In mathematics, the finite-dimensional representations of the complex classical Lie groups
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
,
S
L
(
n
,
C
)
{\displaystyle SL(n,\mathbb {C} )}
,
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
,
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
,
S
p
(
2
n
,
C
)
{\displaystyle Sp(2n,\mathbb {C} )}
,
can be constructed using the general representation theory of semisimple Lie algebras . The groups
S
L
(
n
,
C
)
{\displaystyle SL(n,\mathbb {C} )}
,
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
,
S
p
(
2
n
,
C
)
{\displaystyle Sp(2n,\mathbb {C} )}
are indeed simple Lie groups , and their finite-dimensional representations coincide[ 1] with those of their maximal compact subgroups , respectively
S
U
(
n
)
{\displaystyle SU(n)}
,
S
O
(
n
)
{\displaystyle SO(n)}
,
S
p
(
n
)
{\displaystyle Sp(n)}
. In the classification of simple Lie algebras , the corresponding algebras are
S
L
(
n
,
C
)
→
A
n
−
1
S
O
(
n
odd
,
C
)
→
B
n
−
1
2
S
O
(
n
even
,
C
)
→
D
n
2
S
p
(
2
n
,
C
)
→
C
n
{\displaystyle {\begin{aligned}SL(n,\mathbb {C} )&\to A_{n-1}\\SO(n_{\text{odd}},\mathbb {C} )&\to B_{\frac {n-1}{2}}\\SO(n_{\text{even}},\mathbb {C} )&\to D_{\frac {n}{2}}\\Sp(2n,\mathbb {C} )&\to C_{n}\end{aligned}}}
However, since the complex classical Lie groups are linear groups , their representations are tensor representations . Each irreducible representation is labelled by a Young diagram , which encodes its structure and properties.
Weyl's construction of tensor representations[ edit ]
Let
V
=
C
n
{\displaystyle V=\mathbb {C} ^{n}}
be the defining representation of the general linear group
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
. Tensor representations are the subrepresentations of
V
⊗
k
{\displaystyle V^{\otimes k}}
(these are sometimes called polynomial representations). The irreducible subrepresentations of
V
⊗
k
{\displaystyle V^{\otimes k}}
are the images of
V
{\displaystyle V}
by Schur functors
S
λ
{\displaystyle \mathbb {S} ^{\lambda }}
associated to integer partitions
λ
{\displaystyle \lambda }
of
k
{\displaystyle k}
into at most
n
{\displaystyle n}
integers, i.e. to Young diagrams of size
λ
1
⋯
λ
n
=
k
{\displaystyle \lambda _{1} \cdots \lambda _{n}=k}
with
λ
n
1
=
0
{\displaystyle \lambda _{n 1}=0}
. (If
λ
n
1
>
0
{\displaystyle \lambda _{n 1}>0}
then
S
λ
(
V
)
=
0
{\displaystyle \mathbb {S} ^{\lambda }(V)=0}
.) Schur functors are defined using Young symmetrizers of the symmetric group
S
k
{\displaystyle S_{k}}
, which acts naturally on
V
⊗
k
{\displaystyle V^{\otimes k}}
. We write
V
λ
=
S
λ
(
V
)
{\displaystyle V_{\lambda }=\mathbb {S} ^{\lambda }(V)}
.
The dimensions of these irreducible representations are[ 1]
dim
V
λ
=
∏
1
≤
i
<
j
≤
n
λ
i
−
λ
j
j
−
i
j
−
i
=
∏
(
i
,
j
)
∈
λ
n
−
i
j
h
λ
(
i
,
j
)
{\displaystyle \dim V_{\lambda }=\prod _{1\leq i<j\leq n}{\frac {\lambda _{i}-\lambda _{j} j-i}{j-i}}=\prod _{(i,j)\in \lambda }{\frac {n-i j}{h_{\lambda }(i,j)}}}
where
h
λ
(
i
,
j
)
{\displaystyle h_{\lambda }(i,j)}
is the hook length of the cell
(
i
,
j
)
{\displaystyle (i,j)}
in the Young diagram
λ
{\displaystyle \lambda }
.
The first formula for the dimension is a special case of a formula that gives the characters of representations in terms of Schur polynomials ,[ 1]
χ
λ
(
g
)
=
s
λ
(
x
1
,
…
,
x
n
)
{\displaystyle \chi _{\lambda }(g)=s_{\lambda }(x_{1},\dots ,x_{n})}
where
x
1
,
…
,
x
n
{\displaystyle x_{1},\dots ,x_{n}}
are the eigenvalues of
g
∈
G
L
(
n
,
C
)
{\displaystyle g\in GL(n,\mathbb {C} )}
.
The second formula for the dimension is sometimes called Stanley's hook content formula .[ 2]
Examples of tensor representations:
Tensor representation of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
Dimension
Young diagram
Trivial representation
1
{\displaystyle 1}
(
)
{\displaystyle ()}
Determinant representation
1
{\displaystyle 1}
(
1
n
)
{\displaystyle (1^{n})}
Defining representation
V
{\displaystyle V}
n
{\displaystyle n}
(
1
)
{\displaystyle (1)}
Symmetric representation
Sym
k
V
{\displaystyle {\text{Sym}}^{k}V}
(
n
k
−
1
k
)
{\displaystyle {\binom {n k-1}{k}}}
(
k
)
{\displaystyle (k)}
Antisymmetric representation
Λ
k
V
{\displaystyle \Lambda ^{k}V}
(
n
k
)
{\displaystyle {\binom {n}{k}}}
(
1
k
)
{\displaystyle (1^{k})}
General irreducible representations [ edit ]
Not all irreducible representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
are tensor representations. In general, irreducible representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
are mixed tensor representations, i.e. subrepresentations of
V
⊗
r
⊗
(
V
∗
)
⊗
s
{\displaystyle V^{\otimes r}\otimes (V^{*})^{\otimes s}}
, where
V
∗
{\displaystyle V^{*}}
is the dual representation of
V
{\displaystyle V}
(these are sometimes called rational representations). In the end, the set of irreducible representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
is labeled by non increasing sequences of
n
{\displaystyle n}
integers
λ
1
≥
⋯
≥
λ
n
{\displaystyle \lambda _{1}\geq \dots \geq \lambda _{n}}
.
If
λ
k
≥
0
,
λ
k
1
≤
0
{\displaystyle \lambda _{k}\geq 0,\lambda _{k 1}\leq 0}
, we can associate to
(
λ
1
,
…
,
λ
n
)
{\displaystyle (\lambda _{1},\dots ,\lambda _{n})}
the pair of Young tableaux
(
[
λ
1
…
λ
k
]
,
[
−
λ
n
,
…
,
−
λ
k
1
]
)
{\displaystyle ([\lambda _{1}\dots \lambda _{k}],[-\lambda _{n},\dots ,-\lambda _{k 1}])}
. This shows that irreducible representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
can be labeled by pairs of Young tableaux . Let us denote
V
λ
μ
=
V
λ
1
,
…
,
λ
n
{\displaystyle V_{\lambda \mu }=V_{\lambda _{1},\dots ,\lambda _{n}}}
the irreducible representation of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
corresponding to the pair
(
λ
,
μ
)
{\displaystyle (\lambda ,\mu )}
or equivalently to the sequence
(
λ
1
,
…
,
λ
n
)
{\displaystyle (\lambda _{1},\dots ,\lambda _{n})}
. With these notations,
V
λ
=
V
λ
(
)
,
V
=
V
(
1
)
(
)
{\displaystyle V_{\lambda }=V_{\lambda ()},V=V_{(1)()}}
(
V
λ
μ
)
∗
=
V
μ
λ
{\displaystyle (V_{\lambda \mu })^{*}=V_{\mu \lambda }}
For
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
, denoting
D
k
{\displaystyle D_{k}}
the one-dimensional representation in which
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
acts by
(
det
)
k
{\displaystyle (\det )^{k}}
,
V
λ
1
,
…
,
λ
n
=
V
λ
1
k
,
…
,
λ
n
k
⊗
D
−
k
{\displaystyle V_{\lambda _{1},\dots ,\lambda _{n}}=V_{\lambda _{1} k,\dots ,\lambda _{n} k}\otimes D_{-k}}
. If
k
{\displaystyle k}
is large enough that
λ
n
k
≥
0
{\displaystyle \lambda _{n} k\geq 0}
, this gives an explicit description of
V
λ
1
,
…
,
λ
n
{\displaystyle V_{\lambda _{1},\dots ,\lambda _{n}}}
in terms of a Schur functor.
The dimension of
V
λ
μ
{\displaystyle V_{\lambda \mu }}
where
λ
=
(
λ
1
,
…
,
λ
r
)
,
μ
=
(
μ
1
,
…
,
μ
s
)
{\displaystyle \lambda =(\lambda _{1},\dots ,\lambda _{r}),\mu =(\mu _{1},\dots ,\mu _{s})}
is
dim
(
V
λ
μ
)
=
d
λ
d
μ
∏
i
=
1
r
(
1
−
i
−
s
n
)
λ
i
(
1
−
i
r
)
λ
i
∏
j
=
1
s
(
1
−
j
−
r
n
)
μ
i
(
1
−
j
s
)
μ
i
∏
i
=
1
r
∏
j
=
1
s
n
1
λ
i
μ
j
−
i
−
j
n
1
−
i
−
j
{\displaystyle \dim(V_{\lambda \mu })=d_{\lambda }d_{\mu }\prod _{i=1}^{r}{\frac {(1-i-s n)_{\lambda _{i}}}{(1-i r)_{\lambda _{i}}}}\prod _{j=1}^{s}{\frac {(1-j-r n)_{\mu _{i}}}{(1-j s)_{\mu _{i}}}}\prod _{i=1}^{r}\prod _{j=1}^{s}{\frac {n 1 \lambda _{i} \mu _{j}-i-j}{n 1-i-j}}}
where
d
λ
=
∏
1
≤
i
<
j
≤
r
λ
i
−
λ
j
j
−
i
j
−
i
{\displaystyle d_{\lambda }=\prod _{1\leq i<j\leq r}{\frac {\lambda _{i}-\lambda _{j} j-i}{j-i}}}
.[ 3] See [ 4] for an interpretation as a product of n-dependent factors divided by products of hook lengths.
Case of the special linear group [ edit ]
Two representations
V
λ
,
V
λ
′
{\displaystyle V_{\lambda },V_{\lambda '}}
of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
are equivalent as representations of the special linear group
S
L
(
n
,
C
)
{\displaystyle SL(n,\mathbb {C} )}
if and only if there is
k
∈
Z
{\displaystyle k\in \mathbb {Z} }
such that
∀
i
,
λ
i
−
λ
i
′
=
k
{\displaystyle \forall i,\ \lambda _{i}-\lambda '_{i}=k}
.[ 1] For instance, the determinant representation
V
(
1
n
)
{\displaystyle V_{(1^{n})}}
is trivial in
S
L
(
n
,
C
)
{\displaystyle SL(n,\mathbb {C} )}
, i.e. it is equivalent to
V
(
)
{\displaystyle V_{()}}
.
In particular, irreducible representations of
S
L
(
n
,
C
)
{\displaystyle SL(n,\mathbb {C} )}
can be indexed by Young tableaux, and are all tensor representations (not mixed).
Case of the unitary group [ edit ]
The unitary group is the maximal compact subgroup of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
. The complexification of its Lie algebra
u
(
n
)
=
{
a
∈
M
(
n
,
C
)
,
a
†
a
=
0
}
{\displaystyle {\mathfrak {u}}(n)=\{a\in {\mathcal {M}}(n,\mathbb {C} ),a^{\dagger } a=0\}}
is the algebra
g
l
(
n
,
C
)
{\displaystyle {\mathfrak {gl}}(n,\mathbb {C} )}
. In Lie theoretic terms,
U
(
n
)
{\displaystyle U(n)}
is the compact real form of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
, which means that complex linear, continuous irreducible representations of the latter are in one-to-one correspondence with complex linear, algebraic irreps of the former, via the inclusion
U
(
n
)
→
G
L
(
n
,
C
)
{\displaystyle U(n)\rightarrow GL(n,\mathbb {C} )}
. [ 5]
Tensor products of finite-dimensional representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
are given by the following formula:[ 6]
V
λ
1
μ
1
⊗
V
λ
2
μ
2
=
⨁
ν
,
ρ
V
ν
ρ
⊕
Γ
λ
1
μ
1
,
λ
2
μ
2
ν
ρ
,
{\displaystyle V_{\lambda _{1}\mu _{1}}\otimes V_{\lambda _{2}\mu _{2}}=\bigoplus _{\nu ,\rho }V_{\nu \rho }^{\oplus \Gamma _{\lambda _{1}\mu _{1},\lambda _{2}\mu _{2}}^{\nu \rho }},}
where
Γ
λ
1
μ
1
,
λ
2
μ
2
ν
ρ
=
0
{\displaystyle \Gamma _{\lambda _{1}\mu _{1},\lambda _{2}\mu _{2}}^{\nu \rho }=0}
unless
|
ν
|
≤
|
λ
1
|
|
λ
2
|
{\displaystyle |\nu |\leq |\lambda _{1}| |\lambda _{2}|}
and
|
ρ
|
≤
|
μ
1
|
|
μ
2
|
{\displaystyle |\rho |\leq |\mu _{1}| |\mu _{2}|}
. Calling
l
(
λ
)
{\displaystyle l(\lambda )}
the number of lines in a tableau, if
l
(
λ
1
)
l
(
λ
2
)
l
(
μ
1
)
l
(
μ
2
)
≤
n
{\displaystyle l(\lambda _{1}) l(\lambda _{2}) l(\mu _{1}) l(\mu _{2})\leq n}
, then
Γ
λ
1
μ
1
,
λ
2
μ
2
ν
ρ
=
∑
α
,
β
,
η
,
θ
(
∑
κ
c
κ
,
α
λ
1
c
κ
,
β
μ
2
)
(
∑
γ
c
γ
,
η
λ
2
c
γ
,
θ
μ
1
)
c
α
,
θ
ν
c
β
,
η
ρ
,
{\displaystyle \Gamma _{\lambda _{1}\mu _{1},\lambda _{2}\mu _{2}}^{\nu \rho }=\sum _{\alpha ,\beta ,\eta ,\theta }\left(\sum _{\kappa }c_{\kappa ,\alpha }^{\lambda _{1}}c_{\kappa ,\beta }^{\mu _{2}}\right)\left(\sum _{\gamma }c_{\gamma ,\eta }^{\lambda _{2}}c_{\gamma ,\theta }^{\mu _{1}}\right)c_{\alpha ,\theta }^{\nu }c_{\beta ,\eta }^{\rho },}
where the natural integers
c
λ
,
μ
ν
{\displaystyle c_{\lambda ,\mu }^{\nu }}
are
Littlewood-Richardson coefficients .
Below are a few examples of such tensor products:
R
1
{\displaystyle R_{1}}
R
2
{\displaystyle R_{2}}
Tensor product
R
1
⊗
R
2
{\displaystyle R_{1}\otimes R_{2}}
V
λ
(
)
{\displaystyle V_{\lambda ()}}
V
μ
(
)
{\displaystyle V_{\mu ()}}
∑
ν
c
λ
μ
ν
V
ν
(
)
{\displaystyle \sum _{\nu }c_{\lambda \mu }^{\nu }V_{\nu ()}}
V
λ
(
)
{\displaystyle V_{\lambda ()}}
V
(
)
μ
{\displaystyle V_{()\mu }}
∑
κ
,
ν
,
ρ
c
κ
ν
λ
c
κ
ρ
μ
V
ν
ρ
{\displaystyle \sum _{\kappa ,\nu ,\rho }c_{\kappa \nu }^{\lambda }c_{\kappa \rho }^{\mu }V_{\nu \rho }}
V
(
)
(
1
)
{\displaystyle V_{()(1)}}
V
(
1
)
(
)
{\displaystyle V_{(1)()}}
V
(
1
)
(
1
)
V
(
)
(
)
{\displaystyle V_{(1)(1)} V_{()()}}
V
(
)
(
1
)
{\displaystyle V_{()(1)}}
V
(
k
)
(
)
{\displaystyle V_{(k)()}}
V
(
k
)
(
1
)
V
(
k
−
1
)
(
)
{\displaystyle V_{(k)(1)} V_{(k-1)()}}
V
(
1
)
(
)
{\displaystyle V_{(1)()}}
V
(
k
)
(
)
{\displaystyle V_{(k)()}}
V
(
k
1
)
(
)
V
(
k
,
1
)
(
)
{\displaystyle V_{(k 1)()} V_{(k,1)()}}
V
(
1
)
(
1
)
{\displaystyle V_{(1)(1)}}
V
(
1
)
(
1
)
{\displaystyle V_{(1)(1)}}
V
(
2
)
(
2
)
V
(
2
)
(
11
)
V
(
11
)
(
2
)
V
(
11
)
(
11
)
2
V
(
1
)
(
1
)
V
(
)
(
)
{\displaystyle V_{(2)(2)} V_{(2)(11)} V_{(11)(2)} V_{(11)(11)} 2V_{(1)(1)} V_{()()}}
In the case of tensor representations, 3-j symbols and 6-j symbols are known.[ 7]
In addition to the Lie group representations described here, the orthogonal group
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
and special orthogonal group
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
have spin representations , which are projective representations of these groups, i.e. representations of their universal covering groups .
Construction of representations [ edit ]
Since
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
is a subgroup of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
, any irreducible representation of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
is also a representation of
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
, which may however not be irreducible. In order for a tensor representation of
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
to be irreducible, the tensors must be traceless.[ 8]
Irreducible representations of
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
are parametrized by a subset of the Young diagrams associated to irreducible representations of
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
: the diagrams such that the sum of the lengths of the first two columns is at most
n
{\displaystyle n}
.[ 8] The irreducible representation
U
λ
{\displaystyle U_{\lambda }}
that corresponds to such a diagram is a subrepresentation of the corresponding
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
representation
V
λ
{\displaystyle V_{\lambda }}
. For example, in the case of symmetric tensors,[ 1]
V
(
k
)
=
U
(
k
)
⊕
V
(
k
−
2
)
{\displaystyle V_{(k)}=U_{(k)}\oplus V_{(k-2)}}
Case of the special orthogonal group [ edit ]
The antisymmetric tensor
U
(
1
n
)
{\displaystyle U_{(1^{n})}}
is a one-dimensional representation of
O
(
n
,
C
)
{\displaystyle O(n,\mathbb {C} )}
, which is trivial for
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
. Then
U
(
1
n
)
⊗
U
λ
=
U
λ
′
{\displaystyle U_{(1^{n})}\otimes U_{\lambda }=U_{\lambda '}}
where
λ
′
{\displaystyle \lambda '}
is obtained from
λ
{\displaystyle \lambda }
by acting on the length of the first column as
λ
~
1
→
n
−
λ
~
1
{\displaystyle {\tilde {\lambda }}_{1}\to n-{\tilde {\lambda }}_{1}}
.
For
n
{\displaystyle n}
odd, the irreducible representations of
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
are parametrized by Young diagrams with
λ
~
1
≤
n
−
1
2
{\displaystyle {\tilde {\lambda }}_{1}\leq {\frac {n-1}{2}}}
rows.
For
n
{\displaystyle n}
even,
U
λ
{\displaystyle U_{\lambda }}
is still irreducible as an
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
representation if
λ
~
1
≤
n
2
−
1
{\displaystyle {\tilde {\lambda }}_{1}\leq {\frac {n}{2}}-1}
, but it reduces to a sum of two inequivalent
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
representations if
λ
~
1
=
n
2
{\displaystyle {\tilde {\lambda }}_{1}={\frac {n}{2}}}
.[ 8]
For example, the irreducible representations of
O
(
3
,
C
)
{\displaystyle O(3,\mathbb {C} )}
correspond to Young diagrams of the types
(
k
≥
0
)
,
(
k
≥
1
,
1
)
,
(
1
,
1
,
1
)
{\displaystyle (k\geq 0),(k\geq 1,1),(1,1,1)}
. The irreducible representations of
S
O
(
3
,
C
)
{\displaystyle SO(3,\mathbb {C} )}
correspond to
(
k
≥
0
)
{\displaystyle (k\geq 0)}
, and
dim
U
(
k
)
=
2
k
1
{\displaystyle \dim U_{(k)}=2k 1}
.
On the other hand, the dimensions of the spin representations of
S
O
(
3
,
C
)
{\displaystyle SO(3,\mathbb {C} )}
are even integers.[ 1]
The dimensions of irreducible representations of
S
O
(
n
,
C
)
{\displaystyle SO(n,\mathbb {C} )}
are given by a formula that depends on the parity of
n
{\displaystyle n}
:[ 4]
(
n
even
)
dim
U
λ
=
∏
1
≤
i
<
j
≤
n
2
λ
i
−
λ
j
−
i
j
−
i
j
⋅
λ
i
λ
j
n
−
i
−
j
n
−
i
−
j
{\displaystyle (n{\text{ even}})\qquad \dim U_{\lambda }=\prod _{1\leq i<j\leq {\frac {n}{2}}}{\frac {\lambda _{i}-\lambda _{j}-i j}{-i j}}\cdot {\frac {\lambda _{i} \lambda _{j} n-i-j}{n-i-j}}}
(
n
odd
)
dim
U
λ
=
∏
1
≤
i
<
j
≤
n
−
1
2
λ
i
−
λ
j
−
i
j
−
i
j
∏
1
≤
i
≤
j
≤
n
−
1
2
λ
i
λ
j
n
−
i
−
j
n
−
i
−
j
{\displaystyle (n{\text{ odd}})\qquad \dim U_{\lambda }=\prod _{1\leq i<j\leq {\frac {n-1}{2}}}{\frac {\lambda _{i}-\lambda _{j}-i j}{-i j}}\prod _{1\leq i\leq j\leq {\frac {n-1}{2}}}{\frac {\lambda _{i} \lambda _{j} n-i-j}{n-i-j}}}
There is also an expression as a factorized polynomial in
n
{\displaystyle n}
:[ 4]
dim
U
λ
=
∏
(
i
,
j
)
∈
λ
,
i
≥
j
n
λ
i
λ
j
−
i
−
j
h
λ
(
i
,
j
)
∏
(
i
,
j
)
∈
λ
,
i
<
j
n
−
λ
~
i
−
λ
~
j
i
j
−
2
h
λ
(
i
,
j
)
{\displaystyle \dim U_{\lambda }=\prod _{(i,j)\in \lambda ,\ i\geq j}{\frac {n \lambda _{i} \lambda _{j}-i-j}{h_{\lambda }(i,j)}}\prod _{(i,j)\in \lambda ,\ i<j}{\frac {n-{\tilde {\lambda }}_{i}-{\tilde {\lambda }}_{j} i j-2}{h_{\lambda }(i,j)}}}
where
λ
i
,
λ
~
i
,
h
λ
(
i
,
j
)
{\displaystyle \lambda _{i},{\tilde {\lambda }}_{i},h_{\lambda }(i,j)}
are respectively row lengths, column lengths and hook lengths . In particular, antisymmetric representations have the same dimensions as their
G
L
(
n
,
C
)
{\displaystyle GL(n,\mathbb {C} )}
counterparts,
dim
U
(
1
k
)
=
dim
V
(
1
k
)
{\displaystyle \dim U_{(1^{k})}=\dim V_{(1^{k})}}
, but symmetric representations do not,
dim
U
(
k
)
=
dim
V
(
k
)
−
dim
V
(
k
−
2
)
=
(
n
k
−
1
k
)
−
(
n
k
−
3
k
)
{\displaystyle \dim U_{(k)}=\dim V_{(k)}-\dim V_{(k-2)}={\binom {n k-1}{k}}-{\binom {n k-3}{k}}}
In the stable range
|
μ
|
|
ν
|
≤
[
n
2
]
{\displaystyle |\mu | |\nu |\leq \left[{\frac {n}{2}}\right]}
, the tensor product multiplicities that appear in the tensor product decomposition
U
λ
⊗
U
μ
=
⊕
ν
N
λ
,
μ
,
ν
U
ν
{\displaystyle U_{\lambda }\otimes U_{\mu }=\oplus _{\nu }N_{\lambda ,\mu ,\nu }U_{\nu }}
are Newell-Littlewood numbers , which do not depend on
n
{\displaystyle n}
.[ 9] Beyond the stable range, the tensor product multiplicities become
n
{\displaystyle n}
-dependent modifications of the Newell-Littlewood numbers.[ 10] [ 9] [ 11] For example, for
n
≥
12
{\displaystyle n\geq 12}
, we have
[
1
]
⊗
[
1
]
=
[
2
]
[
11
]
[
]
[
1
]
⊗
[
2
]
=
[
21
]
[
3
]
[
1
]
[
1
]
⊗
[
11
]
=
[
111
]
[
21
]
[
1
]
[
1
]
⊗
[
21
]
=
[
31
]
[
22
]
[
211
]
[
2
]
[
11
]
[
1
]
⊗
[
3
]
=
[
4
]
[
31
]
[
2
]
[
2
]
⊗
[
2
]
=
[
4
]
[
31
]
[
22
]
[
2
]
[
11
]
[
]
[
2
]
⊗
[
11
]
=
[
31
]
[
211
]
[
2
]
[
11
]
[
11
]
⊗
[
11
]
=
[
1111
]
[
211
]
[
22
]
[
2
]
[
11
]
[
]
[
21
]
⊗
[
3
]
=
[
321
]
[
411
]
[
42
]
[
51
]
[
211
]
[
22
]
2
[
31
]
[
4
]
[
11
]
[
2
]
{\displaystyle {\begin{aligned}{}[1]\otimes [1]&=[2] [11] []\\{}[1]\otimes [2]&=[21] [3] [1]\\{}[1]\otimes [11]&=[111] [21] [1]\\{}[1]\otimes [21]&=[31] [22] [211] [2] [11]\\{}[1]\otimes [3]&=[4] [31] [2]\\{}[2]\otimes [2]&=[4] [31] [22] [2] [11] []\\{}[2]\otimes [11]&=[31] [211] [2] [11]\\{}[11]\otimes [11]&=[1111] [211] [22] [2] [11] []\\{}[21]\otimes [3]&=[321] [411] [42] [51] [211] [22] 2[31] [4] [11] [2]\end{aligned}}}
Branching rules from the general linear group [ edit ]
Since the orthogonal group is a subgroup of the general linear group, representations of
G
L
(
n
)
{\displaystyle GL(n)}
can be decomposed into representations of
O
(
n
)
{\displaystyle O(n)}
. The decomposition of a tensor representation is given in terms of Littlewood-Richardson coefficients
c
λ
,
μ
ν
{\displaystyle c_{\lambda ,\mu }^{\nu }}
by the Littlewood restriction rule[ 12]
V
ν
G
L
(
n
)
=
∑
λ
,
μ
c
λ
,
2
μ
ν
U
λ
O
(
n
)
{\displaystyle V_{\nu }^{GL(n)}=\sum _{\lambda ,\mu }c_{\lambda ,2\mu }^{\nu }U_{\lambda }^{O(n)}}
where
2
μ
{\displaystyle 2\mu }
is a partition into even integers. The rule is valid in the stable range
2
|
ν
|
,
λ
~
1
λ
~
2
≤
n
{\displaystyle 2|\nu |,{\tilde {\lambda }}_{1} {\tilde {\lambda }}_{2}\leq n}
. The generalization to mixed tensor representations is
V
λ
μ
G
L
(
n
)
=
∑
α
,
β
,
γ
,
δ
c
α
,
2
γ
λ
c
β
,
2
δ
μ
c
α
,
β
ν
U
ν
O
(
n
)
{\displaystyle V_{\lambda \mu }^{GL(n)}=\sum _{\alpha ,\beta ,\gamma ,\delta }c_{\alpha ,2\gamma }^{\lambda }c_{\beta ,2\delta }^{\mu }c_{\alpha ,\beta }^{\nu }U_{\nu }^{O(n)}}
Similar branching rules can be written for the symplectic group.[ 12]
The finite-dimensional irreducible representations of the symplectic group
S
p
(
2
n
,
C
)
{\displaystyle Sp(2n,\mathbb {C} )}
are parametrized by Young diagrams with at most
n
{\displaystyle n}
rows. The dimension of the corresponding representation is[ 8]
dim
W
λ
=
∏
i
=
1
n
λ
i
n
−
i
1
n
−
i
1
∏
1
≤
i
<
j
≤
n
λ
i
−
λ
j
j
−
i
j
−
i
⋅
λ
i
λ
j
2
n
−
i
−
j
2
2
n
−
i
−
j
2
{\displaystyle \dim W_{\lambda }=\prod _{i=1}^{n}{\frac {\lambda _{i} n-i 1}{n-i 1}}\prod _{1\leq i<j\leq n}{\frac {\lambda _{i}-\lambda _{j} j-i}{j-i}}\cdot {\frac {\lambda _{i} \lambda _{j} 2n-i-j 2}{2n-i-j 2}}}
There is also an expression as a factorized polynomial in
n
{\displaystyle n}
:[ 4]
dim
W
λ
=
∏
(
i
,
j
)
∈
λ
,
i
>
j
n
λ
i
λ
j
−
i
−
j
2
h
λ
(
i
,
j
)
∏
(
i
,
j
)
∈
λ
,
i
≤
j
n
−
λ
~
i
−
λ
~
j
i
j
h
λ
(
i
,
j
)
{\displaystyle \dim W_{\lambda }=\prod _{(i,j)\in \lambda ,\ i>j}{\frac {n \lambda _{i} \lambda _{j}-i-j 2}{h_{\lambda }(i,j)}}\prod _{(i,j)\in \lambda ,\ i\leq j}{\frac {n-{\tilde {\lambda }}_{i}-{\tilde {\lambda }}_{j} i j}{h_{\lambda }(i,j)}}}
Just like in the case of the orthogonal group, tensor product multiplicities are given by Newell-Littlewood numbers in the stable range, and modifications thereof beyond the stable range.
^ a b c d e f William Fulton; Joe Harris (2004). "Representation Theory". Graduate Texts in Mathematics . doi :10.1007/978-1-4612-0979-9 . ISSN 0072-5285 . Wikidata Q55865630 .
^ Hawkes, Graham (2013-10-19). "An Elementary Proof of the Hook Content Formula". arXiv :1310.5919v2 [math.CO ].
^ Binder, D. - Rychkov, S. (2020). "Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N" . Journal of High Energy Physics . 2020 (4): 117. arXiv :1911.07895 . Bibcode :2020JHEP...04..117B . doi :10.1007/JHEP04(2020)117 . {{cite journal }}
: CS1 maint: multiple names: authors list (link )
^ a b c d N El Samra; R C King (December 1979). "Dimensions of irreducible representations of the classical Lie groups". Journal of Physics A . 12 (12): 2317–2328. doi :10.1088/0305-4470/12/12/010 . ISSN 1751-8113 . Zbl 0445.22020 . Wikidata Q104601301 .
^ Cvitanović, Predrag (2008). Group theory: Birdtracks, Lie's, and exceptional groups .
^ Koike, Kazuhiko (1989). "On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters" . Advances in Mathematics . 74 : 57–86. doi :10.1016/0001-8708(89)95004-2 .
^ Artamonov, Dmitry (2024-05-09). "Calculation of
6
j
{\displaystyle 6j}
-symbols for the Lie algebra
g
l
n
{\displaystyle {\mathfrak {gl}}_{n}}
". arXiv :2405.05628 [math.RT ].
^ a b c d Hamermesh, Morton (1989). Group theory and its application to physical problems . New York: Dover Publications. ISBN 0-486-66181-4 . OCLC 20218471 .
^ a b Gao, Shiliang; Orelowitz, Gidon; Yong, Alexander (2021). "Newell-Littlewood numbers". Transactions of the American Mathematical Society . 374 (9): 6331–6366. arXiv :2005.09012v1 . doi :10.1090/tran/8375 . S2CID 218684561 .
^ Steven Sam (2010-01-18). "Littlewood-Richardson coefficients for classical groups" . Concrete Nonsense . Archived from the original on 2019-06-18. Retrieved 2021-01-05 .
^ Kazuhiko Koike; Itaru Terada (May 1987). "Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn". Journal of Algebra . 107 (2): 466–511. doi :10.1016/0021-8693(87)90099-8 . ISSN 0021-8693 . Zbl 0622.20033 . Wikidata Q56443390 .
^ a b Howe, Roger ; Tan, Eng-Chye; Willenbring, Jeb F. (2005). "Stable branching rules for classical symmetric pairs" . Transactions of the American Mathematical Society . 357 (4): 1601–1626. arXiv :math/0311159 . doi :10.1090/S0002-9947-04-03722-5 .