Jump to content

List of hyperaccumulators

From Wikipedia, the free encyclopedia

This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).

See also:

Hyperaccumulators table – 1

[edit]
hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Se, Zn – accumulation rates
Contaminant Accumulation rates (in mg/kg dry weight) Binomial name English name H-Hyperaccumulator or A-Accumulator P-Precipitator T-Tolerant Notes Sources
Al A- Agrostis castellana highland bentgrass As(A), Mn(A), Pb(A), Zn(A) Origin: Portugal. [1]: 898 
Al 1000 Hordeum vulgare Barley 25 records of plants. [1]: 891 [2]
Al Hydrangea spp. Hydrangea (a.k.a. Hortensia)
Al Aluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[3] Melastoma malabathricum L. Blue Tongue, or Native Lassiandra P competes with Al and reduces uptake.[4]
Al Solidago hispida (Solidago canadensis L.) Hairy Goldenrod Origin Canada. [1]: 891 [2]
Al 100 Vicia faba Horse Bean [1]: 891 [2]
Ag 10-1200 Salix miyabeana Willow Ag(T) Seemed able to adapt to high AgNO3 concentrations on a long timeline [5]
Ag Brassica napus Rapeseed plant Cr, Hg, Pb, Se, Zn Phytoextraction [1]: 19 [6]
Ag Salix spp. Osier spp. Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19  Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes) [1]: 19 
Ag Amanita strobiliformis European Pine Cone Lepidella Ag(H) Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas [9]
Ag 10-1200 Brassica juncea Indian Mustard Ag(H) Can form alloys of silver-gold-copper [10]
As 100 Agrostis capillaris L. Common Bent Grass, Browntop. (= A. tenuris) Al(A), Mn(A), Pb(A), Zn(A) [1]: 891 
As H- Agrostis castellana Highland Bent Grass Al(A), Mn(A), Pb(A), Zn(A) Origin Portugal. [1]: 898 
As 1000 Agrostis tenerrima Trin. Colonial bentgrass 4 records of plants [1]: 891 [11]
As 2-1300 Cyanoboletus pulverulentus Ink Stain Bolete contains dimethylarsinic acid Europe [12]
As 27,000 (fronds)[13] Pteris vittata L. Ladder brake fern or Chinese brake fern 26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14] Root extracts reduce arsenate to arsenite.[15]
As 100-7000 Sarcosphaera coronaria pink crown, violet crown-cup, or violet star cup As(H) Ectomycorrhizal ascomycete, known from Europe [16][17]
Be No reports found for accumulation [1]: 891 
Cr Azolla spp. mosquito fern, duckweed fern, fairy moss, water fern [1]: 891 [18]
Cr H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1]: 898 [19]
Cr Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) Cultivated in agriculture. [1]: 19, 898 [20]
Cr Brassica napus Rapeseed plant Ag, Hg, Pb, Se, Zn Phytoextraction [6][1]: 19 
Cr A- Vallisneria americana Tape Grass Cd(H), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]: 898 
Cr 1000 Dicoma niccolifera 35 records of plants [1]: 891 
Cr roots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22] Eichhornia crassipes Water Hyacinth Cd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24] Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21] [1]: 898 
Cr Helianthus annuus Sunflower Phytoextraction and rhizofiltration [1]: 19, 898 
Cr A- Hydrilla verticillata Hydrilla Cd(H), Hg(H), Pb(H) [1]: 898 
Cr Medicago sativa Alfalfa [1]: 891 [26]
Cr Pistia stratiotes Water lettuce Cd(T), Hg(H), Cr(H), Cu(T) [1]: 891, 898 [27]
Cr Salix spp. Osier spp. Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19  Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes) [1]: 19 
Cr Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) [1]: 891, 898 [28]
Cr Spirodela polyrhiza Giant Duckweed Cd(H), Ni(H), Pb(H), Zn(A) Native to North America. [1]: 891, 898 [28]
Cr 100 Jamesbrittenia fodina Hilliard
Sutera fodina Wild
[1]: 891 [29][30]
Cr A- Thlaspi caerulescens Alpine Pennycress, Alpine Pennygrass Cd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31] [1]: 19, 891, 898 [32][33][34]
Cu 9500 Aeollanthus biformifolius [35]
Cu Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Pb(H), Zn(H) Origin Japan. [1]: 898 
Cu A- Azolla filiculoides Pacific mosquitofern Ni(A), Pb(A), Mn(A) Origin Africa. Floating plant. [1]: 898 
Cu H- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1]: 898 [19]
Cu Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) cultivated [1]: 19, 898 [20]
Cu H- Vallisneria americana Tape Grass Cd(H), Cr(A), Pb(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]: 898 
Cu Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]: 898 
Cu 1000 Haumaniastrum robertii
(Lamiaceae)
Copper flower 27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36] [1]: 891 [33]
Cu Helianthus annuus Sunflower Phytoextraction with rhizofiltration [1]: 898 [33]
Cu 1000 Larrea tridentata Creosote Bush 67 records of plants. Origin U.S. [1]: 891 [33]
Cu H- Lemna minor Duckweed Pb(H), Cd(H), Zn(A) Native to North America and widespread worldwide. [1]: 898 
Cu Ocimum centraliafricanum Copper plant Cu(T), Ni(T) Origin Southern Africa [37]
Cu T- Pistia stratiotes Water Lettuce Cd(T), Hg(H), Cr(H) Pantropical. Origin South U.S.A. Aquatic herb. [1]: 898 
Cu Thlaspi caerulescens Alpine pennycress, Alpine Pennycress, Alpine Pennygrass Cd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H) Phytoextraction. Cu noticeably limits its growth.[34] [1]: 19, 891, 898 [31][32][33][34]
Mn A- Agrostis castellana Highland Bent Grass Al(A), As(A), Pb(A), Zn(A) Origin Portugal. [1]: 898 
Mn Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Pb(A) Origin Africa. Floating plant. [1]: 898 
Mn Brassica juncea L. Indian mustard [1]: 19 [20]
Mn 23,000 (maximum) 11,000 (average) leaf Chengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.Huang koshiabura Origin Japan. Forest tree. [38]
Mn Helianthus annuus Sunflower Phytoextraction and rhizofiltration [1]: 19 
Mn 1000 Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants [1]: 891 [39]
Mn 200 [1]: 891 
Hg A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A), Pb(A) Origin India. Aquatic emergent species. [1]: 898 [19]
Hg Brassica napus Rapeseed plant Ag, Cr, Pb, Se, Zn Phytoextraction [1]: 19 [6]
Hg Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]: 898 
Hg H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Pb(H) [1]: 898 
Hg 1000 Pistia stratiotes Water lettuce Cd(T), Cr(H), Cu(T) 35 records of plants [1]: 891, 898 [33][40][full citation needed]
Hg Salix spp. Osier spp. Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19  Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes) [1]: 19 
Mo 1500 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H) phytoextraction [1]: 19, 891, 898 [31][32][33][34]
Naphthalene Festuca arundinacea Tall Fescue Increases catabolic genes and the mineralization of naphthalene. [41]
Naphthalene Trifolium hirtum Pink clover, rose clover Decreases catabolic genes and the mineralization of naphthalene. [41]
Pb A- Agrostis castellana 'Highland Bent Grass Al(A), As(H), Mn(A), Zn(A) Origin Portugal. [1]: 898 
Pb Ambrosia artemisiifolia Ragweed [6]
Pb Armeria maritima Seapink Thrift [6]
Pb Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Zn(H) Origin Japan. [1]: 898 
Pb A- Azolla filiculoides Pacific mosquitofern Cu(A), Ni(A), Mn(A) Origin Africa. Floating plant. [1]: 898 
Pb A- Bacopa monnieri Smooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiola Cd(H), Cr(H), Cu(H), Hg(A) Origin India. Aquatic emergent species. [1]: 898 [19]
Pb H- Brassica juncea Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H) 79 recorded plants. Phytoextraction [1]: 19, 891, 898 [6][20][31][33][34][42]
Pb Brassica napus Rapeseed plant Ag, Cr, Hg, Se, Zn Phytoextraction [1]: 19 [6]
Pb Brassica oleracea Ornamental Kale and Cabbage, Broccoli [6]
Pb H- Vallisneria americana Tape Grass Cd(H), Cr(A), Cu(H) Native to Europe and North Africa. Widely cultivated in the aquarium trade. [1]: 898 
Pb Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]: 898 
Pb Festuca ovina Blue Sheep Fescue [6]
Pb Ipomoea trifida Morning glory Phytoextraction and rhizofiltration [1]: 19, 898 [6][7][42]
Pb H- Hydrilla verticillata Hydrilla Cd(H), Cr(A), Hg(H) [1]: 898 
Pb H- Lemna minor Duckweed Cd(H), Cu(H), Zn(H) Native to North America and widespread worldwide. [1]: 898 
Pb Salix viminalis Common Osier Cd, U, Zn,[7] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[1]: 19  Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes) [7]
Pb H- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]: 898 
Pb Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Zn(A) Native to North America. [1]: 891, 898 [28]
Pb Thlaspi caerulescens (Brassicaceae) Alpine pennycress, Alpine pennygrass Cd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H) Phytoextraction. [1]: 19, 891, 898 [31][32][33][34]
Pb Thlaspi rotundifolium Round-leaved Pennycress [6]
Pb Triticum aestivum Common Wheat [6]
Se .012-20 Amanita muscaria Fly agaric Cap contains higher concentrations than stalks[43]
Se Brassica juncea Indian mustard Rhizosphere bacteria enhance accumulation.[44] [1]: 19 
Se Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Zn Phytoextraction. [1]: 19 [6]
Se Low rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass. Chara canescens Desv. & Lois Muskgrass Muskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46] [47]
Se Bassia scoparia
(a.k.a. Kochia scoparia)
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweed U,[7] Cr, Pb, Hg, Ag, Zn Perchlorate (wetland halophytes). Phytoextraction. [1]: 19, 898 
Se Salix spp. Osier spp. Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]: 19  Cd, Pb, U, Zn (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes). [1]: 19 
Zn A- Agrostis castellana Highland Bent Grass Al(A), As(H), Mn(A), Pb(A) Origin Portugal. [1]: 898 
Zn Athyrium yokoscense (Japanese false spleenwort?) Cd(A), Cu(H), Pb(H) Origin Japan. [1]: 898 
Zn Brassicaceae Mustards, mustard flowers, crucifers or cabbage family Cd(H), Cs(H), Ni(H), Sr(H) Phytoextraction [1]: 19 
Zn Brassica juncea L. Indian mustard Cd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A). Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997) [1]: 19, 898 [20]
Zn Brassica napus Rapeseed plant Ag, Cr, Hg, Pb, Se Phytoextraction [1]: 19 [6]
Zn Helianthus annuus Sunflower Phytoextraction and rhizofiltration [1]: 19 [7]
Zn Eichhornia crassipes Water Hyacinth Cd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24] Pantropical/Subtropical, 'the troublesome weed'. [1]: 898 
Zn Salix viminalis Common Osier Ag, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[1]: 19  Cd, Pb, U (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8] Phytoextraction. Perchlorate (wetland halophytes). [7]
Zn A- Salvinia molesta Kariba weeds or water ferns Cr(H), Ni(H), Pb(H), Zn(A) Origin India. [1]: 898 
Zn 1400 Silene vulgaris (Moench) Garcke (Caryophyllaceae) Bladder campion Ernst et al. (1990)
Zn Spirodela polyrhiza Giant Duckweed Cd(H), Cr(H), Ni(H), Pb(H) Native to North America. [1]: 891, 898 [28]
Zn H-10,000 Thlaspi caerulescens (Brassicaceae) Alpine pennycress Cd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H) 48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[31] [1]: 19, 891, 898 [32][33][34][42]
Zn Trifolium pratense Red Clover Nonmetal accumulator. Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[31]

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

[edit]
  1. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg McCutcheon, Steven C.; Schnoor, Jerald L. (2003). Phytoremediation: Transformation and Control of Contaminants. Environmental Science and Technology. Wiley. ISBN 978-0-471-39435-8.
  2. ^ a b c Grauer, U. E.; Horst, W. J. (September 1990). "Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.)". Plant and Soil. 127 (1). Springer: 13–21. Bibcode:1990PlSoi.127...13G. doi:10.1007/BF00010832. JSTOR 42938620. S2CID 31201518.
  3. ^ Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878. S2CID 8649008.
  4. ^ Shoellhorn, Rick; Richardson, Alexis A. (2005). "Warm Climate Production Guidelines for Japanese Hydrangeas". EDIS. 2005 (4). Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. doi:10.32473/edis-ep177-2005. ENH910/EP177.
  5. ^ Nissim, Werther G.; Frederic E., Pitre; Kadri, Hafssa; Desjardins, Dominic; Labrecque, Michel (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. Bibcode:2014IJPhy..16..660G. doi:10.1080/15226514.2013.856840. PMID 24933876. S2CID 1000307.
  6. ^ a b c d e f g h i j k l m n Fiegl, Joseph L.; McDonnell, Bryan P.; Kostel, Jill A.; Finster, Mary E.; Gray, Kimberly A. "A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils". Civil and Environmental Engineering. Evanston, IL: McCormick School of Engineering, Northwestern University. Archived from the original on 24 February 2011.
  7. ^ a b c d e f g h i j k Schmidt, Ulrich (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". Plant and Soil Interaction. Journal of Environmental Quality. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516.
  8. ^ a b c d e f Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. Bibcode:2006Ecotx..15..461Y. doi:10.1007/s10646-006-0081-5. PMID 16703454. S2CID 5930089.
  9. ^ Borovička, Jan; Řanda, Zdeněk; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E. (November 2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (11): 1339–1344. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
  10. ^ Haverkamp, Richard G.; Marshall, Aaron T.; van Agterveld, Dimitri (2007). "Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo". Journal of Nanoparticle Research. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y. S2CID 56368453.
  11. ^ Porter, E. K.; Peterson, P. J. (November 1975). "Arsenic accumulation by plants on mine waste (United Kingdom)". Science of the Total Environment. 4 (4). Elsevier: 365–371. Bibcode:1975ScTEn...4..365P. doi:10.1016/0048-9697(75)90028-5.
  12. ^ Braeuer, Simone; Goessler, Walter; Kameník, Jan; Konvalinková, Tereza; Žigová, Anna; Borovička, Jan (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC 6118325. PMID 29037683.
  13. ^ Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020.
  14. ^ Tu, Cong; Ma, Lena Q.; Bondada, Bhaskhar (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. Bibcode:2002JEnvQ..31.1671T. doi:10.2134/jeq2002.1671. PMID 12371185.
  15. ^ Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011.
  16. ^ Stijve, Tjakko; Vellinga, Else C.; Herrmann, André (1990). "Arsenic accumulation in some higher fungi". Persoonia - Molecular Phylogeny and Evolution of Fungi. 14 (2): 161–166.
  17. ^ Borovička, Jan (2004). "Nová lokalita baňky velkokališné" [New location for Sarcosphaera coronaria]. Mykologický sborník (in Czech). 81 (3). Prague: Czech Mycological Society: 97–99.
  18. ^ Priel, A. "Purification of industrial wastewater with the Azolla fern". World Water and Environmental Engineering. 18.
  19. ^ a b c d Gupta, Manisha; Sinha, Sarita; Chandra, Prakash (1994). "Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l.". Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology. 29 (10). Taylor & Francis: 2185–2202. Bibcode:1994JESHA..29.2185G. doi:10.1080/10934529409376173.
  20. ^ a b c d e Bennett, Lindsay E.; Burkhead, Jason L.; Hale, Kerry L.; Terry, Norman; Pilon, Marinus; Pilon-Smits, Elizabeth A. H. (March 2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432–440. Bibcode:2003JEnvQ..32..432B. doi:10.2134/jeq2003.4320. PMID 12708665.
  21. ^ a b c d e Duke, James A. (1983). "Handbook of Energy Crops". NewCROP. West Lafayette, IN: Center for New Crops and Plant Products, Purdue University. Retrieved 3 January 2023.
  22. ^ "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR 1297259.
  23. ^ a b c d e "Phytoremediation of Radionuclides". Colorado State University. Archived from the original on 11 January 2012.
  24. ^ a b c d e Lan, Jun-Kang (March 2004). "Recent developments of phytoremediation". Journal of Geological. Hazards and Environmental Preservation. 15 (1): 46–51. Archived from the original on 20 May 2011.
  25. ^ Göhl, Bo; International Foundation for Science (1981). Tropical feeds. Feeds information summaries and nutritive values. FAO Animal Production and Health. Vol. 12. Stockholm: Food and Agriculture Organization of the United Nations.
  26. ^ Kirk J., Tiemann; Gardea-Torresdey, Jorge L.; Gamez, Gerardo; Dokken, Kenneth M. (May 1998). "Interference studies for multi-metal binding by Medicago sativa (alfalfa)" (PDF). Proceedings of the 1998 Conference on Hazardous Waste Research. Metals. Conference on Hazardous Waste Research. Snowbird, UT. pp. 63–75.
  27. ^ Sen, A. K.; Mondal, N. G.; Mandal, S. (1 January 1987). "Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes". Water Science and Technology. 19 (1–2). International Water Association: 119–127. doi:10.2166/wst.1987.0194.
  28. ^ a b c d Srivastav, R. K.; Gupta, S. K.; Nigam, K. D. P.; Vasudevan, P. (July 1994). "Treatment of chromium and nickel in wastewater by using aquatic plants". Water Research. 28 (7): 1631–1638. Bibcode:1994WatRe..28.1631S. doi:10.1016/0043-1354(94)90231-3.
  29. ^ Wild, Hiram (1974). "Indigenous plants and chromium in Rhodesia". Kirkia. 9 (2). Zimbabwe's National Herbarium and Botanic Garden: 233–241. JSTOR 23502019.
  30. ^ Brooks, Robert R.; Yang, Xing-hua (August 1984). "Elemental Levels and Relationships in the Endemic Serpentine Flora of the Great Dyke, Zimbabwe and Their Significance as Controlling Factors for the Flora". Taxon. 33 (3). Wiley: 392. doi:10.2307/1220976. JSTOR 1220976.
  31. ^ a b c d e f g Delorme, Thierry A.; Gagliardi, Joel V.; Angle, J. Scott; Chaney, Rufus L. (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Canadian Journal of Microbiology. 47 (8). Canadian Science Publishing: 773–776. doi:10.1139/w01-067. PMID 11575505.
  32. ^ a b c d e Majeti Narasimha Vara Prasad (2005). "Nickelophilous plants and their significance in phytotechnologies". Brazilian Journal of Plant Physiology. 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
  33. ^ a b c d e f g h i j Baker, Alan J. M.; Brooks, Robert R. (1989). "Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry". Biorecovery. 1: 81–126. ISSN 0269-7572.
  34. ^ a b c d e f g Lombi, Enzo; Zhao, Fang-Jie; Dunham, Sarah J.; McGrath, Steve P. (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–1926. Bibcode:2001JEnvQ..30.1919L. doi:10.2134/jeq2001.1919. PMID 11789997.
  35. ^ Morrison, Richard S.; Brooks, Robert R.; Reeves, Roger D.; Malaisse, François (1979). "Copper and cobalt uptake by metallophytes from Zaïre" (PDF). Plant and Soil. 53 (4). Kluwer: 535–539. Bibcode:1979PlSoi..53..535M. doi:10.1007/bf02140724. hdl:2268/266081. S2CID 42737843.
  36. ^ Brooks, Robert R. (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. Bibcode:1977PlSoi..48..541B. doi:10.1007/BF02187261. S2CID 12181174.
  37. ^ Howard-Williams, Clive (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. Bibcode:1970JEcol..58..745H. doi:10.2307/2258533. JSTOR 2258533.
  38. ^ Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. Bibcode:2013SSPN...59..591M. doi:10.1080/00380768.2013.807213. S2CID 97458219.
  39. ^ Baker, Alan J. M.; Walker, Philip L. (1990). "Ecophysiology of Metal Uptake by Tolerant Plants". In Shaw, A. Jonathan (ed.). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL.: CRC Press. pp. 155–177. ISBN 0-8493-6852-9.
  40. ^ Atri 1983
  41. ^ a b Siciliano, Steven D.; Germida, James J.; Banks, Kathy; Greer, Charles W. (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. Bibcode:2003ApEnM..69..483S. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031.
  42. ^ a b c Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised (PDF) (Technical report). Interstate Technology and Regulatory Council. 2009. PHYTO-3.
  43. ^ Stijve, Tjakko (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040. S2CID 31058569.
  44. ^ de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiology. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452.
  45. ^ X-ray absorption spectroscopy speciation analysis.
  46. ^ Average Se concentration of 22 μg/L supplied over a 24-d experimental period.
  47. ^ Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. Bibcode:2002JEnvQ..31.2104L. doi:10.2134/jeq2002.2104. PMID 12469862.