Jump to content

WASP-64

Coordinates: Sky map 02h 44m 09.6098s, −32° 51′ 30.1787″
From Wikipedia, the free encyclopedia
WASP-64 / Atakoraka
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Canis Major
Right ascension 06h 44m 27.6052s[1]
Declination −32° 51′ 30.1787″[1]
Apparent magnitude (V) 12.29[2]
Characteristics
Evolutionary stage main-sequence star
Spectral type G7[2]
Apparent magnitude (J) 11.368 [1]
Apparent magnitude (G) 12.5257 [1]
Apparent magnitude (H) 11.079 [1]
Astrometry
Radial velocity (Rv)35.48 km/s
Proper motion (μ) RA: -19.389[3] mas/yr
Dec.: -1.123[3] mas/yr
Parallax (π)2.6745 ± 0.0218 mas[3]
Distance1,220 ± 10 ly
(374 ± 3 pc)
Details[4]
Mass0.993 0.034
−0.037
 M
Radius1.036 0.046
−0.065
 R
Luminosity0.90±0.15 L
Temperature5400±100[2] K
Metallicity [Fe/H]-0.08±0.11 dex
Rotation15.8±3.7 d[5]
Age3.554±1.629[5] Gyr
Other designations
Atakoraka, Gaia DR2 5583523425437258240, GSC 07091-01514, 2MASS J06442760-3251302[1]
Database references
SIMBADdata

WASP-64 is a star about 1200 light-years away. It is a G7 class main-sequence star, orbited by a planet WASP-64b. It is younger than the Sun at 3.6±1.6 billion years,[5] and it has a metal abundance similar to the Sun.[2] The star is rotating rapidly, being spun up by the giant planet in a close orbit.[5]

WASP-64 was named Atakoraka in 2019 after the Atacora, the largest mountain range in Togo.[6] An imaging survey in 2017 failed to find any stellar companions.[7]

Planetary system

[edit]

A transiting hot Jupiter exoplanet orbiting WASP-64 was discovered by WASP in 2012.[4] The planetary equilibrium temperature is 1672 59
−63
K,[4] while the measured dayside temperature is hotter at 1989 87
−88
K.[8] Due to the close proximity of the planet to the parent star, orbital decay of WASP-64b, along with HATS-2, may be detectable in the near future.[9] WASP-64b was named Agouto (after Mount Agou, the highest point of Togo which lies within the Atacora chain) in 2019 by amateur astronomers from Togo as part of the NameExoWorlds contest.[6]

The WASP-64 planetary system[8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b / Agouto 0.0272±0.0012 1.573253 0.000028
−0.000027
0 89.6±3.2° 1.244±0.036 RJ

References

[edit]
  1. ^ a b c d e f "WASP-64". SIMBAD. Centre de données astronomiques de Strasbourg.
  2. ^ a b c d WASP-64 The planetary system WASP-64 hosts at least one planet
  3. ^ a b c Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  4. ^ a b c Gillon, M.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Montalban, J.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Smith, A. M. S.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2012), "WASP-64b and WASP-72b: two new transiting highly irradiated giant planets", Astronomy & Astrophysics, 552: A82, arXiv:1210.4257, Bibcode:2013A&A...552A..82G, doi:10.1051/0004-6361/201220561, S2CID 53687206
  5. ^ a b c d Gallet, F.; Gallet (2020), "TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems", Astronomy & Astrophysics, 641: A38, arXiv:2006.07880, Bibcode:2020A&A...641A..38G, doi:10.1051/0004-6361/202038058, S2CID 219687851
  6. ^ a b "Togo Approved Names". Name Exoworlds. International Astronomical Union. Retrieved 2020-11-12.
  7. ^ Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; d'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; et al. (2018), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016", Astronomy & Astrophysics, 610: A20, arXiv:1709.07476, Bibcode:2018A&A...610A..20E, doi:10.1051/0004-6361/201731855, S2CID 53400492
  8. ^ a b Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID 212717799
  9. ^ Southworth, John; Dominik, M.; Jørgensen, U. G.; Andersen, M. I.; Bozza, V.; Burgdorf, M. J.; d'Ago, G.; Dib, S.; Figuera Jaimes, R.; Fujii, Y. I.; Gill, S.; Haikala, L. K.; Hinse, T. C.; Hundertmark, M.; Khalouei, E.; Korhonen, H.; Longa-Peña, P.; Mancini, L.; Peixinho, N.; Rabus, M.; Rahvar, S.; Sajadian, S.; Skottfelt, J.; Snodgrass, C.; Spyratos, P.; Tregloan-Reed, J.; Unda-Sanzana, E.; von Essen, C. (2019), "Transit timing variations in the WASP-4 planetary system", Monthly Notices of the Royal Astronomical Society, 490 (3): 4230–4236, arXiv:1907.08269, doi:10.1093/mnras/stz2602, S2CID 197935338