Cross-platform in-

tegration is becoming more and more important with the rise of

2
For Harvester, the licensing arrangements have not been �nalized yet. �erefore,

this tool is not available as an open-source project for now. Please contact us for

individual arrangements if you would like to use this tool.

www.codeinspect.de

The Soot-based Toolchain For Analyzing Android Apps MOBILESo�’17, May 2017, Buenos Aires, Argentinia

Soot

FlowDroid

StubDroidSuSi

Custom Analysis

HarvesterFuzzDroid ICCTA

Figure 1. Android Analysis Tools Architecture

SuSi

FuzzDroid

FlowDroid

ICCTA

Harvester StubDroid

Sources/Sinks

Sources/Sinks

Sources/Sinks

Flows

Summaries

Flows

Flows

ValuesValues

Static Analysis

Hybrid Analysis

Figure 2. Android Analysis Tools Interaction

the corresponding development suites. We have already observed

Android apps and even Android malware wri�en in C# in the wild
3
.

�ose apps were compiled to MSIL code, which then runs in a

di�erent virtual machine alongside Android’s normal Dalvik VM

(or ART runtime in newer systems).

As an analysis framework, Soot already o�ers a broad variety of

basic analyses that are fundamental for semantically richer client

analyses. A client analysis that veri�es the legitimacy of outgoing

connections may, for example, use Soot’s constant value propaga-

tion to obtain URLs, IP addresses and host names as string constants

inside API method calls without having to backtrack variable as-

signments on its own. Other analyses may want to use Soot’s dead

code eliminator to remove code that is le� in the app for debugging

3
Package name com.tinker.gameone, MD5 3ae3cb09c8f54210cb4faf7aa76741ee

purposes, but that is never executed in production, because it is

control-�ow dependent on a Boolean variable that is always set

to false. �e optimizations that stem from Soot’s past as a byte-

code optimization framework can be very useful for reducing the

complexity of the target code before conducting the actual static

analysis. Furthermore, Soot provides e�cient solvers for popular

analysis frameworks such as the monotone framework or (through

Heros [7]) the IFDS framework by Reps, Horwitz, and Sagiv and

the IDE framework by the same authors.

3.2 FlowDroid
FlowDroid [3] extends Soot with a highly precise static data-�ow

tracker for Android and Java. �e main use case for which Flow-

Droid was developed was to �nd privacy issues in Android apps.

MOBILESo�’17, May 2017, Buenos Aires, Argentinia S. Arzt et al.

Data �ows are, however, also required for many other problems.

Integrity violations and SQL Injections, for example, are dual prob-

lems and can thus directly be solved using FlowDroid as well.

FlowDroid’s data �ow tracking problem is formulated in the

IFDS framework. As its main abstraction, FlowDroid uses access

paths. �is allows the analysis to not only track taint state on vari-

ables and �elds along the app’s control �ow graph, but more precise

sequences of �eld dereferences. If the code, for example, writes

sensitive data into a.b.c.d, but later leaks a value derived from

a.b.c.e, this will not lead to a false positive in FlowDroid. Several

optimization techniques including a custom-built IFDS solver, allow

the data �ow tracker to retain high performance and scalability de-

spite its precision. Furthermore, FlowDroid does not rely on Soot’s

standard alias analysis, because this analysis follows the traditional

binary pa�ern of checking whether two objects potentially alias.

For the data �ow analysis, on the other hand, whenever a heap

object is tainted, all aliases must be enumerated and propagated

alongside the original taint (for a detailed discussion, see [1]). Such

a requirement does not �t the traditional binary model. Further-

more, traditional alias analyses are limited to one base object and

one �eld which is below the precision of arbitrary-length access

paths. �erefore, FlowDroid provides its own integrated alias

analysis, which is also formulated as an IFDS problem based on

access paths just like the core data �ow tracker. �is approach

allows FlowDroid to not only retain the same precision for alias

and data �ow analysis, but also schedule both problems on the

same multi-threaded infrastructure.

Besides being used as a library for computing data �ows, Flow-

Droid can also serve as a testbed for new algorithms and ideas.

In fact, data �ow analysis builds on a broad variety of techniques

such as alias analysis, points-to analysis, and callgraph analysis.

More o�en than not, those basic building blocks are researched and

evaluated in isolation. As a consequence, the implicit assumptions

of these approaches, e.g., regarding the number of queries posted

to an alias analysis, or the distribution of variables for which such

queries are posted, remain unclear and unvalidated. If another

researcher needs to integrate such a technique, she o�en needs to

resort to trial-and-error when evaluating which approach is best

suited for her needs.

�anks to FlowDroid’s open architecture, such building blocks

can be tested and evaluated in a real-world scenario on massive

data. If a new alias analysis, for example, is integrated as an imple-

mentation of FlowDroid’s IAliasingStrategy interface, it can

be used for running a data �ow analysis on a large number of real-

world Android apps of substantial size and complexity. Delivering

good results in such a scenario greatly improves the con�dence in

the presented approach. Since FlowDroid is based on the Soot

framework, integrating building blocks that are also based on Soot

is easily possible. Furthermore, having a common framework in

which to try out new approaches allows for easy comparison be-

tween techniques and in relation to FlowDroid’s already existing

default implementations. One alias analysis that has already used

FlowDroid as a testbed is Bommerang [35], which lead to new in-

sights on the analysis’ tradeo� between precision and performance.

A second interface abstracts from FlowDroid’s handling of

native method calls. By default, the data �ow tracker relies on a

small set of hand-wri�en rules for the most common native method

calls that occur inside the Java and Android base libraries. If other

researchers would like to contribute a data �ow analysis for native

code that is capable of modelling calls to the Java Native Interface

(JNI), FlowDroid is the ideal testbed for such an analysis. With

only a small set of methods to be implemented, the contributing

researcher can quickly try out her analysis on a large number of

real-world Android apps from the Google Play Store that make use

of native code. Various automated approaches for identifying and

downloading such candidate apps have already been proposed as

well [32, 39].

In fact, the core FlowDroid data �ow tracker is platform-agnostic

and abstracts away from all platform-speci�c models and tech-

niques using open interfaces. It provides default implementations

of these interfaces that model the Java semantics. Outside of Flow-

Droid’s core, a set of extensions provides the core with the seman-

tics of the Android pla�form and additional algorithms such as the

callback collection explained above. �is shows that FlowDroid is

�exible enough to accomodate a variety of di�erent analysis targets

and algorithms. Even for the core IFDS solver, multiple implemen-

tations exist (FlowDroid’s own Fast Solver, one based on Heros [7],

and a �ow-insensitive variant of the Fast Solver). More can be

added to explore new trade-o�s between precision and scalability.

3.3 SuSi
Before one can conduct a data �ow analysis, one must specify the

set of sources and sinks. Sources are all methods which the app

can use to obtain sensitive information; only those values are to be

tracked by the data �ow analysis. Sinks are the only methods for

which an alarm should be raised if they are supplied with sensitive

data. �erefore, missing a source or a sink can result in critical

data �ows being missed, regardless of the quality of the concrete

data �ow solver being used. When the analyst aims at �nding

security vulnerabilities or privacy violations, such an incomplete

set of sources and sinks can lead to a false sense of security.

Given the more than 140,000 methods already in Android 4.2,

manually assembling a complete list of sources and sinks is practi-

cally infeasible. In fact, as we have shown in our previous work on

SuSi [31], popular analysis tools that rely on such hand-cra�ed lists

miss important sources and sinks that allow an a�acker to leak data

from a device without being detected. SuSi, on the other hand, uses

machine learning to automate the process of identifying sources

and sinks from a binary distribution of the Android framework. �e

approach uses a small subset of hand-annotated sources and sinks

to train a classi�er that then decides on the remaining methods

in the framework. In our experiments, we showed this approach

to yield a precision and recall of more than 92%. In fact, there are

many more sources and sinks in Android than usually considered.

We have identi�ed hundreds of sources and sinks in Android 4.2.

Notably, identifying sources and sinks in the Android framework

alone is not su�cient. Many libraries such as the Google Chrome-

cast SDK come with their own methods for obtaining sensitive data

or for sending data to untrusted receivers. One key advantage of an

automated approach such as SuSi is that it requires a mere re-run

of the approach on a di�erent JAR �le. In many cases, it is not even

required to extend the hand-annotated training set, although this is

possible in case the results on the new library are not satisfactory.

Having a comprehensive set of sources and sinks, however, also

comes with some disadvantages. With such a large number of

sources and sinks, analysts can easily be overwhelmed. Addition-

ally, when the data �ow analysis is run with all sources and sinks

in the whole Android framework, this can also pose challenges for

The Soot-based Toolchain For Analyzing Android Apps MOBILESo�’17, May 2017, Buenos Aires, Argentinia

the scalability of the data �ow tracker. Every return value of each

source method needs to be tracked through the complete app, at

every line at which it is in scope. Secondly, with so many sources

and sinks, it can be time-consuming to identify the really important

data �ows from a large number of �ows that are technically correct

but not relevant for the analysis task at hand. To alleviate this prob-

lem, SuSi provides a second step that automatically categorizes

the sources and sinks a�er they are discovered. Our 14 categories

for sources include, among others, account data, contact data, data

obtained from the network, location data, and unique identi�ers.

�e 17 sink categories include, among others, data wri�en to the

calendar or contact database, to the network, or being sent out via

SMS or MMS. �e analyst can use these categories to only pass

those sources that are of interest for her concrete goals to the data

�ow analysis. Excluding all other categories greatly redcues the

computational e�ort and the required amount of memory.

SuSi integrates with FlowDroid via con�guration �les. �e

source and sink list generated by SuSi can directly serve as the

input for the FlowDroid data �ow tracker. Since SuSi and Flow-

Droid share data structures and parsers, they can both also reade

a variety of other formats, including the API lists generated by the

PScout project [4] and the RIFL speci�cation format [15] used by

the Cassandra certifying app store [27].

3.4 StubDroid
Java programs and Android apps are o�en implemented on top

of large libraries. �ese libraries spare the developer from imple-

menting common tasks such as cryptography, �le handling, error

reporting, and graphics rendering on his own. While relying on

libraries is convenient and good so�ware engineering practice, it

also poses challenges for static analysis. Especially in the context

of Android apps, the library is compiled into the same APK �le as

the user code, e�ectively leaving the static analysis with one large

package. �is package consists mainly of library code, and hence,

most of the analysis e�ort is spent on the libraries, not on the actual

user code. Furthermore, since many apps share the same libraries,

and those libraries are packaged into all of these apps, the same li-

brary code is analyzed over and over again. �is e�ort signi�cantly

increases the time and memory required for the analysis.

To alleviate this problem, analyses can rely on explicit library

models instead of analyzing the library code. While this approach

reduces the time and memory consumption, it poses new challenges

in obtaining the required library models. Placing this burden upon

the user is a common approach [16–18, 22, 28, 45], but not ac-

ceptable in practice. Even if the average user is assumed to have

the technical understanding required for constructing the models,

de�ning them manually is a major e�ort. Relying on user-de�ned

models also leads to a questionable completeness of the whole

approach if the user fails to provide (complete) models for some

library methods. �erefore, some data �ow analyses [21] instead

over-approximate the library models through rules of thumb such

as “�e return value of a method is always tainted if at least one

of its parameters is tainted”. �ese models are very coarse-grained

and do not take the speci�c behavior of the particular method at

hand into account. Consesquently, false positives can arise. Even

worse, the original performance and memory problem can appear

again due to over-tainting.

To alleviate this problem, StubDroid automatically analyzes

library classes and creates precise per-method data �ow summaries,

which can then be plugged into a FlowDroid data �ow analysis.

Instead of having to analyze the concrete library implementation,

FlowDroid can then abstract from the library code at the level of

the public interface. StubDroid rules take the form “when method

m() is called with the �rst parameter tainted before the call, the

return value is tainted a�er the call”. Such a rule requires taints

to only be propagated across a single data �ow edge (i.e., the sum-

mary edge), regardless of the original size of the implementation of

method m(). �is approach is especially useful for deep call hierar-

chies which are common in the Java and Android base libraries. In

the Java collection APIs, using StubDroid summaries can reduce

the computation time by about 80% and even allow for those cases

to be analyzed for which the analysis would otherwise time out or

exhaust its memory allowance. Note that StubDroid analyzes each

library method in isolation, which can further prevent the common

problem of exponentially-growing taint sets. In other words, all

taints that are generated during the analysis of one method are

con�ned to that method. Only the summarized models are later

combined.

Note that StubDroid summaries are tailored to individual meth-

ods and thus avoid the over-approximation problem of the rules of

thumb. �ey are also based on access path just like the FlowDroid

data �ow analysis. Consequently, there is no loss of precision

when substituting a library implementation by a StubDroid model

during a FlowDroid analysis. Furthermore, StubDroid also sum-

maries aliasing information for libraries with the same level of

precision. In fact, since StubDroid not only extends FlowDroid

with library summaries, but also internally uses FlowDroid to gen-

erate the summaries, it provides serialization and summarization

for FlowDroid’s aliasing infrastructure. In summary, StubDroid

is not only an important extension to improve the scalability of

FlowDroid, but can also serve as a building block for other Soot-

bases analyses that need to deal with large libraries, either with

regard to data �ow or with regard to aliasing.

3.5 ICCTA
�e FlowDroid data �ow tracker focuses on �nding data �ows in-

side a single Android component. Consequently, if data is received

from the outside, e.g., through an incoming intent, or leaves the

component, e.g., through an outgoing intent, these points must

be modeled as sources or sinks, respectively. For obtaining a com-

plete picture of an app, such �ows are, however, not satisfactory.

When looking for privacy issues or security �aws, �ows that only

occur inside an app, regardless of whether they cross component

boundaries or not, are o�entimes not the primary concern. Con-

sequently, FlowDroid must be extended to combine the various

detected intra-component �ows according to the control �ow edges

between the components. �is leads to two research challenges:

Firstly, the inter-component control �ow edges must be identi�ed,

and, second, the �ows must be combined.

For enumerating the inter-component �ows, various tools have

been built on top of the Soot framework, including EPICC [30],

IC3 [29], and Harvester which we present in Section 3.7. For

integrating the �ows based on these control �ow edges, there are

two general approaches. �e �rst approach, which is taken by

ICCTA [26], is to rewrite the app so that all inter-component com-

munication is replaced with simple Java method calls. �e resulting

app then only consists of one large component that can be ana-

lyzed by FlowDroid. In other words, ICCTA can be thought of

MOBILESo�’17, May 2017, Buenos Aires, Argentinia S. Arzt et al.

as a pre-analysis step for FlowDroid. �e second, alternative ap-

proach, implemented in DidFail [23], instead �rst analyzes each

component in isolation and then, outside of the data �ow tracker,

combines the discovered �ows based on the inter-component con-

trol �ow edges. Both approaches are well integrated into the Soot

and FlowDroid tool chain and both are well-suited for the pur-

pose of inter-component data �ow analysis. �e ICCTA approach,

however, has the advantage of generating a single integrated call-

gaph, which is then also available to client analyses that build upon

FlowDroid. With this approach, the client analysis can abstract

from Android’s component-based architecture and concentrate on

its actual analysis problem. With the DidFail approach, on the other

hand, the integration must happen on a higher level, i.e., on the

semantic level of per-component analysis results.

Note that inter-component communication is technically equiv-

alent to inter-app communication in Android. �e only di�erence

lies in how the operating system performs access control checks.

�erefore, both the ICCTA and the DidFail approach can also be

applied to sets of communicating apps.

3.6 FuzzDroid
When applying dynamic analysis to Android apps, code coverage

is a known problem [12] with many approaches not being able to

exercise more than 30% of the app’s code. One contributing factor,

especially in the context of malware apps, is that the behavior of

the app under analysis can depend on its execution environment.

A malware app may, for instance, only send out unsolicited text

messages to expensive premium-rate telephone numbers when it

is not running inside an emulator. Other apps check whether they

are running on phones with sim cards registered in speci�c coun-

tries, or only perform certain tasks at night-time. For successfully

employing dynamic or hybrid analyses, the target device must be

con�gured accordingly. Due to the high number of di�erent types

of environment variables in Android, it is infeasible to try out all

possible combinations of these variables and look for changes in

app behavior. In Android, an app can query for SIM card properties

(operator name, country code, etc.), ba�ery charging level, device

properties (screen resolution, device manufacturer and model, etc.),

available types of Internet connectivity, and many more parameters.

As a solution to this problem, we propose FuzzDroid [34]. �e

goal of FuzzDroid is to report concrete environment values un-

der which a user-de�ned code position inside the app is executed.

FuzzDroid combines static code analysis with dynamic fuzzing

techniques to generate candiate environments, check them at run-

time, and then use the learned runtime behavior to further improve

the next candidate environment. �is process continues until ei-

ther the requested code location has been reached, or no further

progress can be made. �e la�er can happen if the target location,

for example, is indeed unreachable regardless of the environment.

FuzzDroid can therefore serve as an important building block

when implementing instrumentation-based dynamic analyses us-

ing Soot. When the API-to-value mappings from FuzzDroid are

known, the analyst can either recon�gure her device to match the

particular con�guration, or can use Soot’s code manipulation tech-

niques to rewrite the app such that a suitable fake environment is

injected at runtime. With the la�er technique, the analyst replaces

all environment API calls in the app with constant values that are

known to be suitable for reaching the code position of interest. �is

bytcode modi�cation approach is suitable even if the property as

such cannot be changed without low-level modi�cations to the

emulator infrastructure.

Furthermore, FuzzDroid provides an infrastructure for building

reliable hybrid analyses with Soot. �e core idea is that a (possibly

resource-intensive) static analysis runs on a desktop computer or

server, while the app is executed on an emulator or a real phone. �e

static analysis results can be used to more e�ectively con�gure and

steer the app execution, while the runtime behavior can be tracked

and evaluated to more precisely steer the static analysis. With every

run, more data is available, until the process ideally converges to

the solution of the overall analysis task. In FuzzDroid, the static

analyses that generate new candidate environments are called value
providers. �e dynamic runtime environment that is instrumented

into the app provides the value providers with runtime information

such as a dynamic callgraph, the runtime values of certain requested

variables or �elds, and exception data in case the app has crashed

due to an unhandled exception. Additionally, FuzzDroid monitors

the app for certain events such as dynamic code loading. In that

case, it extracts that dex �le that is being loaded and sends it back to

the analysis running on the desktop computer. �e static analysis

can then merge this dex �le into its Soot instance and improve its

recall.

We believe that FuzzDroid, while not yet a library that can

be used out of the box, provides valuable pa�erns and examples

of how to build e�cient hybrid analyses using Soot. �is spares

the analysis developer from having to deal with technical details

such as communication between the app and the host computer,

or implementing the correct transformations that gather all the

information required to build a dynamic call graph.

3.7 Harvester
While analyzing Android apps already poses challenges in itself,

many apps are further obfuscated to deliberately hinder both man-

ual and automatic analysis. In the context of malicious apps, the

reason for code obfuscation is obvious, as app store providers are

continuously monitoring their stores in an a�empt to identify and

remove such malicious code. Consequently, the malicious app can

only generate substantial revenue for the miscreant until its be-

havior is detected by the store provider. A�er detection, existing

installations of the malware on victims’ devices might still be ac-

tive, but it becomes considerably harder to infect new phones. In

fact, Google even provides a feature that allows store o�cials to

remotely remove known malicious apps from phones. However,

code obfuscation is not limited to malicious apps. Benign, but sen-

sitive so�ware such as banking apps use very similar obfuscation

techniques to make it harder for an a�acker to discover potential

security �aws inside the app. Yet other app developers employ code

obfuscation for protecting their developers’ intellectual property

such as algorithms from being reverse engineered by competitors.

In total, obfuscation techniques are increasingly used. In the

most basic case, only the class, method, and �eld names are changed.

Proguard is a tool for such basic obfuscation which is freely avail-

able and even shipped together with the o�cial Android SDK. App

developers are encouraged to apply it to their app before uploading

it to the Play Store. �is name obfuscation does not pose a challenge

to most static analysis approaches, because they do not expect these

names to carry semantics. More involved obfuscation techniques,

however, can render a purely static analysis practically impossible.

The Soot-based Toolchain For Analyzing Android Apps MOBILESo�’17, May 2017, Buenos Aires, Argentinia

Some commercial protection tools such as APK Protect and Dex-

Guard automatically rewrite an app to not call methods directly

as normal invocations, but instead use re�ection. �e class and

method names that are passed to the Java re�ection API as strings

are not plain text constants, though. Instead, they are computed at

runtime. Most commonly, the names are encrypted in some way

(techniques range from simple bit-shi�ing techniques to proper

encryption using algorithms such as AES), and are only decrypted

at runtime using a key derived from a computation. In other words,

the mapping from call site to callee is only available at runtime,

sometimes even only on demand, i.e., with the class and method

names only being decrypted right before they are needed for a

call. Without this information, a static analysis can only generate a

massively over-approximate callgraph that essentially maps every

call site to every callee with a matching list of parameter types.

Clearly, such an approach is highly imprecise and impractical for

many client analyses.

To alleviate the problem, we have implemented a hybrid (static

and dynamic) approach for reconstructing runtime values from

obfuscated apps. Our tool Harvester �rst uses static slicing to

identify all binary instructions that contribute to the computation

of a given runtime value. Such a value can, for example, be the class

name passed to Class.forName() in a re�ective method call. In

this case, the respective parameter of Class.forName() is called

a logging point. �e concrete value that is computed at runtime

is called a value of interest. Harvester extracts all identi�ed con-

tributing statements (i.e., the slice) and places them into a new app

where they can be executed in isolation. �is app is then installed

and run on an emulator or a real phone. It directly calls the slice

code and reports the computed value back to the computer on which

Harvester runs. To enable other analyses such as FlowDroid to

process obfuscated apps, Harvester can rewrite the app to directly

integrate the discovered runtime values. �e logging points are

replaced by string constants containing the computed values of

interest. In the case of Android inter-component communication,

this rewriting allows tools such as EPICC or IC3 to obtain more

precise inter-component callgraphs, which in turn allow for much

more precise data �ow tracking with FlowDroid and ICCTA. For

re�ective method calls, Harvester replaces the calls to the Java

re�ection API with direct method calls to the actual target meth-

ods. �is rewriting e�ectively de-obfuscated the apps. A�erwards,

FlowDroid can construct a callgraph for the app as usual.

As already discussed in Section 3.6, some apps behave di�erently

under di�erent execution environments. Popular checks inside

environment-dependent apps include the country of the user’s SIM

card or her device ID. When computing runtime values, the analyst

is o�en interested in enumerating all values that can be computed

at a given code position, not only those, that happen to occur in

her concrete setup. �erefore, when Harvester detects a condi-

tional based on an environment value, it explores both branches.

For checking whether a conditional depends on an environment

value, it uses static data �ows from FlowDroid. It then rewrites

the conditional to reference a global executor variable. When the

app runs on the emulator, Harvester �rst sets the executor vari-

able to true to explore the then branch of the conditional. When

the values have been computed, Harvester restarts the app with

the executor variable set to false to explore the else branch of

the conditional. �is makes sure that all possible outcomes of the

conditionals are considered. Note that the use of static data �ow

information is not an issue even in the presence of features that

the static analysis cannot reason about, because Harvester can

be run incrementally: It �rst analyzes the app and discovers some

values. A�erwards, it rewrites the app to remove re�ective method

calls and and integrate constants. �is makes it then easier for

FlowDroid to discover more �ows, and Harvester can use this

improved data �ow information on its next run. Each run leads to

more runtime values being discovered. �is approach shows how

FlowDroid and Harvester mutually contribute data to improve

the overall result. Since both tools are based on Soot, such integra-

tions are easily possible without loss in precision or complex data

type conversions.

4 Android Code Analysis Problems
In this section, we describe how the tools presented in Section 3

can be used to solve a variety of common Android code analysis

problems when dealing with Android apps. Table 1 lists the most

common problems together with the tools that solve them. Note

that for the more involved problems, multiple tools work together

to provide the respective feature. �is again shows the impact of a

highly integrated ecosystem in which tools can be built on top of

each other to solve even complex problems with reasonable e�ort.

Code Analysis Problem Tools
Bytecode Instrumentation Soot

Callgraph Construction Soot + FlowDroid

Points To Set Construction Soot + FlowDroid

Data Flow Analysis Soot + FlowDroid

Runtime Value Extraction Soot + FlowDroid + Harvester

Runtime Environments Soot + FlowDroid + FuzzDroid

Library Summaries Soot + FlowDroid + StubDroid

Source / Sink Detection Soot + SuSi

Table 1. Android Code Analysis Problems and Tools To Solve �em

4.1 Bytecode Instrumentation
�e heritage of originally being a compiler framework allows Soot

to integrate both capabilities for analysis and transformation in

a single tool, a feature that is lacking from other well-known

analysis platforms such as Wala [40] and OPAL [14]. �erefore,

not only static analyses can be constructed with Soot, but also

instrumentation-based dynamic analyses [44] and runtime policy

enforcement [33] are possible within the very same framework. �is

dualism of analysis and transformation is also a very important

aspect for researchers working on hybrid analyses that combine

static and dynamic aspects. Especially for security checks, purely

static analysis is o�en not able to certify the absence of policy vio-

lations without accepting a large number of false positives. Purely

dynamic analysis, on the other hand, incurs a prohibitive runtime

overhead. A hybrid approach can alleviate the problems of both

techniques by combining them. In that case, a static pre-analysis,

for example, can identify those parts of the app that can never

violate the policy. �ose parts then be excluded from the dynamic

performance to improve runtime performance [6, 8, 9]. With Soot,

the pre-analysis and the instrumentation for the runtime checking

code can operate on the same representation of the program, with-

out requiring the analysis designer to convert representations or

MOBILESo�’17, May 2017, Buenos Aires, Argentinia S. Arzt et al.

even handle di�erent levels of abstraction between tools. Beyond

performance improvement, hybrid analyses on an integrated plat-

form can also allow for new combinations of static and dynamic

techniques. In DroidForce [33], for example, we use static analysis

with FlowDroid to compute the intra-component data �ows and

integrate them into the app. At runtime, we then combine the intra-

component data �ows with the exact inter-component data �ow

edges that are observed to build a full data �ow path through the

app. With these full �ows, DroidForce can then enforce complex

policies that also include time and state, e.g., “No more than three

SMS messages containing contact data may be sent per hour to the

same telephone number a�er 8pm”. �ough this particular example

is highly arti�cial, it shows the combination of static analysis re-

sults with dynamic state. Concerning the data �ow analysis as such,

the approach of partial static pre-computation that is then extended

with precise dynamic inter-component callgraph information is an

alternative to the pure static inter-component analysis approach

explained in Section 3.5 of this paper, which enumerates �ows in

general.

4.2 Callgraph & Points To Construction
FlowDroid precisely models the Android lifecycle and is thus com-

monly used for building callgraphs of Android apps. Technically,

FlowDroid does not provide a callgraph-algorithm on its own.

Instead, it bridges the gap between Soot’s existing callgraph con-

struction framework SPARK [25], which was originally designed

for Java programs, and the execution model of Android, which is

much more expressive than Java’s. In Java, programs contain a

single main() method to which, at startup time, the JVM passes

control using a re�ective call [11]. A�erwards, the program has

li�le interaction with the virtual machine’s logic. Android apps,

however, are plugins into the Android framework, and follow its

control-�ow, de�ned by numerous lifecycles. Developers imple-

ment classes that are inherited from framework-supplied super-

classes. �is thight coupling allows Android to not only suspend

and resume an app whenever necessary, but also to notify apps of

system-wide events such as ba�ery shortage or an incoming text

message. A static analysis for Android can only be precise, and

gain su�cient completeness, if it respects the exact set of possible

control �ows through the app, even though these control �ows are

orchtestrated by code that resides outside the app. FlowDroid

bridges the concepts of Java and Android by generating an app-

dependent dummy main() method that emulates the interactions

between the app and the operating system. While this main()
method is not a full, executable implementation, it is equivalent

to the real system behavior with respect to callgraph construction,

points-to analysis and control-�ow computation. Consequently,

to obtain a precise and largely complete callgraph of the app, the

analysis designer can feed FlowDroid’s dummy main() method

into any of Soot’s callgraph algorithms. �is feature is useful for

many derived works, even if they do not use FlowDroid’s data �ow

analysis as such.

For constructing the dummy main() method, FlowDroid needs

to analyze various types of �les, including source code, the Android

manifest �le, layout XML �les, and the app’s resource database

resources.arsc. �anks to its modular architecture, FlowDroid

o�ers this broad variety of analyzers and parsers to other analyses

that build on FlowDroid as well. �e analysis designer can, for

example, discover a reference to a user-interface control in the

code. Such references are merely numeric IDs in compiled Android

apps. FlowDroid provides all necessary features for identifying

the respective UI control. In the data �ow tracker, we use this

capability to distinguish between normal input �elds and password

�elds, which are usually more sensitive. Other analyses can build

more comprehensive UI models, for instance based on semantic

information such as �eld labels, without having to re-implement

the layout �le parsers.

When creating the dummy main() method, a major challenge

lies in accurately identifying callbacks and associating them with

the correct host component that receives them at runtime. If this

mapping is incomplete, the main() method misses calls to callback

methods. Consequently, the callgraph constructed with this method

as its entry point is incomplete as well and potentially interesting

code parts are marked as unreachable. If the mapping, on the other

hand, is imprecise, e.g., due to over-approximation, the main()
method contains spurious calls, which, in turn, lead to over-sized

callgraphs. If an analysis uses such an over-sized callgraph, it must

follow a great number of irrelevant edges and will usually not

scale. �erefore, we took great care to accurately model callbacks

in FlowDroid. Note that Android app developers cannot only

register callbacks in the code, but also declare them directly inside

the respective layout XML �le. �is approach is o�en taken for

bu�on click handlers, for example. �erefore, the callback analysis

must relate the callbacks declared in the app’s layout XML �les

to the objects available in the app’s code. �is is a multi-staged

process of associating IDs, resource database entries, and XML data.

If a client analysis uses FlowDroid to construct a callgraph, all of

this complexity is abstracted away inside the FlowDroid library.

Overall, Soot and FlowDroid provide important building blocks

for analyzing Android apps. �ey allow the analysis desinger to

focus on its main objective, while simply re-using existing compo-

nents for building blocks such as callgraph construction, manifest

�le parsing, UI analysis, or callback analysis. FlowDroid’s API is

a direct extension to Soot’s, and uses Jimple objects. �erefore, a

callback method returned by FlowDroid’s callback analysis, for

example, is an instance of SootMethod. �e client analysis can

directly use this method object just like any other method in Soot,

without having to convert any representation between tools.

4.3 Data Flow Analysis
FlowDroid can be used as a standalone tool for data �ow analysis

as well as through its public API. In both cases, the analyst (or

client analysis) must provide the APK �le to be analyzed and a

set of sources and sinks. All data obtained from the sources is

tracked through the program. If data derived from any such tainted

object reaches a sink, it is logged as possible data leak. By default,

the discovered leaks are printed to the console and can optionally

be wri�en into an xml �le. With the API, the client analysis gets

direct access to the Soot data objects for the source / sink method

and class, as well as, if the respective feature is enabled, all Soot

statements on the path from the source to the sink. Especially the

la�er can be very useful if further analysis is to be performed on the

computed data �ow paths. Due to the tight integration of Soot and

FlowDroid, no external conversions or mappings are required.

�e most simple approach for specifying sources and sinks is to

use the text-based format that FlowDroid shares with SuSi. �e

analyst can even copy the interesting subset of the SuSi output

into the FlowDroid source and sink �le and then run the data

The Soot-based Toolchain For Analyzing Android Apps MOBILESo�’17, May 2017, Buenos Aires, Argentinia

�ow solver without any further con�guration. For more advanced

cases, FlowDroid o�ers an XML format in which the analyst can

precisely pinpoint which access paths shall be tainted at which

source and which access paths arriving at which sink shall be

considered leaks. Programatically, the client analysis can also easily

extend FlowDroid with completely di�erent notions of sources

and sinks. By default, sources and sinks are assumed to be access

paths based on parameters or return values for method calls. For

the core data �ow solver, there is not such requirement. �erefore,

a client analysis can pass arbitrary pairs of statements and Soot

locals (i.e., variables) to the solver as sources. For sinks, a custom

provider implementation receives all tainted values that appear at

any statement and can then decide whether to consider this a leak

or not. Harvester, for example, uses this �exibility to consider

conditionals as sinks when looking for environment-dependent

conditionals inside the app code.

4.4 Runtime Value Extraction
For obtaining runtime values from an Android app, the analyst

needs to de�ne a set of logging points (see Section 3.7). Together

with the APK �le, this set serves as the input for the Harvester

tool. Internally, Harvester utilizes Soot and FlowDroid to read in

the app, enumerate the conditionals that depend on environment

variables, compute the slices, build the executor apps, and run them

on the emulator. As an output, Harvester provides a database

with values for each logging point that the analysis has reached at

runtime. Client analyses can then process this database without

any dependencies on Soot or Harvester. More conveniently, Har-

vester can, however, also be used as a library. In that case, the

client analysis can directly interact with Soot objects for further

processing.

4.5 Runtime Environments
For obtaining a runtime environment under which a given An-

droid app executes a given logging point, the analyst only needs

to provide the app as well as the set of logging points that shall be

triggered. FuzzDroid automatically takes care of all the required

tasks such as instrumenting the app, installing it on the emulator,

executing it, and correctly conducting the feedback loop of gen-

erating new candidate environments and trying them out on the

emulator. �e results are wri�en into a �le. Since the approach is

extensible, users can easily write new value providers that supply

FuzzDroid with additional values to become part of new candidate

environments in case the existing providers are not su�cient for the

case at hand. Since FuzzDroid is built on Soot and FlowDroid, all

value providers can directly work on Soot’s data objects, which are

also directly linked to the data �ows provided by FlowDroid. �is

allows value providers to also take �ow information into account

where required.

4.6 Library Summaries
Library summary handling consists of two parts: Firstly, the sum-

maries must be computed. A�erwards, they can be applied to data

�ow analysis or FlowDroid’s integrated context-sensitive alias

analysis. For computing summaries, StubDroid only needs a bi-

nary implementation of the target library. �e generated summaries

take the form of xml �les, one per class. When running FlowDroid

with these summaries, StubDroid’s implementation of the taint
wrapper interface takes care of loading the correct xml �les on

demand and mapping their contents to the concrete incoming taint

abstraction. Users of FlowDroid merely need to enable the Stub-

Droid integration and specify the path to the StubDroid library

and the xml �les.

4.7 Source / Sink Detection
For detecting sensitive sources in a given version of the Android

framework or any other Java-based library, the analyst �rst needs

to obtain an implementation of that library. In the case of Android,

the android.jar �les shipped with the o�cial Android SDK are

not su�cient, because they only contain method stubs that always

throw an exception when called. �ese stubs are designed such that

new apps can be linked against them during development. When

the app is later executed on a real device or an emulator, it can then

use the actual implementation. On Android, the framework classes

are already mapped into the execution host that the operating

system provides for the app. For identifying sources and sinks, this

means that the analyst must �rst extract this real implementation

from an emulator or a device. Once such a complete JAR �le is

available, it can be passed to SuSi.

5 Conclusions
In this paper, we have presented an overview over static and hybrid

analysis tools for Android apps based on the Soot compiler frame-

work. We have discussed how these tools interact on one common

platform. For the external researcher that aims to design and imple-

ment her own analyses on top of this platform, the existing tools

provide ready-to-use implementations of common building blocks

such as callgraph construction, data �ow analysis, library summary

generation, and runtime value analysis. Having such a platform

at her disposal, the researcher can focus on her actual contribu-

tion without having to spend e�ort on infrastructure technique

afar from her �eld of research. Using a common infrastructure

also greatly improves the reproducability and comparability of the

research projects built on top of them. It o�ers a broad �eld of

experimentation for new algorithms and techniques by providing

open interfaces for integrating custom solutions. A new alias algo-

rithm, for example, can then be used as part of, e.g., a full data �ow

analysis on large real-world apps without the researcher having

to care for all other parts of the analysis. Consequently, the work

presented in this paper aims at improving the speed and e�ciency

of scienti�c work in the area of Android program analysis.

Acknowledgments
�is work was supported by the German Federal Ministry of Ed-

ucation and Research (BMBF), by the Hessen State Ministry for

Higher Education, Research and the Arts (HMWK) within CRISP,

by the German Research Foundation through the Projects RUNSE-

CURE and CROSSING, through a Fraunhofer ATTRACT grant and

through the Heinz Nixdorf Foundation.

References
[1] Steven Arzt. 2017. Static Data Flow Analysis for Android Applications. Ph.D.

Dissertation. Technische Universität Darmstadt.

[2] Steven Arzt, Tobias Kussmaul, and Eric Bodden. 2016. Towards cross-platform

cross-language analysis with soot. In Proceedings of the 5th ACM SIGPLAN Inter-
national Workshop on State Of the Art in Program Analysis. ACM, 1–6.

[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, �ow, �eld, object-sensitive and lifecycle-aware taint

analysis for android apps. In ACM SIGPLAN Notices, Vol. 49. ACM, 259–269.

MOBILESo�’17, May 2017, Buenos Aires, Argentinia S. Arzt et al.

[4] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:

analyzing the android permission speci�cation. In Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 217–228.

[5] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.

Dexpler: Converting Android Dalvik Bytecode to Jimple for Static Analysis with

Soot. In Proceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program Analysis (SOAP ’12). ACM, New York, NY, USA, 27–38. DOI:
h�p://dx.doi.org/10.1145/2259051.2259056

[6] Eric Bodden. 2010. E�cient Hybrid Typestate Analysis by Determining

Continuation-equivalent States. In Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on So�ware Engineering - Volume 1 (ICSE ’10). ACM, New York,

NY, USA, 5–14. DOI:h�p://dx.doi.org/10.1145/1806799.1806805
[7] Eric Bodden. 2012. Inter-procedural data-�ow analysis with IFDS/IDE and Soot.

In Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis (SOAP ’12). 3–8.

[8] Eric Bodden, Laurie Hendren, and Ondrej Lhoták. 2007. A staged static program

analysis to improve the performance of runtime monitoring. In Proceedings of
the 21st European conference on Object-Oriented Programming. Springer-Verlag,

525–549.

[9] Eric Bodden and Patrick Lam. 2010. Clara: Partially Evaluating Runtime Monitors
at Compile Time. Springer Berlin Heidelberg, Berlin, Heidelberg, 74–88. DOI:
h�p://dx.doi.org/10.1007/978-3-642-16612-9 8

[10] Eric Bodden, Patrick Lam, and Laurie Hendren. 2008. Finding programming

errors earlier by evaluating runtime monitors ahead-of-time. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of so�ware
engineering. ACM, 36–47.

[11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.

Taming Re�ection: Aiding Static Analysis in the Presence of Re�ection and Cus-

tom Class Loaders. In ICSE ’11: International Conference on So�ware Engineering.

ACM, 241–250. h�p://www.bodden.de/pubs/bss+11taming.pdf
[12] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-

mated Test Input Generation for Android: Are We �ere Yet?(E). In Automated
So�ware Engineering (ASE), 2015 30th IEEE/ACM International Conference on.

IEEE, 429–440.

[13] Anthony Desnos. 2011. Androguard. URL: h�ps://github.
com/androguard/androguard (2011).

[14] Michael Eichberg and Ben Hermann. 2014. A So�ware Product Line for Static

Analyses: �e OPAL Framework. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on the State of the Art in Java Program Analysis (SOAP ’14).
ACM, New York, NY, USA, 1–6. DOI:h�p://dx.doi.org/10.1145/2614628.2614630

[15] Sarah Ereth and Heiko Mantel. 2015. Towards a Common Speci�cation Lan-
guage for Information-Flow Security in RS 3 and Beyond: RIFL 1.0–�e Lan-
guage. Technical Report TUD-CS-2014-0115. MAIS, Computer Science, TU

Darmstadt. h�p://www.mais.informatik.tu-darmstadt.de/WebBibPHP/papers/
2014/RIFL1.0-TechnicalReport-Revision1.pdf

[16] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2013. Apposcopy: Semantics-
Based Detection of Android Malware. Technical Report. Stanford University.

submi�ed for publication.

[17] Adam P Fuchs, Avik Chaudhuri, and Je�rey S Foster. 2009. Scandroid: Automated

security certi�cation of android applications. Manuscript, Univ. of Maryland,
h�p://www. cs. umd. edu/avik/projects/scandroidascaa 2, 3 (2009).

[18] Michael I Gordon, Deokhwan Kim, Je� Perkins, Limei Gilham, Nguyen Nguyen,

and Martin Rinard. 2015. Information�ow analysis of Android applications in

DroidSafe. In Proc. of the Network and Distributed System Security Symposium
(NDSS). �e Internet Society.

[19] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe

exposure analysis of mobile in-app advertisements. In Proceedings of the ��h
ACM conference on Security and Privacy in Wireless and Mobile Networks. ACM,

101–112.

[20] Philipp Holzinger, Ben Hermann, Johannes Lerch, Eric Bodden, and Mira Mezini.

2017. Hardening Java’s Access Control by Abolishing Implicit Privilege Elevation.

In 2017 IEEE Symposium on Security and Privacy (Oakland S&P). IEEE, IEEE Press.

To appear.

[21] Wei Huang, Yao Dong Ana Milanova, and Julian Dolby. 2015. Scalable and Precise
Taint Analysis for Android. Technical Report. Technical report, Department of

Computer Science, Rensselaer Polytechnic Institute.

[22] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. 2012. ScanDal:

Static Analyzer for Detecting Privacy Leaks in Android Applications. In MoST
2012: Mobile Security Technologies 2012, Hao Chen, Larry Koved, and Dan S.

Wallach (Eds.). IEEE, Los Alamitos, CA, USA. h�p://ropas.snu.ac.kr/scandal/
[23] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014.

Android taint �ow analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on the State of the Art in Java Program Analysis. ACM,

1–6.

[24] Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. 2011. �e Soot

framework for Java program analysis: a retrospective. InCetus Users and Compiler
Infastructure Workshop (CETUS 2011).

[25] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using

Spark. In Compiler Construction, Grel Hedin (Ed.). Lecture Notes in Computer

Science, Vol. 2622. Springer Berlin Heidelberg, 153–169. DOI:h�p://dx.doi.org/
10.1007/3-540-36579-6 12

[26] Li Li, Alexandre Bartel, Tegawendé François D Assise Bissyande, Jacques Klein,

Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau,

and Patrick McDaniel. 2015. IccTA: detecting inter-component privacy leaks in

android apps. In 2015 IEEE/ACM 37th IEEE International Conference on So�ware
Engineering (ICSE 2015).

[27] Ste�en Lortz, Heiko Mantel, Artem Starostin, Timo Bähr, David Schneider, and

Alexandra Weber. 2014. Cassandra: Towards a Certifying App Store for Android.

In Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices. ACM, 93–104.

[28] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:

Statically Ve�ing Android Apps for Component Hijacking Vulnerabilities. In

Proceedings of the 2012 ACM Conference on Computer and Communications Se-
curity (CCS ’12). ACM, New York, NY, USA, 229–240. DOI:h�p://dx.doi.org/10.
1145/2382196.2382223

[29] Damien Octeau, Daniel Luchaup, Ma�hew Dering, Somesh Jha, and Patrick

McDaniel. 2015. Composite constant propagation: Application to android inter-

component communication analysis. In Proceedings of the 37th International
Conference on So�ware Engineering (ICSE).

[30] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,

Jacques Klein, and Yves Le Traon. 2013. E�ective inter-component communica-

tion mapping in android with epicc: An essential step towards holistic security

analysis. In USENIX Security 2013.

[31] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. 2014. A machine-learning ap-

proach for classifying and categorizing android sources and sinks. 2014 Network
and Distributed System Security Symposium (NDSS) (2014).

[32] Siegfried Rasthofer, Steven Arzt, Stephan Huber, Max Kohlhagen, Brian

Pfretschner, Eric Bodden, and Philipp Richter. 2015. Droidsearch: A tool for

scaling android app triage to real-world app stores. Proceedings of the IEEE
Technically Co-Sponsored Science and Information Conference (2015).

[33] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. 2014. Droidforce:

enforcing complex, data-centric, system-wide policies in android. In Availability,
Reliability and Security (ARES), 2014 Ninth International Conference on. IEEE,

40–49.

[34] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making

Malory Behave Maliciously: Targeted Fuzzing of Android Execution Environ-

ments. In Proceedings of the 39th International Conference on So�ware Engineering.

ACM. To appear.

[35] Johannes Späth, Lisa Nguyen, Karim Ali, and Eric Bodden. 2016. Boomerang:

Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java. In Euro-
pean Conference on Object-Oriented Programming (ECOOP).

[36] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.

Investigating user privacy in android ad libraries. In Workshop on Mobile Security
Technologies (MoST). 10.

[37] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In

Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research (CASCON ’99). IBM Press, 13–. h�p://dl.acm.org/citation.cfm?
id=781995.782008

[38] Raja Vallee-Rai and Laurie J. Hendren. 1998. Jimple: Simplifying Java Bytecode

for Analyses and Transformations. (1998).

[39] Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A Measurement Study

of Google Play. In �e 2014 ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’14). ACM, New York, NY, USA,

221–233. DOI:h�p://dx.doi.org/10.1145/2591971.2592003
[40] IBM Watson. Watson libraries for analysis. (��). h�p://wala.sourceforge.net/

wiki/index.php
[41] �e Next Web. 2014. Android users have an average of 95 apps installed on their

phones, according to Yahoo Aviate data. h�p://thenextweb.com/apps/2014/08/26/
android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/.
(2014). Accessed: 2017-01-13.

[42] R Winsniewski. 2012. Android–apktool: A tool for reverse engineering android

apk �les. (2012).

[43] Dacong Yan. 2014. Program analyses for understanding the behavior and perfor-
mance of traditional and mobile object-oriented so�ware. Ph.D. Dissertation. Ohio

State University.

[44] Z. Yang and M. Yang. 2012. LeakMiner: Detect Information Leakage on Android

with Static Taint Analysis. In 2012 �ird World Congress on So�ware Engineering.

101–104. DOI:h�p://dx.doi.org/10.1109/WCSE.2012.26
[45] Mu Zhang and Heng Yin. 2014. AppSealer: Automatic Generation of

Vulnerability-Speci�c Patches for Preventing Component Hijacking A�acks

in Android Applications. Proceedings of the 21st Network and Distributed System
Security (NDSS) Symposium (2014).

http://dx.doi.org/10.1145/2259051.2259056
http://dx.doi.org/10.1145/1806799.1806805
http://dx.doi.org/10.1007/978-3-642-16612-9_8
http://www.bodden.de/pubs/bss+11taming.pdf
http://dx.doi.org/10.1145/2614628.2614630
http://www.mais.informatik.tu-darmstadt.de/WebBibPHP/papers/2014/RIFL1.0-TechnicalReport-Revision1.pdf
http://www.mais.informatik.tu-darmstadt.de/WebBibPHP/papers/2014/RIFL1.0-TechnicalReport-Revision1.pdf
http://ropas.snu.ac.kr/scandal/
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1007/3-540-36579-6_12
http://dx.doi.org/10.1145/2382196.2382223
http://dx.doi.org/10.1145/2382196.2382223
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
http://dx.doi.org/10.1145/2591971.2592003
http://wala.sourceforge.net/wiki/index.php
http://wala.sourceforge.net/wiki/index.php
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://thenextweb.com/apps/2014/08/26/android-users-average-95-apps-installed-phones-according-yahoo-aviate-data/
http://dx.doi.org/10.1109/WCSE.2012.26

